Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorБуртняк, Іван Володимирович-
dc.contributor.authorМалицька, Ганна Петрівна-
dc.date.accessioned2020-03-27T12:06:26Z-
dc.date.available2020-03-27T12:06:26Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/123456789/2552-
dc.description.abstractThis article discusses methods for calculating the approximate prices for a broad class of securities using the tools of spectral analysis, singular and regular wave theory in the case of exposure fast and slow operating factors. Finding the price is reduced to solving the problem of finding eigenvalues and certain functions of the equation. Combining the methods of spectral theory of singular and regular disturbances can calculate the approximate price of financial instruments as expansions by eigenfunctions working with infinitesimal generators of twodimensional diffusionuk_UA
dc.language.isouk_UAuk_UA
dc.subjectspectral theory, singular perturbationtheory, regular perturbationtheory, Sturm-Liouville theory, infinitesimal generator, multidimensional diffusionuk_UA
dc.titleЗНАХОДЖЕННЯ ЦІНИ ОПЦІОНУ З МУЛЬТИПЛІКАТИВНОЮ ВОЛАТИЛЬНІСТЮ ЗА ДОПОМОГОЮ РІВНЯННЯ КОЛМОГОРОВАuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ЕФ)

Files in This Item:
File Description SizeFormat 
Tezy_BurtnyakMalitska.pdf279.54 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.