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MATHEMATICAL MODELING OF FINITE TOPOLOGIES

MONABBATI S.E.1 , TORABI H.2

Integer programming is a tool for solving some combinatorial optimization problems. In this

paper, we deal with combinatorial optimization problems on finite topologies. We use the binary

representation of the sets to characterize finite topologies as the solutions of a Boolean quadratic

system. This system is used as a basic model for formulating other types of topologies (e.g. door

topology and T0-topology) and some combinatorial optimization problems on finite topologies. As

an example of the proposed model, we found that the smallest number m(k) for which the topology

exists on an m(k)-elements set containing exactly k open sets, for k = 8 and k = 15 is 3 and 5,

respectively.
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1 INTRODUCTION

Integer programming is a useful tool for solving combinatorial optimization problems. The

first step in this solving process is building a mathematical model from the combinatorial prob-

lem. Some modeling techniques have been discussed in [5,6] and the references therein. There

are some combinatorial optimization problems on finite topological spaces. The most well-

known of them concerns the number of finite topologies on n elements, T(n). K. Ragnarsson

and B.E. Tenner in [4] state that this problem can be refined by counting T(n, k), the number of

topologies on n elements having k open sets. They also point out the number T(n) is asymp-

totically equal to T0(n), the number of T0-topologies on n elements. Proving the equivalence

between T0-topologies and cellular complexes, V.A. Kovalevsky [1] solves some contradictions

or paradoxes in image analysis. The other combinatorial problem arises in finite topological

spaces introduced by K. Ragnarsson and B.E. Tenner [4] is to find the smallest positive integer

m(k) such that there exists a topology on m(k) elements having k open sets.
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In this paper, we consider the mathematical modeling of combinatorial problems on finite

topological spaces. As well as modeling problems related to obtaining m(k), T0(n), T(n, k),

the mathematical models of other topological concepts such as connected components, door

topologies, connected topologies, etc. are also presented.

In Section 2 we recall some essential definitions and lemmas. In Section 3, first, we propose

a quadratic zero-one system for general finite topological spaces and, then, we use it as the

feasible region of models related to the other types of finite topologies. In Section 4, using the

notion of topological basis we offer some model improvements which reduce the size of the

model in constraints. Then we present an algorithm for the problem of counting the number

of finite topologies on an n-set. In Section 5 we exhibit an example of combinatorial problems,

which are solved by this mathematical programming approach.

2 DEFINITIONS

In this section, some basic definitions are presented. Many of them are well-known in the

literature [3] and presented here for the sake of completeness. We begin by the definition of a

topology.

Definition 1. Let X be a nonempty set. Denote by P(X) the set of all subsets of X. A subset τ

of P(X) is called a topology on X if it satisfies the following

(a) ∅, X ∈ τ,

(b) the intersection of finitely many elements of τ is in τ,

(c) the arbitrary union of elements of τ is in τ.

The pair (X, τ) is called a topological space. Obviously, P(X) is itself a topology on X which

is called the discrete topology. A set A ⊆ X is said to be open (closed) in X with respect to τ if

A ∈ τ (Ac ∈ τ). A set which is open and also closed is called a clopen set. A topological space

(X, τ) is called finite if X is a finite set. In this case (c) may be replaced by

(c′) finite union of elements of τ is in τ.

We now introduce some topological concepts which are closely related to our work.

Definition 2. Consider a topological space (X, τ).

(a) A subset β of P(X) is called a topology basis if for any x ∈ X and U, V ∈ β with x ∈ U ∩V

there is a set W belonging to β such that x ∈W and W ⊆ U ∩V.

(b) τ is called a door topology if each element of P(X) is either open or close.

(c) τ has T0-property if for each x, y ∈ X there is an open set in X which contains exactly one

of x or y. The topology which has the T0-property is called T0-topology.

(d) Let A be a subset of X. The collection τA = {A ∩ G : G ∈ τ} is a topology on A, which is

called the induced topology. With this topology, A is called a subspace of X.
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(e) X is called connected if it is not a union of two nonempty disjoint elements of τ. A subset A

of X is called a connected set if it is connected as a subspace of X. It is easy to see that X is

connected if and only if the only its clopen subsets are X and ∅.

(f) A connected subset A of X is called a connected component if it is not a proper subset of any

connected set.

(g) A function f : X → X is called continuous with respect to τ if for any open set G, the set

f−1(G) is also open.

(h) Let T be a subset of P(X). The intersection of all topologies containing T, denoted by 〈T〉,

is called the topology generated by T.

We conclude this section by a simple lemma.

