
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2020, 12 (2), 443–450 Карпатськi матем. публ. 2020, Т.12, №2, С.443–450

doi:10.15330/cmp.12.2.443-450

BOUNDEDNESS OF THE HILBERT TRANSFORM ON BESOV SPACES

MAATOUG A., ALLAOUI S.E.

The Hilbert transform along curves is of a great importance in harmonic analysis. It is known

that its boundedness on Lp(Rn) has been extensively studied by various authors in different con-

texts and the authors gave positive results for some or all p, 1 < p < ∞. Littlewood-Paley theory

provides alternate methods for studying singular integrals. The Hilbert transform along curves, the

classical example of a singular integral operator, led to the extensive modern theory of Calderón-

Zygmund operators, mostly studied on the Lebesgue Lp spaces. In this paper, we will use the

Littlewood-Paley theory to prove that the boundedness of the Hilbert transform along curve Γ on

Besov spaces Bs
p,q(R

n) can be obtained by its Lp-boundedness, where s ∈ R, p, q ∈]1,+∞[, and Γ(t)

is an appropriate curve in R
n, also, it is known that the Besov spaces Bs

p,q(R
n) are embedded into

Lp(Rn) spaces for s > 0 (i.e. Bs
p,q(R

n) →֒ Lp(Rn), s > 0). Thus, our result may be viewed as an

extension of known results to the Besov spaces Bs
p,q(R

n) for general values of s in R.
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1 INTRODUCTION

Let Γ : R → R
n, n ≥ 2, be a continuous curve passing through the origin, i.e. Γ(0) = 0. We

define the Hilbert transform along Γ by the principal-valued integral

H f (x) = p.v.
∫ ∞

−∞
f (x − Γ(t))

dt

t
, ∀ f ∈ C∞

0 (Rn). (1)

It is interesting to determine for which curves Γ, and which indices p, one has the Lp-bound

‖H f‖p 6 c‖ f‖p ; (2)

for a survey of this problem’s history through 1977 see [21]. More recent results can be found

in a series of papers, see for example [6–8,14–18] and [4]. Now, we are interesting to determine

for which curves Γ, and which indices p, q, s, we have estimates of the form

‖H f‖Bs
p,q(Rn) ≤ c‖ f‖Bs

p,q(Rn) (3)

for f ∈ Bs
p,q(R

n), and c < ∞ depending only on Γ and p, not f ?

At first, note that a simple calculation shows that

Ĥ f (ξ) = m(ξ). f̂ ,

УДК 517.44
2010 Mathematics Subject Classification: 44A15, 42B20, 46E35.

© Maatoug A., Allaoui S.E., 2020



444 MAATOUG A., ALLAOUI S.E.

where the "Fourier multiplier" m is the function

m(ξ) = p.v.
∫ ∞

−∞
e−iξ.Γ(t)dt

t
, ξ ∈ R

n.

Next, it is known that for proving the estimate (2) for p = 2, it suffices to show that m(ξ) is

a bounded function on R
n and to use the Van Der Corput Lemma and Plancherel’s Theorem

(see [30, p.197] and [18]).

When Γ is of finite type, i.e the set {Γ(k)(0) : k ≥ 1} spans R
n, we must consider the local

version Hloc of the operator H, where the integral defining H is restricted to [−1, 1]. In [21] it

is shown that, in this case, Hloc is bounded on Lp(Rn) for every p, 1 < p < ∞. Thus, what can

happen in the case when Γ is not of finite type? We restrict our attention to curves γ satisfying

γ ∈ C2(]0,+∞[), convex on [0,+∞[ and γ(0) = γ′(0) = 0; (4)

and γ is either even or odd. The convexity hypothesis means that [γ(c) − γ(b)]/(c − b) ≥

[γ(b)− γ(a)]/(b − a) for 0 ≤ a < b < c. The following notions naturally arise

Definition 1. (i) A function f : R −→ R belongs to C1 if there exists λ, 1 < λ < ∞, such

that for each t > 0 the inequality f (λt) ≥ 2 f (t) holds. Such a function f is said to be

doubling.

(ii) A differentiable function f : R −→ R belongs to C2 if there exists ε0 > 0 such that for

t > 0 the inequality f ′(t) ≥ ε0 f (t)/t holds. Such a function f is said to be infinitesimally

doubling.

If f is nondecreasing on ]0,+∞[, then f ∈ C2 implies f ∈ C1.

We will also use the function h defined for t > 0 by h(t) = tγ′(t)− γ(t). Because of γ is

convex and γ(0) = 0 we get the following important inequality

tγ′(t) ≥ γ(t) for all t > 0.

