Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/1946
Full metadata record
DC FieldValueLanguage
dc.contributor.authorГой, Тарас Петрович-
dc.date.accessioned2020-03-24T13:24:14Z-
dc.date.available2020-03-24T13:24:14Z-
dc.date.issued2018-
dc.identifier.citationGoy, T. Fibonacci and Lucas numbers via the determinants of tridiagonal matrix / T. Goy // Notes on Number Theory and Discrete Mathematics. – 2018. – 24 (1). – P. 103-108uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/1946-
dc.description.abstractApplying the apparatus of triangular matrices, we proved new recurrence formulas for the Fibonacci and Lucas numbers with even (odd) indices by tridiagonal determinants.uk_UA
dc.language.isoenuk_UA
dc.subjectFibonacci numbersuk_UA
dc.subjectLucas numbersuk_UA
dc.subjectHoradam sequenceuk_UA
dc.subjectTriangular matrixuk_UA
dc.subjectParapermanent of triangular matrixuk_UA
dc.titleFibonacci and Lucas numbers via the determinants of tridiagonal matrixuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
NNTDM-24-1-103-108.pdf160.72 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.