Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://hdl.handle.net/123456789/21750
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorСвид, Ірина Вікторівна-
dc.contributor.authorSvyd, Iryna-
dc.contributor.authorAlaidi, Abdul Hadi M.-
dc.contributor.authorRamadhan, Zamen Abood-
dc.contributor.authorAlrubaye, Jaafar Sadiq-
dc.contributor.authorALRikabi, Haider TH. Salim-
dc.contributor.authorMutar, Hussein A.-
dc.date.accessioned2025-01-27T09:22:34Z-
dc.date.available2025-01-27T09:22:34Z-
dc.date.issued2025-
dc.identifier.citationA. H. M. Alaidi, Z. A. Ramadhan, J. S. Alrubaye, H. T. S. ALRikabi, H. A. Mutar, and I. Svyd, “AI-based monkeypox detection model using Raspberry Pi 5 AI Kit”, Sustainable Engineering and Innovation, vol. 7, no. 1, pp. 1-14, Jan. 2025.uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/21750-
dc.description.abstractMonkeypox is a zoonotic disease that originated from monkeys and then spread to humans; this disease recently popped up globally with increased risks of spreading from human to human and clinical presentation similar to other pox-like diseases. Quick and right identification is fundamental for containment and treatment that will minimize the spread of the disease. The current conventional diagnostic techniques include PCR which takes time, and money, and often needs sophisticated laboratories that cannot be easily accessed in developing countries. This work describes the creation and application of a monkeypox detection algorithm orchestrated on the Raspberry Pi 5 AI Kit. Developed based on convolutional neural networks (CNNs), the model enables one to distinguish actual monkeypox lesions in the images. The Raspberry Pi 5 AI Kit allows for edge computing solutions to be implemented, making the entire solution mobile, affordable, and perfect for locations with low connectivity. Extensive data collection and data preprocessing were performed, and the final dataset with monkeypox and skin lesion images consisted of more than 5000 verified images. 94% accuracy was obtained by the model, making it superior to the model available in literature. The implementation proves that powerful AI technologies can be applied to low-cost hardware to become a valuable weapon in the monkeypox frontline workers’ arsenal and advance the efforts against monkeypox infections.uk_UA
dc.language.isoenuk_UA
dc.subjectAIuk_UA
dc.subjectRaspberry Piuk_UA
dc.subjectNeural networksuk_UA
dc.subjectMonkeypoxuk_UA
dc.subjectMachine learninguk_UA
dc.titleAI-based monkeypox detection model using Raspberry Pi 5 AI Kituk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті та тези (ФТФ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
393-Article Text-1529-3-10-20250116.pdf642.95 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.