Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/3738
Title: The convolution operation on the spectra of algebras of symmetric analytic functions
Authors: Chernega, Iryna
Galindo, Pablo
Zagorodnyuk, Andriy
Keywords: Polynomials and analytic functions on Banach spaces Symmetric polynomials Spectra of algebras Entire functions of exponential type
Issue Date: 27-May-2012
Publisher: Elsevier
Series/Report no.: 395;569–577
Abstract: We show that the spectrum of the algebra of bounded symmetric analytic functions on ℓp, 1 ≤ p < +∞with the symmetric convolution operation is a commutative semigroup with the cancellation law for which we discuss the existence of inverses. For p = 1, a representation of the spectrum in terms of entire functions of exponential type is obtained which allows us to determine the invertible elements.
Description: doi:10.1016/j.jmaa.2012.04.087
URI: http://hdl.handle.net/123456789/3738
ISSN: 0022-247X
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
YJMAA16787.pdf441.59 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.