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CAUCHY PROBLEM FOR HYPERBOLIC EQUATIONS OF THIRD ORDER WITH

VARIABLE EXPONENT OF NONLINEARITY

BUHRII O.M.1 , KHOLYAVKA O.T.2 , PUKACH P.YA.3 , VOVK M.I.3

We investigate weak solutions of the Cauchy problem for the third order hyperbolic equations

with variable exponent of the nonlinearity. The problem is considered in some classes of functions

namely in Lebesgue spaces with variable exponents. The sufficient conditions of the existence and

uniqueness of the weak solutions to given problem are found.
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INTRODUCTION

Let n ∈ N and T > 0 be fixed numbers, QT := R
n × (0, T), Qt1,t2 := R

n × (t1, t2), 0 ≤ t1 <

t2 ≤ T, BR :=
{

x ∈ R
n | |x| < R

}
, QR

T := BR × (0, T), R > 1. In this study, we seek a weak

solution u : QT → R of the Cauchy problem

utt −
n

∑
i,j=1

(aij(x, t)uxit)xj
−

n

∑
i,j=1

(bij(x, t)uxi
)xj

+
n

∑
i=1

bi(x, t)uxi

+ c1(x, t, ut) + c2(x, t)u = f0(x, t)−
n

∑
i=1

( fi)xi
(x, t) in QT,

(1)

u|t=0 = u0, (2)

ut|t=0 = u1, (3)

where aij, bij, bi, c2, f0, fi are some functions, c1(x, t, ut) is a function on the type |ut|p(x)−2ut, i.e.,

it is a nonlinear function with the variable exponent of the nonlinearity p = p(x). Problems for the

nonlinear PDEs with the variable exponents of the nonlinearity appear in many applications,

such as fluid dynamics, nonlinear elasticity, etc. They are investigated in some special classes of

the functions namely in the Lebesgue and Sobolev spaces with variable exponents (see [3,16,42,43]).

Let us consider the equation

utt + A ut + B u + |ut|
p(x)−2ut + |u|q(x)−2u = 0, (x, t) ∈ Ω × (0, T), (4)
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where A and B are some operators, p(x), q(x) are some functions, Ω ⊂ R
n. In case A = 0 and

B = −△ (here and below △ denotes the Laplace operator), type (4) equations are considered

in [14, 23, 24, 38]. In particular, [23] is devoted to the existence results for the weak solution

of the initial-boundary value problem for equation (4) in a bounded cylindrical domain. The

existence of the global (in time) solutions u to such problems and the behaviour of u as t → +∞

are investigated in [38]. In [24], the authors consider the initial-boundary value problem for

equation (4) in the domain unbounded in spatial variables. The existence and uniqueness of

the problem’s solution is proved without any restrictions on solution behavior and the initial

data as |x| → +∞. The hyperbolic variational inequalities of the second order that correspond

to the equation (4) with p(x) ≡ 2 and q(x) > 1 are studied in [14].

In case A = B = −△, type (4) equations are considered in [22, 26, 37]. In particular, the

behaviour as t → +∞ of the global solutions to the initial-boundary problems for hyperbolic

equations of the third order are obtained in [37]. The corresponding hyperbolic variational

inequalities in bounded and unbounded domain with the spatial variables are studied in [22]

and [26] respectively if p(x) > 1 and q(x) ≡ 2. The existence and uniqueness theorems are

proved. In the case of the unbounded domain Ω, the results are obtained without any restric-

tions on behavior (as |x| → +∞) of the solutions and data-in.

In [13] and [17], the authors study the initial-boundary value problems for equation (4)

with

Aut = −div(|∇ut|
r(x)−2∇ut), Bu = −△u,

q(x) ≡ 2, r(x) > 2, and p(x) > 1. The existence and uniqueness of the problem’s solution are

proved for the bounded domain Ω. If

Aut = −div(|ut|
s−2∇ut) (s > 2), Bu = −△u,

q(x) ≡ 2, and p(x) > 2, then the initial-boundary value problem for equation (4) with the

unbounded domain Ω is investigated in [36]. Conditions of existence of the problem’s solution

are obtained without any restrictions on the behavior (as |x| → +∞) of the solutions and

data-in.

The various problems for the hyperbolic equations, hyperbolic-parabolic systems, parabo-

lic and elliptic equations with variable exponents of nonlinearity have also studied in [2–8,10–

12, 19–21, 25, 27, 31, 32, 34, 35, 39] etc. The application is given in [40, 41, 43].

Notice that, if some additional conditions are satisfied, then (1) coincides with (4), where

A = B = −△, 1 < p(x) < 2, and q(x) ≡ 2. We prove the existence and uniqueness of the

solutions to problem (1)–(3) in classes of the functions with some behaviour as |x| → +∞ if

coefficients of the equation (1) satisfy some growing conditions.

The paper is organized as follows. In Section 1, we formulate the considered problem and

main results. The auxiliary statements are given in Section 2. Finally, in Section 3 we prove the

main statements.

