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GROWTH ESTIMATES FOR THE MAXIMAL TERM AND CENTRAL EXPONENT OF

THE DERIVATIVE OF A DIRICHLET SERIES

FEDYNYAK S.I.1 , FILEVYCH P.V.2

Let A ∈ (−∞,+∞], Φ : [a, A) → R be a continuous function such that xσ − Φ(σ) → −∞ as

σ ↑ A for every x ∈ R, Φ̃(x) = max{xσ − Φ(σ) : σ ∈ [a, A)} be the Young-conjugate function of

Φ, Φ(x) = Φ̃(x)/x and Γ(x) = (Φ̃(x) − ln x)/x for all sufficiently large x, (λn) be a nonnegative

sequence increasing to +∞, and F(s) =
∞

∑
n=0

anesλn be a Dirichlet series such that its maximal term

µ(σ, F) = max{|an|eσλn : n ≥ 0} and central index ν(σ, F) = max{n ≥ 0 : |an|eσλn = µ(σ, F)} are

defined for all σ < A. It is proved that if ln µ(σ, F) ≤ (1 + o(1))Φ(σ) as σ ↑ A, then the inequalities

lim
σ↑A

µ(σ, F′)

µ(σ, F)Φ −1(σ)
≤ 1, lim

σ↑A

λν(σ,F′)

Γ−1(σ)
≤ 1,

hold, and these inequalities are sharp.

Key words and phrases: Dirichlet series, maximal term, central index, central exponent, Young-
conjugate function.
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INTRODUCTION

We fix a nonnegative sequence (λn) increasing to +∞, and consider a Dirichlet series of the

form

F(s) =
∞

∑
n=0

anesλn . (1)

For this series, by σa(F) we denote its abscissa of absolute convergence. Put

β(F) = lim
n→∞

1

λn
ln

1

|an|
, (2)

and let

E1(F) =
{

σ ∈ R : |an|e
σλn = o(1), n → ∞

}
,

E2(F) =
{

σ ∈ R : |an|e
σλn = O(1), n → ∞

}
.

It is easy to see that for j = 1, 2 we have

β(F) =

{
−∞, if Ej(F) = ∅,

sup Ej(F), if Ej(F) 6= ∅,
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i.e., the interval (−∞, β(F)) is the domain of existence for the maximal term

µ(σ, F) = max{|an |e
σλn : n ≥ 0}

of series (1). Since β(F′) = β(F), this interval is also the domain of existence for the maximal

term of the derivative of series (1).

It is well known (for instance, see [8, pp. 114–115]) that for every Dirichlet series of the form

(1) we have

σa(F) ≤ β(F) ≤ σa(F) + τ, τ := lim
n→∞

ln n

λn
, (3)

and these inequalities are sharp. Moreover, it was shown in [4] that for any A, B ∈ [−∞,+∞]

such that A ≤ B ≤ A + τ there exists a Dirichlet series of the form (1) for which σa(F) = A

and β(F) = B.

We assume that every Dirichlet series of the form (1) considered below is not reduced to

a constant, that is, for this series we have anλn 6= 0 for at least one integer n ≥ 0. By this

assumption, the central index

ν(σ, F) = max{n ≥ 0 : |an|e
σλn = µ(σ, F)}

of series (1) and the central index of the derivative of this series are defined for all σ < β(F).

Let A ∈ (−∞,+∞], and Φ : DΦ → R be a real function. We say that Φ ∈ ΩA if the domain

DΦ of Φ is an interval of the form [a, A), Φ is continuous on DΦ, and the following condition

∀x ∈ R : lim
σ↑A

(xσ − Φ(σ)) = −∞ (4)

holds. It is easy to see that in the case A < +∞ condition (4) is equivalent to the condition

Φ(σ) → +∞, σ → A − 0, and in the case A = +∞ this condition is equivalent to the condition

Φ(σ)/σ → +∞, σ → +∞. For Φ ∈ ΩA by Φ̃ we denote the Young-conjugate function of Φ,

i.e.,

Φ̃(x) = max{xσ − Φ(σ) : σ ∈ DΦ}, x ∈ R.

Note (see Lemma 1 below), that the function Φ(x) = Φ̃(x)/x is continuous and increasing to

A on some interval of the form (x0,+∞). Hence the inverse function Φ −1 is defined on some

interval of the form (A0, A) and Φ −1 is continuous and increasing to +∞ on (A0, A).

