Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://hdl.handle.net/123456789/1952
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorБуртняк, Іван Володимирович-
dc.contributor.authorМалицька, Ганна Петрівна-
dc.date.accessioned2020-03-24T13:25:48Z-
dc.date.available2020-03-24T13:25:48Z-
dc.date.issued2017-07-14-
dc.identifier.urihttp://hdl.handle.net/123456789/1952-
dc.description.abstractIn the paper we apply the spectral theory to find the price for derivatives of financial assets assuming that the processes described are Markov processes and such that can be considered in the Hilbert space L^2 using the Sturm-Liouville theory. Bessel diffusion processes are used in studying Asian options. We consider the financial flows generated by the Bessel diffusions by expressing them in terms of the system of Bessel functions of the first kind, provided that they take into account the linear combination of the flow and its spatial derivative. Such expression enables calculating the size of the market portfolio and provides a measure of the amount of internal volatility in the market at any given moment, allows investigating the dynamics of the equity market. The expansion of the Green function in terms of the system of Bessel functions is expressed by an analytic formula that is convenient in calculating the volume of financial flows. All assumptions are natural, result in analytic formulas that are consistent with the empirical data and, when applied in practice, adequately reflect the processes in equity markets.uk_UA
dc.language.isouk_UAuk_UA
dc.subjectspectral theory, financial flows, Bessel diffusion process, Bessel functions, Green function, singular parabolic operator, infinitesimal operatoruk_UA
dc.titleCalculating the Price for Derivative Financial Assets of Bessel Processes Using the Sturm-Liouville Theoryuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті та тези (ЕФ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
problems-of-economy-2017-2_0-pages-310_316.pdf492.34 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.