1 NOTATION AND STATEMENT OF MAIN RESULT

Let || · ||B ≡ || · ; B|| is a norm of some Banach space B, B∗ is a dual space, and 〈·, ·〉B is a

scalar product between B∗ and B. The notation X + Y means the sum of the Banach spaces X

and Y (see [18, p. 23] for more details).
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Suppose that m ∈ N, p ∈ [1, ∞], X is a Banach space, O = Ω or O = QT, M(O) is a set of

all measurable functions v : O → R, Cm(O), C0(O), and D(O) are the spaces of the smooth

functions (see [1, p. 9, 19]), Cm
0 (O) := Cm(O) ∩ C0(O), Lp(O) is the Lebesgue space (see [1,

p. 22, 24]), Wm,p(O) and Wm,p
0 (O) are the Sobolev spaces (see [1, p. 45]), Hm(O) := Wm,2(O),

Hm
0 (O) := Wm,2

0 (O), C([0, T]; X) and Cm([0, T]; X) are the spaces of the X-valued smooth

functions defined on [0, T] (see [18, p. 147]), Lp(0, T; X) is the Lebesgue-Bochner space (see [18,

p. 155]). Also suppose that B+(O) := {q ∈ L∞(O) | ess inf
y∈O

q(y) > 0}. For the sake of

convenience, we will write u(t) instead of u(·, t) and Lp(0, T) instead of Lp((0, T)) etc. For

every q ∈ B+(O) by definition, put

q0 := ess inf
y∈O

q(y), q
0 := ess sup

y∈O

q(y), (5)

ρq(v;O) :=
∫

O
|v(y)|q(y) dy, v ∈ M(O), (6)

q
′(y) :=

q(y)

q(y)− 1
for a.e. y ∈ O (7)

(note that 1
q(y)

+ 1
q′(y)

= 1 for a.e. y ∈ O and q′ ∈ B+(O), if q0 > 1).

Assume that q ∈ B+(O) and q0 > 1. The set Lq(y)(O) := {v ∈ M(O) | ρq(v;O) < +∞}

with the Luxemburg norm ||v; Lq(y)(O)|| := inf{λ > 0 | ρq(v/λ;O) ≤ 1} is called a Lebesgue

space with variable exponent. By definition, put L
q(y)
loc (O) := {u ∈ M(O) | ∀ bounded

G ⋐ O : u ∈ Lq(y)(G)}. In the similar way, we define the spaces L∞
loc(O), H1

loc(O), etc.

Suppose that the following conditions are satisfied.

(A): aij ∈ L∞(0, T; L∞
loc(R

n)), aij = aj i (i, j = 1, n);
n

∑
i,j=1

aij(x, t)ξiξ j ≥ a0|ξ|
2 for all ξ ∈ R

n and for a.e. (x, t) ∈ QT, where a0 > 0;

∀ R1 > 1 ess sup

Q
R1
T

|aij(x, t)| ≤ αRθ
1, where θ ∈ [0, 1) and α > 0;

(B): bij, (bij)t ∈ L∞(0, T; L∞
loc(R

n)), bij = bji (i, j = 1, n); bi ∈ L∞(QT) (i = 1, n);
n

∑
i,j=1

bij(x, t)ξiξ j ≥ b0|ξ|
2 and

n

∑
i,j=1

(bij)t(x, t)ξiξ j ≤ 0 for all ξ ∈ R
n and for a.e. (x, t) ∈ QT,

where b0 > 0;

∀ R2 > 1 ess sup

Q
R2
T

|bij(x, t)| ≤ βRθ
2, where θ is taken from condition (A) and β > 0;

(C): c1(·, ·, ξ) is a measurable function on QT for all ξ ∈ R; c1(x, t, ·) is a continuous function

on R for a.e. (x, t) ∈ QT; c2, c2,t ∈ L∞(0, T; L∞
loc(R

n));

(c1(x, t, ξ) − c1(x, t, η))(ξ − η) ≥ 0, c1(x, t, ξ)ξ ≥ c1,0|ξ|
p(x) , |c1(x, t, ξ)| ≤ c0

1|ξ|
p(x)−1

for all ξ, η ∈ R and for a.e. (x, t) ∈ QT, where c1,0 ∈ R, c0
1 > 0, p ∈ B+(Ω), and

1 < p0 ≤ p0
< 2;

0 < c2,0 ≤ c2(x, t) ≤ c0
2, (c2,t)0 ≤ c2,t(x, t) ≤ (c2,t)

0 ≤ 0 for all R3 > 1 and for a.e.

(x, t) ∈ QR3
T , where constants c2,0, c0

2, (c2,t)0, and (c2,t)
0 depend on R3;

(F): f0, f1, . . . , fn ∈ L2(0, T; L2
loc(R

n));

(U): u0 ∈ H1
loc(R

n), u1 ∈ L2
loc(R

n).
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Definition 1. A real-valued function u is called a weak solution to problem (1)–(3) if

u ∈ L∞(0, T; H1
loc(R

n)) ∩ C([0, T]; L2
loc(R

n)), ut ∈ L2(0, T; H1
loc(R

n)) ∩ L
p(x)
loc (QT), u satisfies

condition (2), and for all functions v ∈ L2(0, T; H1
loc(R

n)) ∩ L
p(x)
loc (QT) such that vt ∈ L2

loc(QT),

for any τ ∈ (0, T], for arbitrary ϕ ∈ C1
0(R

n), the following equality is true:

∫

Rn

ut(x, τ)v(x, τ)ϕ(x) dx +
∫

Qτ

[
−utvt ϕ +

n

∑
i,j=1

aij(x, t)uxit(vϕ)xj

+
n

∑
i,j=1

bij(x, t)uxi
(vϕ)xj

+
n

∑
i=1

bi(x, t)uxi
vϕ + c1(x, t, ut)vϕ + c2(x, t)uvϕ

]
dxdt

=
∫

Rn

u1(x)v(x, 0)ϕ(x) dx +
∫

Qτ

[
f0(x, t)vϕ +

n

∑
i=1

fi(x, t)(vϕ)xi

]
dxdt.