In [5], it was proved that if γ is even and satisfies (4) for p ∈]1,+∞[, then H is Lp-bounded

if and only if γ′ ∈ C1. This is the case when γ is convex and even. In the odd case, the current

situation is less satisfactory. In [15], it is shown that if γ is odd, and satisfies (4), then H is

L2-bounded if and only if h ∈ C1. This means that for each p ∈]1,+∞[ a necessary condition

for H to be Lp-bounded is h ∈ C1. However, it was demonstrated in [3] that this condition is

far from sufficient. It is shown that when γ is odd, satisfies (4), and if h ∈ C2, then H is Lp-

bounded for all p ∈]1, ∞[. In the same case, we have the Lp result for any p ∈]1,+∞[ if γ′ ∈ C1

(see [5]).

For the case of polynomial curve Γ in R
n some of related known results are Theorems 2

and 3 (see below and [2,22]). Indeed, the subject of bounds on Hilbert transforms and singular

integrals has a rich history and has been studied by many authors on different spaces such as

Lebesgue, Sobolev Spaces, which are special cases of Besov spaces. For different states of the

Hilbert transform we refer the reader to [2,11,13,23] and many references therein. In particular,

and in connection with our work, we mention the work of U. Luther and M.G. Russo [13]. They

have studied the Hilbert transform on a new weighted Besov spaces which touched our topic

but did not approach exactly. Our method is also different from [13]. Besov spaces are the
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natural spaces in which many operators related to functional equations, many papers appeared

on Besov spaces and some possible related applications, for example Lagrange interpolation

in Besov spaces and Cauchy singular integral equations in Sobolev spaces (see [9, 10, 12]).

On some conditions we confirm that the Hilbert transform preserves the boundedness

property on Besov Bs
p,q(R

n) spaces, for all s ∈ R and p, q ∈]1, ∞[. In this paper, we will af-

firm this.

This paper is organized as follows. After giving some preliminaries and notations that will

be needed throughout this paper, we recall the decomposition of Littlewood-Palley, the defini-

tion of Besov spaces, and their properties. In addition, we will recall some results concerning

the Lp(Rn)-boundedness of the Hilbert transform along curves, we mention the following re-

sults of [22] and [2], which would guarantee the Lp(Rn)-boundedness for all p, 1 < p < ∞.

In Section 3, we prove that the boundedness of the Hilbert transform along curves on Besov

spaces Bs
p,q(R

n) can be obtained by its Lp(Rn)-boundedness. Finally, we present a conclusion

and discuss future research in Section 4. The main result of this paper is the following.

Theorem 1. Let s ∈ R, p ∈]1,+∞[, q ∈]1,+∞[. If H is bounded on Lp(Rn), then H is bounded

on Besov spaces Bs
p,q(R

n).

2 PRELIMINARIES

In this section, we recall the basic definitions and notations that will be needed throughout

this paper.

2.1 Notations

In this paper, N = {1, 2, · · · } denotes the set of all natural numbers and N0 = N ∪ {0}. All

considered spaces are defined on the Euclidean space R
n, x.y = x1y1 + · · ·+ xnyn denotes the

scalar product in R
n. For each α = (α1, . . . , αn) ∈ N

n and every x = (x1, . . . , xn) ∈ R
n, ∂α f de-

notes the partial derivative
∂|α| f

∂x1
α1 · · · ∂xn

αn
with |α| = α1 + · · ·+ αn. C∞

0 (Rn) = D(Rn) denotes

the space of all infinitely differentiable and compactly supported functions in R
n, D′(Rn) is

the topological dual of D(Rn). S(Rn) denotes the Schwartz space of all complex-valued, in-

finitely differentiable, and rapidly decreasing functions, and S ′(Rn) its topological dual, the

space of tempered distributions. For ϕ ∈ S(Rn) and f ∈ S ′(Rn) the Fourier transform defined

on both S(Rn) and S ′(Rn) is given by (F f )(ϕ) = f (F ϕ), where

(F ϕ)(ξ) = ϕ̂(ξ) = (2π)−
n
2

∫

Rn
e−ix.ξ ϕ(x)dx, ξ ∈ R

n, ϕ ∈ S(Rn).

The mapping F is a bijection (in both cases) and its inverse is given by

(F−1ϕ)(ξ) = (2π)−
n
2

∫

Rn
eix.ξ ϕ(x)dx, ξ ∈ R

n, ϕ ∈ S(Rn).

