Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/2139
Full metadata record
DC FieldValueLanguage
dc.contributor.authorГой, Тарас Петрович-
dc.contributor.authorНегрич, Марія Петрівна-
dc.contributor.authorСавка, Іван Ярославович-
dc.date.accessioned2020-03-25T13:13:17Z-
dc.date.available2020-03-25T13:13:17Z-
dc.date.issued2018-
dc.identifier.citationGoy, T. On nonlocal boundary value problem for the equatіon of motіon of a homogeneous elastіc beam wіth pіnned-pіnned ends / T. Goy, M. Negrych, І. Savka // Carpathіan Mathematіcal Publіcatіons, 2018. – 10 (1). – P. 105-113.uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/2139-
dc.description.abstractIn the current paper, in the domain D = {(t, x) : t ∈ (0, T), x ∈ (0, L)} we investigate the boundary value problem for the equation of motion of a homogeneous elastic beam utt(t, x)+a2uxxxx(t,x)+buxx(t,x)+cu(t, x) = 0, where a, b, c ∈ R, b2 < 4a2c, with nonlocal two-point conditions u(0, x) − u(T, x) = ϕ(x), ut(0, x) − ut(T, x) = ψ(x) and local boundary conditions u(t, 0) = u(t, L) = uxx(t, 0) = uxx(t, L) = 0. Solvability of this problem is connected with the problem of small denominators, whose estimation from below is based on the application of the metric approach. For almost all (with respect to Lebesgue measure) parameters of the problem, we establish conditions for the solvability of the problem in the Sobolev spaces. In particular, if ϕ ∈ Hq+ρ+2 and ψ ∈ Hq+ρ, where ρ > 2, then for almost all (with respect to Lebesgue measure in R) numbers a there exists a unique solution u ∈ C2 ([0, T]; Hq) of the problem.uk_UA
dc.language.isoenuk_UA
dc.subjectnonlocal boundary value problemuk_UA
dc.subjecthomogeneous beamuk_UA
dc.subjectsmall denominatoruk_UA
dc.subjectLebesque measureuk_UA
dc.subjectmetric approachuk_UA
dc.titleOn nonlocal boundary value problem for the equatіon of motіon of a homogeneous elastіc beam wіth pіnned-pіnned endsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
2182-9018-2-PB.pdf137.42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.