(8)

The main results of our paper are next theorems.

Theorem 1 (the uniqueness). Suppose that conditions (A)–(U) hold. Then problem (1)–(3) has

at most one solution in the class of functions u, which for any R ≥ 1 satisfy the condition
∫

QR
T

|ut(x, t)|2 dxdt ≤ a exp
(

b R2(1−θ)
)

,
(9)

where a and b are nonnegative constants and θ is taken from conditions (A) and (B).

Theorem 2 (the existence). If conditions (A)–(U) hold and for all R > 1:

∫

BR

[
|u1(x)|2 + Rθ

n

∑
i=1

|u0,xi
(x)|2

]
dx +

∫

QR
T

n

∑
i=0

| fi(x, t)|2 dxdt ≤ a exp(b R2(1−θ)), (10)

where a and b are nonnegative constants, then problem (1)–(3) has a weak solution.

2 AUXILIARY FACTS

Let us consider the function ζ ∈ C2(R) such that ζ(ξ) =

{
1, ξ ≤ 0,

0, ξ ≥ 1,
and 0 ≤ ζ(ξ) ≤ 1

for ξ ∈ R. By definition, we put

hR,κ(x) = ζ
( |x| − R

κ

)
, ϕ(x) = |hR,κ(x)|γ, (11)

where R > 1, κ > 0, and γ > 2.

The following lemmas are needed for the sequel.

Lemma 1. Take an arbitrary j ∈ {1, 2, . . . , n}. Then the following statements are true:

1) 0 ≤ hR,κ ≤ 1 and there exists a constant ĥ > 0 such that
∣∣∣ ∂hR,κ(x)

∂xj

∣∣∣ ≤ ĥ
κ

;

2) foll all x ∈ R
n we obtain

ϕ(x) = 1 if |x| ≤ R and ϕ(x) = 0 if |x| ≥ R +κ;
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3) if |x| < R + κ, then
∣∣∣ϕxj

(x)
∣∣∣ ≤ γĥ

κ
|hR,κ(x)|γ−1;

4) if |x| < R + κ, then the following inequality is true:

∣∣∣ϕxj
(x)
∣∣∣
2

ϕ(x)
≤
(γĥ

κ

)2
|hR,κ(x)|γ−2. (12)

Proof. The first estimate from 1) and equality from 2) are obvious. The second estimate from 1)

inferred from the equality |
∂hR,κ(x)

∂xj
| = |ζ′ 1

κ

xj

|x|
|. To prove the statement from 3) we need to use

the equality ϕxj
(x) = γ|hR,κ(x)|γ−1 ∂hR,κ(x)

∂xj
.

It is clear that from result of 3), we get the estimate

∣∣∣ϕxj
(x)
∣∣∣
2

ϕ(x)
≤
(γĥ

κ

)2 |hR,κ(x)|2(γ−1)

|hR,κ(x)|γ
≤
(γĥ

κ

)2
|hR,κ(x)|γ−2,

and (12) holds. Thus, Lemma 1 is proved.

Lemma 2. Suppose that Ω is a bounded domain in R
n with the piecewise smooth boundary,

r ∈ L∞(Ω), r > 1. Then for all functions w ∈ L2(0, T; H1
0(Ω)) ∩ Lr(x)(QT) ∩ L∞(0, T; L2(Ω))

such that wt ∈ L2(0, T; H−1(Ω)) + Lr′(x)(QT) and for any s, τ ∈ [0, T] such that s < τ, the

following formula of integration by parts is correct:

∫

Qs,τ

wt(x, t)w(x, t) dxdt =
1

2

∫

Ωτ

|w(x, τ)|2 dx −
1

2

∫

Ωs

|w(x, s)|2 dx. (13)

Proof. In [13], formula (13) is proved for a.e. s, τ ∈ [0, T] such that s < τ. From condi-

tions of Lemma 2, we get w ∈ C([0, T]; H−1(Ω) + Lr′(x)(Ω)). Then, from [29], it follows that

w ∈ Cw([0, T]; L2(Ω)). For any s, τ ∈ [0, T], let us extends the function w in regard of its con-

tinuity outside the interval [s, τ] by constants and then, similarly as in [9] (see also Lemma 4.5

[3, p. 119]), we obtain (13). Lemma 2 is proved.

Remark 1. In view of (13), for every ϕ ∈ C∞(Ω) and ψ ∈ C∞([0, T]), we get

∫

Qs,τ

wt(x, t)w(x, t)ϕ(x)ψ(t) dxdt =
1

2

∫

Ω

|w(x, τ)|2 ϕ(x)ψ(τ) dx

−
1

2

∫

Ω

|w(x, s)|2 ϕ(x)ψ(s) dx −
1

2

∫

Qs,τ

|w(x, t)|2 ϕ(x)ψt(t) dxdt.

(14)

Proposition 1 ([33], part IV, §2, Theorems 7-8). If n, k ∈ N, G is a bounded domain in R
n,

∂G ⊂ Ck, and k ≥ [n
2 ] + 2, then there exist a sequence {λj}j∈N of the positive numbers and a

sequence {wj}j∈N ⊂ Hk(G) ∩ C1(G) of the linearly independent functions whose finite linear

combinations are dense in the space H2(G) ∩ H1
0(G), and we have

−∆wj = λj wj in G and wj|∂Ω = 0 for every j ∈ N.
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Proposition 2 ([12], Lemma 1). If q ∈ B+(O) and q0 > 1 (see (5)), then for every a, b ∈ R, for

every η > 0, and for a.e. y ∈ O the generalized Young inequality

ab ≤ η |a|q(y) + Yq(η) |b|
q′(y) (15)

holds. Here, Yq(η) = (q0 − 1)q
−q0/(q0−1)
0 η−1/(q0−1), q0 is taken from (5), q′ is taken from (7)

and if q ≡ 2, then Y2(η) = 1/(4η).