Lemma 1. Let x be an integer in [0, n] and y be a binary number which satisfy x
n ≤ y ≤ x. Then

x > 0 if and only if y = 1.

3 MODELING

In this section, we propose mathematical models of various types of topologies introduced

in Section 2.

Let X = {1, . . . , n} be an n-element set and P(X) = {∅ = G0, G1, . . . , G2n−1 = X}. Suppose

bi ∈ {0, 1}n is the binary representation of Gi, i. e. bij = 1 if j ∈ Gi and bij = 0 otherwise. There

are some bitwise operations on bi’s: “bitwise or”, “bitwise and” and “negation”. Let b and c

are two binary n-vectors, then bitwise or, bitwise and of b, c and negation of b are denoted by

b ∨ c, b ∧ c and b′, respectively.

Consider the decision variables as follows: xbi
is a binary variable which is equal to 1 if

Gi ∈ τ and equal to zero otherwise, i = 0, . . . , 2n − 1.

Thereinafter, for convenience, we use i instead of bi if there is no ambiguity. Now, any

solution x = (x0, x1, . . . , x2n−1) of the system

xi∧j ≥xixj,
i = 1, · · · , 2n − 1,

j = i + 1, . . . , 2n − 1,
(1)

xi∨j ≥xixj,
i = 1, · · · , 2n − 1,

j = i + 1, . . . , 2n − 1,
(2)

x0 =1,

x2n−1=1, (3)

xi ∈{0, 1}, i = 0, · · · , 2n − 1,

corresponds to a general topology on the finite set. We denote this system and its solution set

by GFT(n) and T , respectively. It is easy to see that (1), (2) could be replaced by the following

inequalities

xi∨j + xi∧j ≥ 2xixj,
i = 1, · · · , 2n − 1,

j = i + 1, . . . , 2n − 1.
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3.1 Modeling special types of topologies

In this section, we formulate some other types of topologies as a zero-one quadratic system

or as a zero-one quadratic optimization problem by adding appropriate equalities/inequalities

to GFT(n).

3.1.1 Door topology

By definition τ is a door topology when exactly one of Gi or Gc
i = Gi′ is in τ. Thus, by adding

the constraints xi + xi′ = 1, for i = 1, . . . , 2n − 1 to GFT(n), the door topology’s model is at

hand.

3.1.2 T0-Topology

Let i, j ∈ X. The value of (bki − bkj)
2 is equal to 1 if and only if bki 6= bkj. Equivalently

(bki − bkj)
2 = 1 if and only if either i ∈ Gk or j ∈ Gk. Thus the sum

2n−1

∑
k=0

xk(bki − bkj)
2 is the

number of elements of the topology which contains exactly one of i or j. Hence, the inequa-

lities
2n−1

∑
k=0

xk(bki − bkj)
2 ≥ 1, i = 1, . . . , n− 1, j = i + 1, . . . , n, (4)

guarantee T0-property. We therefore add the inequality (4) to GFT(n) to achieve a T0-topo-

logy.

3.1.3 Topologies for which the induced topology on a fixed subset A (the subspace topol-

ogy on A) have the T0-property

Clearly, A has the T0-property if and only if for any two elements of A, there is an open set in

X, contains exactly one of them. Similar to (4) it suffices to add the following constraints

2n−1

∑
k=0

xk(bki − bkj)
2 ≥ 1, i, j ∈ A.

3.1.4 Generated topology by a subset T of P(X)

It is easy to see that 〈T〉 is the smallest topology containing T. Thus the following nonlinear

integer program gives the generated topology by T

min
2n−1

∑
i=0

xi xi = 1, i : Gi ∈ T x ∈ T .

3.1.5 Topology τ for which a given function f : X → X is continuous with respect to τ

Let f : X → X be an arbitrary function. We desire to find topology τ for which f is continuous.

Let F = ( fij) where fij = 1 if f (j) = i and fij = 0 otherwise. We have

f−1(G) =
(

maxi∈G fi1 maxi∈G fi2 . . . maxi∈G fin

)

,
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since if b is the binary representation of f−1(G), then k ∈ f−1(G) if and only if bk = 1. On the

other hand maxi∈G fik = 1 if and only if at least one of fiks equal to one, equivalently if and

only if there is an i ∈ X such that f (i) = k.

We wish f−1(Gi) in τ, for each i. This is attained by the following equations

x f−1
i

= 1, i = 1, . . . , 2n − 1,

where f−1
i is the binary representation of f−1(Gi).

3.1.6 Connected topology

Adding the inequalities

xi + xi′ ≤ 1, i = 1, . . . , 2n−1− 1,

implies that for any nonempty proper subset A of X, at most one of A and Ac is in τ, and by

definition, we have a connected topology.