We say that Φ ∈ Ω′
A, if Φ ∈ ΩA, Φ is continuously differentiable on DΦ, and Φ′ is positive

and increasing on DΦ.

Let Φ ∈ Ω′
A. It is clear that Φ′(σ) ↑ +∞ as σ ↑ A. In addition, Φ′ has an inverse function

ϕ : [x0,+∞) → DΦ. Set

Φ̂(σ) = σ −
Φ(σ)

Φ′(σ)
, σ ∈ DΦ.

It is easy to prove that Φ(x) = Φ̂(ϕ(x)) for every x ∈ (x0,+∞). This implies that

Φ′(Φ̂−1(σ)) = Φ −1(σ) for all σ ∈ (A0, A).

M.M. Sheremeta [9] proved the following two theorems.

Theorem A. Suppose that A ∈ (−∞,+∞], Φ ∈ Ω′
A, and the condition

ln Φ′(σ) = o(Φ(σ)), σ ↑ A, (5)
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holds. Then for every Dirichlet series of the form (1) such that σa(F) = A and

lim
σ↑A

ln µ(σ, F)

Φ(σ)
= 1 (6)

we have

lim
σ↑A

µ(σ, F′)

µ(σ, F)Φ −1(σ)
≤ 1. (7)

Theorem B. Suppose that A ∈ (−∞,+∞], Φ ∈ Ω′
A, there exists a number α ∈ (0, 1] such that

the function h(σ) = (Φ′(σ))α/Φ(σ) is nonincreasing on [σ0, A), and λn = o(λn+1) as n → +∞.

If

F(s) =
∞

∑
n=0

e−Φ̃(λn)esλn , (8)

then

lim
σ↑A

µ(σ, F′)

µ(σ, F)Φ −1(σ)
= 1. (9)

Remark 1. Clearly, if for a Dirichlet series of the form (1) with σa(F) = A equality (6) holds,

then for this series we have β(F) = A.

Remark 2. It can be proved that for series (8) by the conditions of Theorem B relation (6) holds

(this is also clear from considerations given in [9]).

Remark 3. In the proofs of Theorems A and B suggested in [9], the obvious inequalities

λν(σ,F) ≤
µ(σ, F′)

µ(σ, F)
≤ λν(σ,F′), σ < β(F), (10)

were used, and, in fact, the following more exactly results were proved: by the conditions of

Theorem A for every Dirichlet series of the form (1) the inequality

lim
σ↑A

λν(σ,F′)

Φ −1(σ)
≤ 1 (11)

holds, and by the conditions of Theorem B for series (8) we have

lim
σ↑A

λν(σ,F)

Φ −1(σ)
= 1. (12)

Therefore, for every Dirichlet series of the form (1) with σa(F) = A, by some conditions on

a function Φ ∈ Ω′
A, equality (6) implies estimates (7) and (11), and these estimates are sharp.

In [9], M.M. Sheremeta conjectured that in Theorem A condition (5) may be unnecessary,

that is, Theorem A is true without any additional condition on a function Φ ∈ Ω′
A. Below

we confirm this conjecture. Moreover, we prove that inequality (7) is sharp in the case of an

arbitrary function Φ ∈ Ω′
A. In addition, in the case of an arbitrary Φ ∈ Ω′

A we obtain a sharp

growth estimate for the central exponent λν(σ,F′) of the derivative of a Dirichlet series, which,

generally, does not coincide with estimate (11).
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1 MAIN RESULTS

Let A ∈ (−∞,+∞]. For a Dirichlet series of the form (1) with β(F) = A and a function

Φ ∈ ΩA we put

tΦ(F) = lim
σ↑A

ln µ(σ, F)

Φ(σ)
.

Setting Φ −1(σ) = +∞ for all σ ∈ [A,+∞], we have

tΦ(F) = lim
n→∞

λn

Φ −1
(

1
λn

ln 1
|an|

) (13)

(see [7] and also [5]).

The following theorem confirms the above conjecture of M.M. Sheremeta.

Theorem 1. Let A ∈ (−∞,+∞], Φ ∈ ΩA.

(i) For every Dirichlet series of the form (1) with β(F) = A and tΦ(F) ≤ 1 we have (7).

(ii) There exists a Dirichlet series of the form (1) with β(F) = A and tΦ(F) = 1 such that

equality (9) holds.