For every q ∈ B+(O), by definition, put Sq(s) := max{sq0 , sq
0
}, s ≥ 0.

Proposition 3 ([10], p. 168, Lemma 1). Suppose that q ∈ B+(O), q0 > 1, Sq is defined above,

and ρq is defined by (6). Then for every v ∈ M(O) the following statements are fulfilled:

i) ||v; Lq(y)(O)|| ≤ S1/q(ρq(v;O)) if ρq(v;O) < +∞;

ii) ρq(v;O) ≤ Sq(||v; Lq(y)(O)||) if ||v; Lq(y)(O)|| < +∞.

Now we will prove the existence of the weak solution to problem (1)–(3). For this purpose,

let us fix R > 1 and consider the auxiliary problem in the bounded domain QR
T = BR × (0, T):

utt −
n

∑
i,j=1

(aij(x, t)uxit)xj
−

n

∑
i,j=1

(bij(x, t)uxi
)xj

+
n

∑
i=1

bi(x, t)uxi

+ c1(x, t, ut) + c2(x, t)u = f R
0 (x, t)−

n

∑
i=1

f R
i,xi

(x, t), (x, t) ∈ QR
T ,

(16)

u(x, 0) = uR
0 (x), ut(x, 0) = uR

1 (x), x ∈ BR, (17)

u|∂BR×[0,T] = 0. (18)

Here f R
i (x, t) = fi(x, t)χR(x) (i = 0, n); uR

0 (x) = u0(x)χR(x), uR
1 (x) = u1(x)χR(x), (x, t) ∈ QT,

where χR ∈ C1(Rn), χR(x) =

{
1, |x| ≤ R − 1,

0, |x| ≥ R,
0 ≤ χR(x) ≤ 1, x ∈ R

n.

Definition 2. A real-valued function u is called a weak solution to problem (16)–(18) if

u ∈ L∞(0, T; H1
0(BR)) ∩ C([0, T]; L2(BR)),

ut ∈ L2(0, T; H1
0(BR)) ∩ Lp(x)(QR

T) ∩ C([0, T]; H−1(BR) + Lp′(x)(BR)),

u satisfies the condition uR(0) = uR
0 and the equality

∫

BR

uR
t (x, τ)v(x, τ)dx+

∫

QR
τ

[
−uR

t vt+
n

∑
i,j=1

aij(x, t)uR
xit

vxj
+

n

∑
i,j=1

bij(x, t)uR
xi

vxj
+

n

∑
i=1

bi(x, t)uR
xi

v

+ c1(x, t, uR
t )v + c2(x, t)uRv

]
dxdt =

∫

BR

uR
1 (x)v(x, 0)dx +

∫

QR
τ

[
f R
0 (x, t)v +

n

∑
i=1

f R
i (x, t)vxi

]
dxdt

holds for every τ ∈ (0, T] and v ∈ L2(0, T; H1
0(BR)) ∩ Lp(x)(QR

T) such that vt ∈ L2(QR
T).

Theorem 3. Suppose that conditions (A)–(U) are satisfied. Then problem (16)–(18) has a weak

solution.
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Proof. We use the Faedo-Galerkin method. Let {wj}j∈N is taken from Proposition 1 with

G = BR. Without loss of generality we can assume that this sequence is orthonormal in L2(BR).

Then we will find the solution to problem (16)–(18) as a limit of the sequence of the functions

{uN}N∈N , where uN(x, t) =
N

∑
l=1

CN
l (t)wl(x), (x, t) ∈ QR

T . The functions (CN
1 , . . . , CN

N) are de-

fined from the Cauchy problem
∫

BR

[
uN

tt wk +
n

∑
i,j=1

aij(x, t)uN
xit

wk
xj
+

n

∑
i,j=1

bij(x, t)uN
xi

wk
xj
+

n

∑
i=1

bi(x, t)uN
xi

wk

+ c1(x, t, uN
t )w

k + c2(x, t)uNwk
]

dx =
∫

BR

[
f R
0 (x, t)wk +

n

∑
i=1

f R
i (x, t)wk

xi

]
dx,

(19)

CN
k (0) = uN,R

0,k , CN
k,t(0) = uN,R

1,k , k = 1, N. (20)

Here ||uN,R
1 − uR

1 ||L2(BR) −→
N→∞

0 and ||uN,R
0 − uR

0 ||H1
0 (BR) −→N→∞

0, where

uN,R
0 (x) ≡

N

∑
k=1

uN,R
0,k wk(x), uN,R

1 (x) ≡
N

∑
k=1

uN,R
1,k wk(x), x ∈ BR.

It is clear that uN,R(0) = uN,R
0 , uN,R

t (0) = uN,R
1 .

According to the assumptions of Theorem 3 and by the Caratheodory Theorem (see. [15,

p. 54]), we infer that there exists a solution to problem (19)–(20) which is determined in some

interval [0, tN ]. From the estimates obtained below it follows that tN = T.