3.1.7 Topology with the smallest number of connected components

Suppose some types of topologies are modeled as a mathematical program say (MP). By theo-

rem below one can easily show that including objective function ∑
i

xixi′ to (MP), will result in

topology which has the smallest number of connected components.

Theorem 1. Let (X, τ) be a finite topological space. Then A ⊆ X is clopen if and only if A is a

union of some connected components of X. Thus, if F is the number of connected components

of X then X has exactly 2F clopen subsets.

Proof. Let G1, G2, . . . , Gp are the connected components of X. Since X is the union of its

connected components, then Gc
j =

⋃

i 6=j Gi. Therefore Gc
j is closed, since Gi’s are closed by

Theorem 1 [2, p. 139]. Thus Gj is clopen and it proves that an arbitrary union of connected

components is a clopen set.

Conversely, let A be a clopen subset of X. We have X = A ∪ Ac. So by Theorem 1 in

[2, p. 131] Gi entirely belongs to A or Ac. On the other hand X = ∪iGi thus

A =
⋃

(A ∩ Gi) =
⋃

Gi∩A 6=∅

(A ∩ Gi) =
⋃

Gi∩A 6=∅

Gi.

3.1.8 The topology in which nonempty open sets have at least k1 elements and nonempty

closed sets have at least k2 elements, 0 ≤ k1, k2 ≤ n

Let G be any nonempty proper open set. Then G and Gc have at least k1, k2 elements, re-

spectively. On the other hand |Gc| = n − |G|, where |A| denotes number of elements in A.

Therefore k1 ≤ |G| ≤ n− k2. The last inequality is achieved by adding the following equations

to GFT(n)

xik1 ≤ xi

n

∑
j=1

bij ≤ xi(n− k2), i = 1, . . . , 2n − 1.
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3.2 Some combinatorial optimization problems on finite topologies

This section concerns two combinatorial optimization problems on finite topologies. First,

we propose a formulation for computing m(k), the smallest positive integer such that there

exists a topology on m(k) elements having k open sets. Then, we propose an algorithm for

computing the number T(n) of topologies on an n-set.

3.2.1 Computing m(k)

Topologies with exactly k open sets could be handled by including the equation

2n−1

∑
i=0

xi = k

to GFT(n).

K. Ragnarsson and B.E. Tenner in [4] prove that m(k) ≤ 4
3 log2 k + 2. In addition it’s clear

that m(k) ≥ log2 k. Let n =
⌊

4
3 log2 k

⌋

+ 2 and l = ⌈log2 k⌉. We use the following theorem to

formulate the problem as an integer program.

Theorem 2. Suppose τ, τ′ are topologies on

X = {1, 2, . . . , n} and X′ = {1, 2, . . . , n, n + 1, . . . , m},

respectively and let x, x′ are corresponding binary vectors. Then

2n−1

∑
n=0

2ixi <

2m−1

∑
n=0

2ix′i .

Proof. We have

2n−1

∑
n=0

2ixi ≤
2n−1

∑
n=0

2i = 22n
< 22m−1.

Since {1, 2, . . . , m} ∈ τ′ then
2m−1

∑
n=0

2ix′i ≥ 22m−1 and this completes the proof.

As a consequence of Theorem 2, m(k) is the optimal solution of the following nonlinear

integer program:

MM(k) min
2n−1

∑
i=0

2ixi,

s.t. xi∧j ≥ xixj,
i = 1, · · · , 2n − 1,

j = i + 1, . . . , 2n − 1,

xi∨j ≥ xixj,
i = 1, · · · , 2n − 1,

j = i + 1, . . . , 2n − 1,

2n−1

∑
i=0

xi = k,

x0 = 1,

xi ∈ {0, 1}, i = 0, . . . , 2n − 1.
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Note that we exclude the equality x2n−1 = 1, since if β is the topology attained by the

system then β is the topology on
⋃

A∈β A.

The MM(k) may not be useful in practice, because in the objective function when i takes

the upper bound of the summation, the value of 22n−1 is very large even for small values of n.

We therefore add new variables yj for j = 1, . . . , n and the following constraints

1

n

2n−1

∑
i=0

xibij ≤ yj ≤
2n−1

∑
i=0

xibij, j = 1, . . . , n.

If
2n−1

∑
i=0

xibij > 0 then xibik = 1 for some 0 ≤ i ≤ 2n − 1 and k ∈ X. Thus by Lemma 1, yk = 1 if

and only if k is in some open set. Hence, the sum
n

∑
j=1

yj gives the number of topology elements.

