Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/10398
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFrontczak, Robert-
dc.contributor.authorГой, Тарас Петрович-
dc.date.accessioned2021-06-29T06:28:19Z-
dc.date.available2021-06-29T06:28:19Z-
dc.date.issued2021-
dc.identifier.citationFrontczak R. General infinite series evaluations involving Fibonacci numbers and the Riemann zeta functions / R. Frontczak, T. Goy // Matematychni Studii. – 2021. – 55 (2). – P. 115–123.uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/10398-
dc.description.abstractThe purpose of this paper is to present closed forms for various types of infinite series involving Fibonacci (Lucas) numbers and the Riemann zeta function at integer arguments. To prove our results, we will apply some conventional arguments and combine the Binet formulas for these sequences with generating functions involving the Riemann zeta function and some known series evaluations.uk_UA
dc.language.isoenuk_UA
dc.subjectFibonacci numberuk_UA
dc.subjectLucas numberuk_UA
dc.subjectRiemann zeta functionuk_UA
dc.subjectdigamma functionuk_UA
dc.subjectgenerating functionuk_UA
dc.titleGeneral infinite series evaluations involving Fibonacci numbers and the Riemann zeta functionuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
128-Article Text (pdf)-840-1-10-20210623.pdf111.3 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.