Multiplying (19) by the functions CN
k,t respectively, summing by k from 1 to N, and integrat-

ing along the interval (0, τ) ⊂ (0, T), we obtain
∫

QR
τ

[
uN

tt uN
t +

n

∑
i,j=1

aij(x, t)uN
xit

uN
xjt

+
n

∑
i,j=1

bij(x, t)uN
xi

uN
txj

+
n

∑
i=1

bi(x, t)uN
xi

uN
t

+ c1(x, t, uN
t )u

N
t + c2(x, t)uNuN

t

]
dxdt =

∫

QR
τ

[
f R
0 (x, t)uN

t +
n

∑
i=1

f R
i (x, t)uN

xit

]
dxdt.

(21)

Taking into account the conditions of Theorem 3, from equality (21) and Proposition 2 we get
∫

BR

[
|uN

t (τ)|
2 + b0

n

∑
i=1

|uN
xi
(τ)|2 + c2,0|u

N(τ)|2
]

dx

+
∫

QR
τ

[
(2a0 − 2δ0)

n

∑
i=1

|uN
xit
|2 + 2c1,0|u

N
t |

p(x)
]

dxdt ≤
∫

QR
τ

[
2|uN

t |
2 + B̃

n

∑
i=1

|uN
xi
|2
]

dxdt

+
∫

BR

[
|uN,R

1 |2 + b0
n

∑
i=1

|uN,R
0,xi

|2 + c0
2|u

N,R
0 |2

]
dx +

∫

QR
τ

[
| f R

0 |2 + 2Y2(δ0)
n

∑
i=1

| f R
i |2
]

dxdt,

(22)

δ0 > 0, where B̃ = ess sup
(x,t)∈QT

n

∑
i=1

b2
i (x, t). Choosing in (22) δ0 = a0/2 and using the Gronwall

lemma, we obtain
∫

BR

[
|uN

t (τ)|2 +
n

∑
i=1

|uN
xi
(τ)|2 + |uN(τ)|2

]
dx +

∫

QR
τ

[ n

∑
i=1

|uN
xit
|2 + |uN

t |
p(x)
]

dxdt ≤ C1, (23)
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where the constant C1 > 0 is independent of N (but depends on R).

Using Lemma 3.9 [11, p. 865-866], similarly as in [30, p. 89], we conclude that

||uN
tt ||L2(0,T;H−1(BR))+Lp ′(x)(QR

T)
≤ C2, (24)

where the constant C2 > 0 is independent of N. From (23) and Proposition 3, we have

∫

QR
τ

|c1(x, t, uN
t )|

p′(x) dxdt ≤ c0
1Sp(||u

N
t ; Lp(x)(QR

τ )||) ≤ c0
1Sp(C3||u

N
t ; L2(QR

τ )||) ≤ C4,
(25)

where the constant C4 > 0 is independent of N.

On the basis of (22)–(25) there exists a subsequence of {uN}N∈N (we call it {uN}N∈N again)

such that

uN −→
N→∞

uR ∗ -weakly in L∞(0, T; H1
0(BR)),

uN
t −→

N→∞
uR

t ∗ -weakly in L∞(0, T; L2(BR)),

uN
t −→

N→∞
uR

t weakly in L2(0, T; H1
0(BR)) and Lp(x)(QR

T),

uN
tt −→

N→∞
uR

tt weakly in L2(0, T; H−1(BR)) + Lp ′(x)(QR
T),

c1(·, ·, uN
t ) −→

N→∞
χR weakly in Lp′(x)(QR

T).

Then by Theorem 5.1 [28, p. 70] we obtain uN
t −→

N→∞
uR

t strongly in L2(QR
T) and a.e. in QR

T . Thus,

χR = c1(x, t, uR
t ).

Using Lemma 1.2 [28, p. 20], we prove that

u ∈ C([0, T]; L2(BR)), ut ∈ C([0, T]; H−1(BR) + Lp′(x)(BR)).

Similarly as in [12], we prove that uR(0) = uR
0 , uR

t (0) = uR
1 , and the function uR is a weak

solution to problem (16)–(18).

3 PROOF OF MAIN THEOREMS

Now we will prove Theorem 1.

Proof. Let u1 and u2 be weak solutions to problem (1)–(3), u ≡ u1 − u2. Taking into account

(14), we obtain

−
∫

Qτ

utvt ϕ dxdt =
∫

Qτ

µ

2
|ut|

2 ϕ e−µt dxdt −
1

2

∫

Rn

|ut(τ)|
2 ϕ e−µτ dx,

where v = ut e−µt and µ > 0. Then, from the equality of type (8), we get

1

2

∫

Rn

|ut(τ)|
2 ϕe−µτ dx +

∫

Qτ

[µ

2
|ut|

2 ϕe−µt +
n

∑
i,j=1

aijuxit(ut ϕ)xj
e−µt +

n

∑
i,j=1

bijuxi
(ut ϕ)xj

e−µt

+
n

∑
i=1

biuxi
ut ϕe−µt + (c1(x, t, u1

t )− c1(x, t, u2
t ))ut ϕe−µt + c2uut ϕe−µt

]
dxdt = 0.