Let Φ ∈ ΩA. Since Φ is continuous and increasing to A on some interval of the form

(x0,+∞), there exists α > e such that the function

Γ(x) = Φ(x)−
ln x

x
, x ∈ [α,+∞), (14)

is continuous and increasing to A. Hence the inverse function Γ−1 is defined on some interval

of the form [A1, A) and Γ−1 is continuous and increasing to +∞ on [A1, A).

Theorem 2. Suppose that A ∈ (−∞,+∞], Φ ∈ ΩA, and Γ is defined by (14).

(i) For every Dirichlet series of the form (1) with β(F) = A and tΦ(F) ≤ 1 we have

lim
σ↑A

λν(σ,F′)

Γ−1(σ)
≤ 1.

(ii) There exists a Dirichlet series of the form (1) with β(F) = A and tΦ(F) = 1 such that

lim
σ↑A

λν(σ,F′)

Γ−1(σ)
= 1. (15)

Using Theorem 2, we show that without additional conditions on a function Φ ∈ Ω′
A es-

timate (11) may not be satisfied for some Dirichlet series of the form (1) with σa(F) = A such

that (6) holds. Indeed, let Φ(σ) = − ln |σ| for all σ ∈ [−1, 0). It is easy to make sure that

Φ −1(σ) ∼
1

|σ|
ln

1

|σ|
, Γ−1(σ) ∼

2

|σ|
ln

1

|σ|
as σ ↑ A.

By Theorem 2 there exists a Dirichlet series of the form (1) with β(F) = 0 and tΦ(F) = 1 such

that equality (15) holds, that is

lim
σ↑0

λν(σ,F′)

1
|σ|

ln 1
|σ|

= 2.
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Suppose that ln n = o(λn) as n → ∞. Then by (3) we have σa(F) = 0. Estimate (11) takes the

form

lim
σ↑0

λν(σ,F′)

1
|σ|

ln 1
|σ|

≤ 1

and, obviously, this estimate is false.

Theorems 1 and 2 are consequences of the following two theorems.

Theorem 3. Let A ∈ (−∞,+∞] and Φ ∈ ΩA. For every Dirichlet series of the form (1) such

that β(F) = A and

ln µ(σ, F) ≤ Φ(σ), σ ∈ [σ1, A), (16)

we have
µ(σ, F′)

µ(σ, F)
≤ Φ −1(σ), σ ∈ [σ2, A).

Theorem 4. Let A ∈ (−∞,+∞] and Φ ∈ ΩA. There exists a Dirichlet series of the form (1)

such that for an infinite set E of positive integers we have

an =

{
e−Φ̃(λn), if n ∈ E,

0, if n /∈ E,

and this series satisfies (12).

Remark 4. Since for each Φ ∈ ΩA we have Φ̃(x)/x = Φ(x) → A as x → +∞, for a Dirichlet

series of the form (1) whose existence follows from Theorem 4 we obtain β(F) = A by (2).

Remark 5. If Φ ∈ ΩA and a Dirichlet series of the form (1) with β(F) = A satisfies (16), then,

by Theorem 3 and the left of inequalities (10), for all σ ∈ [σ2, A) we obtain λν(σ,F) ≤ Φ −1(σ).

Since λν(σ,F) = (ln µ(σ, F))′+ for every σ < β(F), this fact is easy to prove without using

Theorem 3 (see [2, Lemma 5] or [3, Lemma 4]).

In order to prove Theorems 1, 2, 3 and 4, we will need some auxiliary results, which are

given in the next section.

2 AUXILIARY RESULTS

The following lemma is well known (see, for example, [1, § 3.2], [7]).

Lemma 1. Suppose that A ∈ (−∞,+∞], Φ ∈ ΩA, and, for all x ∈ R, ϕ(x) = max{σ ∈ DΦ :

xσ − Φ(σ) = Φ̃(x)}. Then the following statements are true:

(i) the function ϕ is nondecreasing on R;

(ii) the function ϕ is continuous from the right on R;

(iii) ϕ(x) → A, x → +∞;

(iv) the right-hand derivative of Φ̃(x) is equal to ϕ(x) at every point x ∈ R;

(v) if x0 = inf{x > 0 : Φ(ϕ(x)) > 0}, then the function Φ(x) = Φ̃(x)/x increases to A on

(x0,+∞);
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(vi) the function α(x) = Φ(ϕ(x)) is nondecreasing on [0,+∞).