Consequently we can use this sum for an objective function of MM(k) as follows

MM(k) min
n

∑
j=1

yj,

s.t. xi∧j ≥ xixj,
i = 1, · · · , 2n − 1,

j = i + 1, . . . , 2n − 1,

xi∨j ≥ xixj,
i = 1, · · · , 2n − 1,

j = i + 1, . . . , 2n − 1,

1

n

2n−1

∑
i=0

xibij ≤ yj ≤
2n−1

∑
i=0

xibij, j = 1, . . . , n,

n

∑
j=1

yj ≥ l,

2n−1

∑
i=0

xi = k,

x0 = 1,

xi ∈ {0, 1}, i = 0, . . . , 2n − 1.

We conclude this section with an example.

Example 1. For k = 8 we have n = 6 and l = 3. We solve MM(k) using LINGO software and

obtain m(8) = 3 with topology τ8 = P({1, 2, 3}). Similarly for k = 15 again n = 6 but l = 4

and m(15) = 5 and the corresponding topology is

τ15 = {∅, {2} , {1, 2} , {3} , {2, 3} , {1, 2, 3} , {4} , {2, 4} , {1, 2, 4} ,

{3, 4} , {2, 3, 4} , {1, 2, 3, 4} , {3, 4, 5} , {2, 3, 4, 5} , {1, 2, 3, 4, 5}}.

3.2.2 Number of finite topologies

Suppose that any indiscrete topology has at most 2n − t(n) elements. While adding the in-

equality
2n−1

∑
i=0

xi ≤ 2n − t(n)− 1
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to GFT(n) drops discrete topology from solution space. It may improve solving process (e.g.

it decreases the number of nodes in branch and bound method). Using this fact one may

provides an algorithm for counting number of topologies on the finite set, T(n).

Let T ≤k = {x ∈ T : ∑ xi ≤ k}.

Algorithm 1: Computing T(n)

1 T(n) ←− 1;

2 s←− 2n − t(n);

3 while Problem max
{

∑ xi : x ∈ T ≤s
}

is not infeasible do

4 k = max
{

∑ xi : x ∈ T ≤s
}

;

5 T(n) ←− T(n) + T(n, k) ;

6 s←− s− 1;

7 end

Note that T(n) =
2n−1

∑
k=1

T(n, k). In line 4 of the algorithm we omit to compute zero terms of

this sum.

4 MODEL IMPROVEMENT

In this section, we mention some improvements in models. It is well-known that some

properties on topologies could be restricted to a topology basis. Let us consider the problem

of the existence of such topologies. For example, is there any T0-topology on n-set for which a

given function f is continuous? To answer such problems we can consider only the topology

basis. For this goal it suffices to keep the constraints related to closeness under intersection

(constraints (1)) and remove constraints (2) and (3) from GFT(n). By this approach if there is a

T0-topology for which a given function f is continuous, then we find its basis, else, the model

is infeasible.

5 CONCLUSION

In this paper, we exhibited mathematical models of some combinatorial problems on finite

topologies. As well as modeling problems related to obtaining m(k), T0(n), T(n, k), the mathe-

matical models of other topological concepts such as connected components, door topologies,

connected topologies, etc. are also presented. First, we proposed a quadratic zero-one system

for general finite topological spaces and then use it as the feasible region of the other types

of finite topologies models. We also provided an algorithm for the problem of counting the

number of finite topologies on n elements set. It is possible to incorporate models introduced

in section 3, to handle another type of problems. For example to answer the question: “is there

any door topology τ, for which given function f continuous with respect to τ?”, it suffices to

combine 3.1.1 and 3.1.5.
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Цiлочисельне програмування — це iнструмент для вирiшення деяких комбiнаторних за-

дач оптимiзацiї. У цiй роботi ми розглядаємо комбiнаторнi задачi оптимiзацiї на cкiнченних

топологiях. Ми використовуємо двiйкове представлення множин для характеристики скiн-

ченних топологiй як розв’язкiв булевої квадратичної системи. Ця система використовується

як базова модель для формулювання iнших типiв топологiй (наприклад, топологiя дверей та

T0-топологiя) та деяких комбiнаторних задач оптимiзацiї на скiнченних топологiях. Як при-

клад запропонованої моделi ми виявили, що найменше число m(k), для якого iснує топологiя

на наборi m(k) елементiв, що мiстить рiвно k вiдкритих наборiв, при k = 8 i k = 15 — це 3 i 5

вiдповiдно.

Ключовi слова i фрази: скiнченна топологiя, математичне моделювання.