(26)
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Now let us make some transformations and let us obtain the required estimates. Then,

taking into account conditions of Theorem 1, using (15) and Lemma 1, we get

∫

Qτ

n

∑
i,j=1

aijuxituxjt ϕe−µtdxdt ≥ a0

∫

Qτ

n

∑
i=1

|uxit|
2 ϕe−µtdxdt;

∫

Qτ

n

∑
i,j=1

aijuxitut ϕxj
e−µt dxdt ≤ δ1

∫

Qτ

n

∑
i,j=1

|uxit|
2 ϕe−µt dxdt + Y2(δ1)

∫

Qτ

n

∑
i,j=1

a2
ij|ut|

2

∣∣∣ϕxj

∣∣∣
2

ϕ
e−µt dxdt

≤ nδ1

∫

Qτ

n

∑
i=1

|uxit|
2 ϕe−µtdxdt + n2(R +κ)2θ

(
γĥα

κ

)2
1

4δ1

∫

Qτ

|ut|
2(hR,κ)

γ−2e−µt dxdt, δ1 > 0;

∫

Qτ

n

∑
i,j=1

bijuxi
ut ϕxj

e−µt dxdt ≤ nδ2

∫

Qτ

n

∑
i=1

|uxi
|2 ϕe−µt dxdt

+

(
γĥβ

κ

)2
n2(R + κ)2θ

4δ2

∫

Qτ

|ut|
2(hR,κ)

γ−2e−µt dxdt, δ2 > 0;

∫

Qτ

n

∑
i,j=1

bijuxi
uxjt ϕe−µtdxdt ≥

b0

2

∫

Rn

n

∑
i=1

|uxi
|2 ϕe−µτ dx +

µb0

2

∫

Qτ

n

∑
i=1

|uxi
|2 ϕe−µtdxdt;

∫

Qτ

n

∑
i=1

biuxi
ut ϕe−µt dxdt ≤ B̃δ3

∫

Qτ

n

∑
i=1

|uxi
|2 ϕe−µt dxdt +

1

4δ3

∫

Qτ

|ut|
2 ϕe−µt dxdt, δ3 > 0,

∫

Qτ

c2uut ϕe−µtdxdt ≥
c2,0

2

∫

Rn

|u|2 ϕe−µτ dx +

(
µ

2
−

(c2,t)
0

2

) ∫

Qτ

|u|2 ϕe−µtdxdt.

Moreover, (c1(x, t, u1
t )− c1(x, t, u2

t ))ut ≥ 0. Thus, from equality (26) we obtain

∫

Rn

[
|ut|

2 + b0

n

∑
i=1

|uxi
|2 + c2,0|u|

2
]

ϕe−µτ dx +
∫

Qτ

[(
µ −

1

2δ3

)
|ut|

2 + (2a0 − 2nδ1)
n

∑
i=1

|uxit|
2

+ (µb0 − 2nδ2 − 2B̃δ3)
n

∑
i=1

|uxi
|2 +

(
µ − (c2,t)

0
)
|u|2

]
ϕe−µt dxdt

≤
∫

Qτ

[(γĥα

κ

)2 n2(R + κ)2θ

2δ1
+
(γĥβ

κ

)2 n2(R +κ)2θ

2δ2

]
|ut|

2(hR,κ)
γ−2e−µt dxdt.

(27)

Let us set µ = µ0 + µ1. Choosing δ1, δ2, δ3 > 0 sufficiently small and µ1 > 0 sufficiently

large, from (27), it follows that

∫

Rn

[
|ut|

2 + b0

n

∑
i=1

|uxi
|2 + c2,0|u|

2
]

ϕe−µτ dx + e−µ1T
∫

Qτ

[
µ0|ut|

2 + a0

n

∑
i=1

|uxit|
2

+ µ0b0

n

∑
i=1

|uxi
|2 + µ0|u|

2
]

ϕe−µ0t dxdt ≤
C0(R + κ)2θ

κ
2

∫

Qτ

|ut|
2(hR,κ)

γ−2e−µ0t dxdt,

(28)
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where C0 = n2(γĥα)2

2δ1
+ n2(γĥβ)2

2δ2
. Denote C0eµ1T ≡ C̃. Then taking into account (28) and Lemma 1

(ϕ = 1 if |x| ≤ R, |hR,κ | ≤ 1 if x ∈ R
n, hR,κ = 0 if |x| ≥ R + κ), we obtain

∫

QR
τ

|ut|
2e−µ0t dxdt ≤

C̃(R +κ)2θ

µ0κ
2

∫

QR+κ

τ

|ut|
2e−µ0t dxdt. (29)

Let us divide the interval [R, R +κ] on k parts
[

R; R +
κ

k

]
,
[

R +
κ

k
; R +

2κ

k

]
, . . . ,

[
R +

(k − 1)κ

k
; R +

kκ

k

]
.

Put κ = R
k and estimate the expression

C̃(R + R
k )

2θ

µ0

(
R
k

)2
=

C̃(Rk + R)2θk2

µ0k2θ R2
≤

C̃(2k)2θ k2(1−θ)

µ0R2(1−θ)
≤

C̃22θk2

µ0R2(1−θ)
.

Denote ρθ(R, µ0, k) = C̃22θk2

µ0R2(1−θ) . Let us choose R, µ0 and k in such way that the next inequality

holds:

ρθ(R, µ0, k) ≤ e−1. (30)

For that purpose we put R = 2j, µ0 = λ022(1−θ)j, and k = λ1[2
2(1−θ)j], where j, λ0, λ1 ∈ N. We

choose the parameters λ0 and λ1 such that λ1 = [b22(1−θ)] + 2 and λ0 ≥ C̃22θλ2
1e (here by [w]

we denote the entire part of w), where b > 0 is taken from (9), θ ∈ (0, 1) is taken from (A)–(B).

Then estimate (30) is correct. Thus, applying (29) k times, we get
∫

QR
τ

|ut|
2e−µ0t dxdt ≤ e−k

∫

Q2R
τ

|ut|
2e−µ0t dxdt.