In the following two lemmas, which are proved in [2], ϕ and x0 are defined by Φ in the

same way as in Lemma 1.

Lemma 2. Let A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ(x0 + 0), and σ ∈ (σ0, A) be a fixed number.

Then the minimum value of the function

h(y) =
Φ(y)

y − σ
, y ∈ (σ, A),

is Φ −1(σ) and this value is attained at the point y = ϕ(Φ −1(σ)).

Lemma 3. Let δ ∈ (0, 1), A ∈ (−∞,+∞], Φ ∈ ΩA, σ0 = Φ(x0 + 0), and y(σ) = ϕ(Φ −1(σ)) for

all σ ∈ (σ0, A). Then

Φ −1

(
σ +

δΦ(y(σ))

Φ −1(σ)

)
≤

Φ −1(σ)

1 − δ
, σ ∈ (σ0, A).

The following lemma is proved in [6].

Lemma 4. Let A ∈ (−∞,+∞]. If for a Dirichlet series of the form (1) there exists an increasing

sequence (nk)
∞
k=0 of nonnegative integers such that an = 0 for all n < n0, ank

6= 0 for every

k ≥ 0, and

κk :=
ln |ank

| − ln |ank+1
|

λnk+1
− λnk

↑ A, k ↑ ∞, |an| ≤ |ank
|eκk(λnk

−λn), n ∈ (nk, nk+1), k ≥ 0,

then β(F) = A and, in addition, ν(σ, F) = n0 for every σ < κ0 and ν(σ, F) = nk+1 for all

σ ∈ [κk,κk+1) and k ≥ 0.

Lemma 5. Suppose that h is a function increasing on [α, β), h(α) = a, limx↑β h(x) = b, and

h−1(σ) := inf{x ∈ [α, β) : h(x) > σ}, σ ∈ [a, b).

Then the following statements are true:

(i) h−1 is nondecreasing continuous on [a, b);

(ii) h−1(a) = α, limσ↑b h−1(σ) = β;

(iii) h(x + 0) = max{σ ∈ [a, b) : h−1(σ) ≤ x} for each x ∈ [α, β).

Proof. Let

E(σ) = {x ∈ [α, β) : h(x) > σ}, σ ∈ [a, b).

If σ1, σ2 ∈ [a, b) and σ1 < σ2, then E(σ2) ⊂ E(σ1), and hence

h−1(σ1) = inf E(σ1) ≤ inf E(σ2) = h−1(σ2).

Therefore, h−1 is nondecreasing on [a, b).

If x ∈ [α, β) and h(x) = σ, then h−1(σ) = x, i.e., the interval [α, β) is the range of h−1. This

and the monotonicity of the function h−1 imply its continuity, as well as both equalities in (ii).

Let us prove (iii). Let x0 ∈ [α, β) and σ0 = max{σ ∈ [a, b) : h−1(σ) ≤ x0}. Then

h−1(σ0) = x0. Therefore, if x ∈ (x0, β), then h(x) > σ0, and hence h(x0 + 0) ≥ σ0. Sup-

pose that h(x0 + 0) = σ3 > σ0. Then h(x) > σ3 for all x ∈ (x0, β), that is, (x0, β) ⊂ E(σ3).

Thus

h−1(σ3) = inf E(σ3) ≤ x0.

This and the definition of σ0 imply that σ3 ≤ σ0, which contradicts the assumption that

h(x0 + 0) > σ0. Hence, h(x0 + 0) = σ0. ✷
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3 PROOF OF THEOREMS

Proof of Theorem 3. Suppose that A ∈ (−∞,+∞] and Φ ∈ ΩA. Consider a Dirichlet series of

the form (1) with β(F) = A which satisfies (16).

Let σ0 be defined as in Lemma 2, and ϕ(x) = Φ̃′
+(x) for all x ∈ R. Condition (16) implies

the existence of a number σ2 ∈ (σ0, A) such that

max{1, ln µ(y, F)− ln µ(σ, F)} ≤ Φ(y), y, σ ∈ [σ2, A).

By taking here y = y(σ), where y(σ) = ϕ(Φ −1(σ)), and using Lemma 2, we get

ln µ(y(σ), F) − ln µ(σ, F)

y(σ)− σ
≤ Φ −1(σ), σ ∈ [σ2, A). (17)

Fix an arbitrary σ ∈ [σ2, A). If λν(σ,F′) ≤ Φ −1(σ), then

µ(σ, F′)

µ(σ, F)
≤ Φ −1(σ)

by the right of inequalities (10). Therefore, we can further assume that λν(σ,F′) > Φ −1(σ).