The convolution ϕ ∗ ψ of two integrable functions ϕ, ψ is defined via the integral

(ϕ ∗ ψ)(x) =
∫

Rn
ϕ(x − y)ψ(y)dy.
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The symbol →֒ denotes that the natural injection is a continuous linear operator. For 1 ≤

p ≤ ∞, we denote by p′ the conjugate exponent of p such that
1

p
+

1

p′
= 1. The space Lp(Rn),

0 < p 6 ∞, denotes the set of the measurable functions f such that

‖ f‖Lp =

(∫

Rn
| f (x)|p dx

) 1
p

< ∞

with the usual modification if p = ∞. By lq we denote the set of sequences (ak)k such that

‖(ak)‖lq = (∑∞
k=0 |ak|

q)1/q
< ∞. For p and q such that 0 < p ≤ ∞, 0 < q ≤ ∞, we put

‖{ fk}k‖lq(LP) =

(
∞

∑
k=0

‖ fk(x)‖
q
p

) 1
q

< ∞, ‖{ fk}k‖LP(lq) =

∥∥∥∥
(

∞

∑
k=0

| fk(x)|q
) 1

q
∥∥∥∥

p

< ∞.

2.2 The Littlewood-Paley decomposition

We introduce the concept of a dyadic decomposition of unity, and we define the Besov

spaces by using the Littlewood-Paley decomposition of tempered distributions.

Let ϕ be a smooth function in S(Rn) which satisfies the conditions: ϕ(x) = 1 if |x| ≤ 1,

ϕ(x) = 0 if |x| ≥ 3
2 , 0 ≤ ϕ(x) ≤ 1.

We define

ϕ0(x) = ϕ(x), ϕj(x) = ϕ(2−jx)− ϕ(2−j+1x), j = 1, 2, . . . , x ∈ R
n,

and the following identity holds

∞

∑
j=0

ϕj(x) = 1, ∀x ∈ R
n.

The system {ϕj(x)}j∈N form a dyadic resolution of unity in R
n.

Putting

Φ0 = F−1ϕ and Φj = F−1ϕj,

we obtain the Littlewood-Paley decomposition of f , i.e.

f =
∞

∑
j=0

Φj ∗ f

for every f ∈ S ′(Rn) (see [29]).

2.3 Besov spaces

Definition 2 ([29]). Let the real numbers s, p, q such that s ∈ R, 0 < p ≤ ∞, and 0 < q ≤ ∞.

The Besov space Bs
p,q(R

n) is the set of all f ∈ S ′(Rn) such that

‖ f‖Bs
p,q(Rn) ≡

( ∞

∑
j=0

(
2sj‖Φj ∗ f‖p

)q
)1/q

< ∞

with the usual modification if q = ∞.
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Note that Bs
p,q(R

n) is a Banach space if p ≥ 1, q ≥ 1, which is independent of the chosen

system {ϕj}
j=∞

j=0 .

Proposition 1. Let s ∈ R, p, q ∈ [1,+∞]. The following chain of continuous embeddings

S(Rn) →֒ Bs
p,q(R

n) →֒ S ′(Rn),

holds. Furthermore Bs
p,q(R

n) contains the Schwartz space S(Rn) as a dense subspace if

max(p, q) < ∞.

The given above definition represents only one of a large collection of possibilities for in-

troducing Besov spaces. For its basic properties we refer to [1, 19, 20, 24, 25].

Now we give the results of [2] and [22], which guarantee the Lp(Rn)-boundedness of the

Hilbert transform for all p, 1 < p < ∞.

Theorem 2 ([22]). Let Γ(t) = (P1(t), . . . , Pn(t)), where P1, . . . , Pn are real polynomials on R.

Then H is bounded on Lp for all p, 1 < p < ∞, with bound independent of the coefficients of

P1, . . . , Pn.

Theorem 3 ([2]). Suppose that P is a real polynomial and γ is convex on [0, ∞[ twice differen-

tiable, either even or odd, γ(0) = 0, and γ′(0) ≥ 0.

Let Γ(t) = (t, P(γ(t))), p ∈ ]1, ∞[, and either (1) P′(0) is zero, or (2) P′(0) is nonzero and

γ′ ∈ C1, then

‖H f‖p ≤ c‖ f‖p .

Moreover the constant c depends only on p, γ and the degree of P.

Remark 1. (1) By taking γ(t) = t, we recover a form of Theorem 2, it is shown in [22] that

for all p, 1 < p < ∞, Lp(Rn)-boundedness of H is obtained. Also taking P(s) = s, it is

shown in [5] that if γ is odd, satisfies (4) and γ′ ∈ C1, then the Lp-boundedness of H for

all p ∈]1, ∞[ is obtained.

(2) Some examples of nonconvex curves were studied in [28], and later these were general-

ized somewhat through a technical theorem in [27]. Although the class of these curves

obtained from theorem in [2].

3 PROOF OF THEOREM 1.

The proof of Theorem 1 needs the following lemma.