(31)

Taking into account the inequality |e−µ0t| ≤ 1 which is correct for every t ∈ [0, T] and the

estimate (9), the right-hand side of the last inequality can be estimated by the expression a e−ξ ,

where ξ = k − b(2R)2(1−θ). Then on the basis of choice k and R we get

ξ = λ122(1−θ)j − b22(1−θ)22(1−θ)j ≥ [22(1−θ)j]
(
λ1 − b22(1−θ)

)
≥ [22(1−θ)j]. (32)

Estimate (32) implies that ξ → +∞ as j → +∞ (and consequently R → +∞). Then the right-

hand side of inequality (31) tends to zero as R → +∞. Thus, u1 = u2 a.e. on QR
τ . Hence,

taking into account an arbitrariness of R and τ ∈ (0, T], we get the uniqueness of the solution

to problem (1)–(3) in the domain QT. Theorem 1 is proved.

Let us prove Theorem 2.

Proof. Let R = R(k) = 2k, where k ∈ N. We construct sequence {uk}k∈N, where uk is a

weak solution to problem (16)–(18) in the domain Q
R(k)
T and k ∈ N. The function uk exists by

Theorem 3. Let us extend the function uk by zero on QT\Q
R(k)
T and let it be again uk. Then for

every k ∈ N, τ ∈ (0, T], and v ∈ L2(0, T; H1
0(R

n)) such that vt ∈ L2(QT), we obtain
∫

Rn

uk
t (τ)v(τ)ϕ dx +

∫

Qτ

[
− uk

t vt ϕ +
n

∑
i,j=1

aiju
k
xit
(vϕ)xj

+
n

∑
i,j=1

biju
k
xi
(vϕ)xj

+
n

∑
i=1

biu
k
xi

vϕ

+c1(x, t, uk
t )vϕ + c2ukvϕ

]
dxdt =

∫

Rn

uk
1(x)v(0)ϕ dx +

∫

Qτ

[
f0vϕ +

n

∑
i=1

fi(vϕ)xi

]
dxdt,

(33)
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where ϕ is taken from (11) with R = R(k) (see proof of Theorem 1). Let us take κ ∈ [0, R(k)].

Then supp ϕ ⊂ QR+κ ⊂ QR(k)+R(k) = Q2k+2k
= Q2k+1

= QR(k+1). Consider (33) first for uk+3

and then for uk+2. On subtracting the obtained equalities, we take v = uk+3,k+2
t ϕe−µt, where

µ > 0 and uk+3,k+2 = uk+3 − uk+2. Then similarly as (26), we get

1

2

∫

Rn

|uk+3,k+2
t (τ)|2 ϕe−µτ dx +

∫

Qτ

[µ

2
|uk+3,k+2

t |2 ϕ +
n

∑
i,j=1

aiju
k+3,k+2
xit

(
uk+3,k+2

t ϕ
)

xj

+
n

∑
i,j=1

biju
k+3,k+2
xi

(
uk+3,k+2

t ϕ
)

xj
+

n

∑
i=1

biu
k+3,k+2
xi

uk+3,k+2
t ϕ

+
(
c1(x, t, uk+3

t )− c1(x, t, uk+2
t )

)
uk+3,k+2

t ϕ + c2uk+3,k+2uk+3,k+2
t ϕ

]
e−µt dxdt = 0.

(34)

Now, taking into account (34), similarly as (31), we obtain
∫

Q
R(k)
τ

|uk+3,k+2
t |2e−µ0t dxdt ≤ e−s

∫

Q
R(k+1)
τ

|uk+3,k+2
t |2e−µ0t dxdt,

(35)

where R(k) = 2k, s = λ1[2
2(1−θ)k], λ1 = [b26(1−θ)] + 2, µ0 = λ022(1−θ)k, and λ0 ≥ C̃22θλ2

1e.

It is clear that for every k ∈ N the next equality is correct:

1

2

∫

BR(k)

|uk
t |

2e−µτ dx +
∫

Q
R(k)
τ

[µ

2
|uk

t |
2 +

n

∑
i,j=1

aiju
k
xit

uk
xjt

+
n

∑
i,j=1

biju
k
xi

uk
txj

+
n

∑
i=1

biu
k
xi

uk
t + c1(x, t, uk

t )u
k
t + c2ukuk

t

]
e−µt dxdt

=
1

2

∫

BR(k)

|u
R(k)
1 |2 dx +

∫

Q
R(k)
τ

[
f

R(k)
0 uk

t +
n

∑
i=1

f
R(k)
i uk

xit

]
e−µt dxdt.

(36)

From (36), similarly as (28), we obtain

∫

BR(k)

[
|uk

t |
2 + b0

n

∑
i=1

|uk
xi
|2 + c2,0|u

k|2
]
e−µτ dx +

∫

Q
R(k)
τ

[
(µ0 − ε1)|u

k
t |

2 + (2a0 − ε2)
n

∑
i=1

|uk
xit
|2

+ µ0b0

n

∑
i=1

|uk
xi
|2 + µ0|u

k|2 + 2c1,0|ut|
p(x)
]
e−µ0t dxdt

≤
∫

BR(k)

[
|uk

1|
2 +

n

∑
i,j=1

bij(0)u
k
0,xi

uk
0,xj

+ c0
2|u

k
0|

2
]

dx + C(ε1, ε2)
∫

Q
R(k)
τ

n

∑
i=0

| fi |
2e−µt dxdt.

