Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/10397
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFrontczak, Robert-
dc.contributor.authorГой, Тарас Петрович-
dc.date.accessioned2021-06-29T06:28:10Z-
dc.date.available2021-06-29T06:28:10Z-
dc.date.issued2021-
dc.identifier.citationFrontczak R. More Fibonacci-Bernoulli relations with and without balancing polynomials / R. Frontczak, T. Goy // Mathematical Communications, 2021. – 26 (2). – P. 215–226.uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/10397-
dc.description.abstractWe continue our study on relationships between Bernoulli polynomials and balancing (Lucas-balancing) polynomials. From these polynomial relations, we deduce new combinatorial identities with Fibonacci (Lucas) and Bernoulli numbers. Moreover, we prove a special identity involving Bernoulli polynomials and Fibonacci numbers in arithmetic progression. Special cases and some corollaries will highlight interesting aspects of our findings. Our results complement and generalize these of Frontczak (2019).uk_UA
dc.language.isoenuk_UA
dc.subjectBernoulli polynomialsuk_UA
dc.subjectBernoulli numbersuk_UA
dc.subjectbalancing polynomialsuk_UA
dc.subjectbalancing numbersuk_UA
dc.subjectFibonacci numbersuk_UA
dc.subjectLucas numbersuk_UA
dc.subjectgenerating functionuk_UA
dc.titleMore Fibonacci-Bernoulli relations with and without balancing polynomialsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
!4045-12010-1-PB.pdf115.51 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.