Lemma 1 ([6]). For all functions f in S(Rn) we have

Ĥ f (ξ) = m(ξ). f̂ , (5)

where the "Fourier multiplier" m is the function

m(ξ) = p.v.
∫ ∞

−∞
e−iξ.Γ(t)dt

t
, ξ ∈ R

n.
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Proof. By the Fubini theorem we have

Ĥ f (ξ) = p.v.
∫ ∞

−∞

1

t

{∫

Rn
e(−iξ.x) f (x − Γ(t))dx

}
dt,

By changing the variable u = x − Γ(t), we obtain

∫

Rn
f (u)e(−iξ.(u+Γ(t)))du = f̂ (ξ)e(−iξ.Γ(t)).

Hence we have the following result. By applying the inverse of the Fourier transform for

(5), see for instance [26, p.40], we can define the Hilbert transform as a convolution operator

by the formula

H f (x) = K ∗ f (x), (6)

where

K(ξ) = F−1m(ξ)

(see also [8] and [22, p.25]).

Now, by Theorem 2 or Theorem 3, for any p, q, such that 1 < p, q < ∞, and any { fj}j in

lq(Lp), we have (
∞

∑
j=0

‖H fj‖
q
p

)1/q

≤ c

(
∞

∑
j=0

‖ fj‖
q
p

)1/q

, (7)

where c is independent of { fj}.

It follows from formula (6) that

‖H f‖Bs
p,q(Rn) :=

( ∞

∑
j=0

(
2sj‖Φj ∗ H f‖p

)q
)1/q

=

(
∞

∑
j=0

2jsq‖Φj ∗ H f‖
q
p

)1/q

=

(
∞

∑
j=0

2jsq‖Φj ∗ K ∗ f‖
q
p

)1/q

.

By the convolution properties and formula (6), we have

‖H f‖Bs
p,q(Rn) =

( ∞

∑
j=0

‖K ∗ (2jsΦj ∗ f )‖
q
p

)1/q

=

( ∞

∑
j=0

‖H(2jsΦj ∗ f )‖
q
p

)1/q

.

Then, by formula (7), there exists a constant c such that

‖H f‖Bs
p,q(Rn) ≤ c

( ∞

∑
j=0

‖2jsΦj ∗ f‖
q
p

)1/q

.

Simple calculations show that

‖H f‖Bs
p,q(Rn) ≤ c

( ∞

∑
j=0

(
2sj‖Φj ∗ f‖p

)q
)1/q

= c

( ∞

∑
j=0

2jsq‖Φj ∗ f‖
q
p

)1/q

= c‖ f‖Bs
p,q(Rn).
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4 CONCLUSION

In this work, using the Littlewood-Paley decomposition we have proved that the bound-

edness of the Hilbert transform along curves on Besov spaces Bs
p,q(R

n) can be obtained by

its Lp(Rn)-boundedness, where s ∈ R, and p, q ∈]1,+∞[. In future work, we will prove the

boundedness on other functional spaces.
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Маатуг А., Аллауї С.Е. Обмеженiсть перетворення Гiльберта на просторах Бєсова // Карпатськi

матем. публ. — 2020. — Т.12, №2. — C. 443–450.

Перетворення Гiльберта вздовж кривих має велике значення в гармонiчному аналiзi. Вiдо-

мо, що його обмеженiсть на Lp(Rn) широко дослiджувалось рiзними авторами в рiзних кон-

текстах i автори отримували позитивнi результати для деяких або всiх p, 1 < p < ∞. Теорiя

Лiтлвуда-Пелi надає альтернативнi методи вивчення сингулярних iнтегралiв. Перетворення

Гiльберта взовж кривих, як класичний приклад сингулярного iнтеграла, призвело до появи

сучасної теорiї операторiв Кальдерона-Зiґмунда, якi здебiльшого вивченi на лебегових просто-

рах Lp. У цiй статтi ми використовуємо теорiю Лiтлвуда-Пелi щоб доведести, що обмеженiсть

перетворення Гiльберта вздовж кривої Γ на просторах Бєсова Bs
p,q(R

n) може бути отримана з

його Lp-обмеженостi, де s ∈ R, p, q ∈]1,+∞[, i Γ(t) — вiдповiдна крива в R
n. Вiдомо, що про-

стори Бєсова Bs
p,q(R

n) вкладенi в простори Lp(Rn) для s > 0 (тобто Bs
p,q(R

n) →֒ Lp(Rn), s > 0).

Отже, наш результат можна розглядати як продовження вiдомих результатiв на простори Бє-

сова Bs
p,q(R

n) для довiльних значень s в R.

Ключовi слова i фрази: перетворення Гiльберта, розклад Лiтлвуда-Пелi, простори Бєсова.


