Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://hdl.handle.net/123456789/5863
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Osypchuk, Mykhailo | - |
dc.contributor.author | Portenko, Mykola | - |
dc.date.accessioned | 2020-04-22T07:48:28Z | - |
dc.date.available | 2020-04-22T07:48:28Z | - |
dc.date.issued | 2017-04 | - |
dc.identifier.citation | Osypchuk M.M. On constructіng some membranes for a symmetrіc -stable process/ M.M. Osypchuk, M.І. Portenko// Communіcatіons on Stochastіc Analysіs. -2017. -V. 11, 1. -P. 11-20. | uk_UA |
dc.identifier.uri | http://hdl.handle.net/123456789/5863 | - |
dc.description.abstract | Two kinds of membranes located on a fixed hyperplane S in a Euclidean space are constructed for a symmetric α-stable process with α ∈ (1, 2). The first one has the property of killing the process at the points of the hyperplane with some given intensity (r(x)) x∈S . This kind of membranes can be called an elastic screen for the process, by analogy to that in the theory of diffusion processes. The second one has the property of delaying the process at the points of S with some given coefficient (p(x)) x∈S . In other words, the points of S, where p(x) > 0, are sticky for the process constructed. We show that each one of the membranes is associated with some initial-boundary value problem for pseudo-differential equations related to a symmetric α-stable process. | uk_UA |
dc.language.iso | en_US | uk_UA |
dc.subject | stable process | uk_UA |
dc.subject | membranes | uk_UA |
dc.subject | Feynman-Kac formula | uk_UA |
dc.subject | random change of time | uk_UA |
dc.subject | initial-boundary value problem | uk_UA |
dc.subject | pseudo-differential equation | uk_UA |
dc.title | On constructіng some membranes for a symmetrіc -stable process | uk_UA |
dc.type | Article | uk_UA |
Розташовується у зібраннях: | Статті та тези (ФМІ) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
COSA2017.pdf | 313.21 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.