(37)

Since
∫

BR(k)

n

∑
i,j=1

bij(0)u
k
0,xi

uk
0,xj

dx ≤ βn(R(k))θ
∫

BR(k)

n

∑
i=1

|u0,xi
|2 dx,

taking into account conditions (A), (B), and (C), from (37), we have

∫

Q
R(k)
τ

|uk
t |

2 dxdt ≤ C5

[ ∫

BR(k)

(
|u1|

2 + n(R(k))θ
n

∑
i=1

∣∣u0,xi

∣∣2
)

dx +
∫

Q
R(k)
τ

n

∑
i=0

| fi|
2 dxdt

]
, (38)



430 BUHRII O.M., KHOLYAVKA O.T., PUKACH P.YA., VOVK M.I.

where the constant C5 > 0 is independent of k.

From (38) and (10), it follows that
∫

Q
R(k+1)
τ

|uk+3,k+2
t |2 dxdt ≤ 2

∫

Q
R(k+1)
τ

(
|uk+3

t |2 + |uk+2
t |2

)
dxdt ≤ 4a exp

(
b
(

R(k + 3)
)2(1−θ)

)
. (39)

Since |e−µ0t| ≤ 1 for every t ∈ [0, T] and inequalities (35), (39) hold, for every τ ∈ (0, T], we get

∫

BR(k)

[
|uk+3,k+2

t (τ)|2 +
n

∑
i=1

|uk+3,k+2
xi

(τ)|2
]

dx

+
∫

Q
R(k)
τ

[
|uk+3,k+2

t |2 +
n

∑
i=1

|uk+3,k+2
xit

|2 +
n

∑
i=1

|uk+3,k+2
xi

|2
]

dxdt ≤ C6 e−ν,

(40)

where ν = s− b|R(k+ 3)|2(1−θ) and the constant C6 > 0 is independent of k. Since the equality

uk(x, t) = uk(x, 0) +
∫ t

0 uk
t (x, s) ds holds, we obtain

∫

BR(k)

|uk(x, τ)|s dx ≤ C7

( ∫

BR(k)

|uk
0|

s dx +
∫

Q
R(k)
τ

|uk
t |

s dxdt
)

, τ ∈ (0, T],
(41)

where s > 1 and the constant C7 > 0 is independent of k. Moreover, for every η > 0, we have

|uk(x, t)|e−ηt/2 ≤ |uk(x, 0)|e−ηt/2 + e−ηt/2

t∫

0

|uk
t (x, s)| ds

≤ |uk(x, 0)|+

t∫

0

|uk
t (x, s)|e−ηs/2 ds,

and so

∫

Q
R(k)
τ

|uk|2e−ηt dxdt ≤
∫

Q
R(k)
τ

2

(
|uk(0)|2 + t

t∫

0

|uk
t |

2e−ηs ds

)
dxdt

≤ 2T

( ∫

BR(k)

|uk
0|

2 dx + T
∫

Q
R(k)
τ

|uk
t |

2e−ηt dxdt

)
, τ ∈ (0, T].

(42)

Using (40), (41), and (42), we obtain
∫

BR(k)

|uk+3,k+2(τ)|2 dx +
∫

Q
R(k)
τ

|uk+3,k+2
t |2 dxdt ≤ C8 e−ν,

(43)

where the constant C8 is independent of k. Taking into account a choice of s and R(k), the right

side of the estimates (40), (43) tends to zero if k → ∞.

Since uk+j − uk =
j

∑
i=1

(uk+i − uk+i−1), inequality (40) implies that {uk}k∈N is a fundamental

sequence in the space C([0, T]; H1
0(BR)) ∩ L2(0, T; H1

0(BR)) and {uk
t }k∈N is a fundamental se-

quence in the space C([0, T]; L2(BR)) ∩ L2(0, T; H1(BR)), where R ≥ 1 is an arbitrary number.
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Hence we have that there exist a subsequence {uk1}k1∈N ⊂ {uk}k∈N and a function u1 such

that

uk1 −→
k1→∞

u1 in C([0, T]; H1
0(B1)) ∩ L2(0, T; H1

0(B1)),

uk1
t −→

k1→∞
u1

t in C([0, T]; L2(B1)) ∩ L2(0, T; H1
0(B1)).

From the sequence {uk1}k1∈N we choose the subsequence {uk2}k2∈N such that

uk2 −→
k2→∞

u2 in C([0, T]; H1
0(B2)) ∩ L2(0, T; H1

0(B2)),

uk2
t −→

k2→∞
u2

t in C([0, T]; L2(B2)) ∩ L2(0, T; H1(B2)),

and so on.

Let us form a diagonal sequence {ull}l∈N. By the our construction, this sequence tends to

the function ul in each of the domain Bl × (0, T). Besides that, ul = uy in By × (0, T), where

l > y. Let us put u(x, t) = ul(x, t) for (x, t) ∈ Bl × (0, T). Then

ull −→
ll→∞

u in C([0, T]; H1
loc(R

n)) ∩ L2(0, T; H1
loc(R

n)),

u
ll
t −→

ll→∞
ut in C([0, T]; L2

loc(R
n)) ∩ L2(0, T; H1

loc(R
n))

and, passing to the limit in (33) with v = wϕ, we get that the function u is a weak solution to

problem (1)–(3) in the domain QT.
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Дослiджуються слабкi розв’язки задачi Кошi для гiперболiчних рiвнянь третього порядку

зi змiнним показником нелiнiйностi. Задача вивчається в деяких класах функцiй, зокрема, в

просторах Лебега зi змiнними показниками. Знайдено достатнi умови iснування та єдиностi

розглядуваної задачi.

Ключовi слова i фрази: нелiнiйне гiперболiчне рiвняння, задача Кошi, змiнний показник не-

лiнiйностi, простiр Лебега зi змiнним показником.