For every integer n ≥ 0 we have

|an|e
σλn = |an|e

y(σ)λne(σ−y(σ))λn ≤ µ(y(σ), F)e(σ−y(σ))λn .

This and (17) imply that

|an|eσλn

µ(σ, F)
≤ e(y(σ)−σ)(Φ−1(σ)−λn), n ≥ 0. (18)

Since λν(σ,F′) > Φ −1(σ), from (18) it follows that

µ(σ, F′)

µ(σ, F)
≤ sup

λn>Φ −1(σ)

λne(y(σ)−σ)(Φ−1(σ)−λn). (19)

Let us consider the function

h(t) = te(y(σ)−σ)(Φ−1(σ)−t), t ∈ R.

It is easy to check that this function is descending on the interval [t0,+∞), where

t0 =
1

y(σ)− σ
.

Using Lemma 2, we have

t0 =
Φ −1(σ)

Φ(y(σ))
≤ Φ −1(σ),

and so from (19) it follows that

µ(σ, F′)

µ(σ, F)
≤ h(Φ −1(σ)) = Φ −1(σ).

Theorem 3 is proved.
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Proof of Theorem 4. Suppose that A ∈ (−∞,+∞], Φ ∈ ΩA, and prove that there exists a Dirich-

let series of the form (1) such that for an infinite set E of positive integers we have an = e−Φ̃(λn)

when n ∈ E, an = 0 when n /∈ E, and this series satisfies (12).

Let ϕ(x) = Φ̃′
+(x) for all x ∈ R, and x0 = inf{x > 0 : Φ(ϕ(x)) > 0}.

Since, by Lemma 1, Φ̃ is convex on R, we have

Φ̃(x)− Φ̃(b)

x − b
≤ ϕ(x), x > b. (20)

In addition, Φ is increasing on (x0,+∞). Therefore, if x > b > x0, then Φ(x) > Φ(b). This

implies that

Φ(x) <
Φ̃(x)− Φ̃(b)

x − b
, x > b > x0. (21)

Now we show that

Φ(x)− Φ(b) = o(Φ(ϕ(x))), x → +∞. (22)

Since, by Lemma 1, Φ(x) → A and Φ(ϕ(x)) → +∞ as x → +∞, relation (22) is obvious in the

case A < +∞. If A = +∞, then we get

Φ(x) < ϕ(x) = o(Φ(ϕ(x)))

as x → +∞, and this also implies (22).

It follows from the above that there exists a sequence (nk) of positive integers such that we

have λn0 > x0 and also

λnk
= o(λnk+1

), k → ∞; (23)

Φ(λnk+1
) > ϕ(λnk

), k ≥ 0; (24)

λnk
(Φ(λnk+1

)− Φ(λnk
)) = o(Φ(ϕ(λnk+1

))), k → ∞. (25)

For each k ≥ 0 we set

σk = Φ(λnk+1
), κk =

Φ̃(λnk+1
)− Φ̃(λnk

)

λnk+1
− λnk

.

Using (21) and (20) with x = λnk+1
and b = λnk

, as well as (24), we obtain

σk = Φ(λnk+1
) < κk ≤ ϕ(λnk+1

) < Φ(λnk+2
) = σk+1, k ≥ 0.

This implies that (κk) is a sequence increasing to A.

Let σ0 = Φ(x0 + 0), and y(σ) = ϕ(Φ −1(σ)) for all σ ∈ (σ0, A). Using (23) and (25), we have

κk = Φ(λnk+1
) +

λnk
(Φ(λnk+1

)− Φ(λnk
))

λnk+1
− λnk

= σk +
o(Φ(ϕ(λnk+1

)))

λnk+1

= σk +
o(Φ(y(σk)))

Φ −1(σk)

as k → ∞. From this and from Lemma 3 we see that

Φ −1(κk) ∼ Φ −1(σk), k → ∞. (26)

Put ank
= e−Φ̃(λnk

) for all k ≥ 0, and let an = 0 if n 6= nk for every k ≥ 0, i.e.,

E = {n0, n1, . . . }. Consider series (1) with such coefficients an. Since

κk =
ln ank

− ln ank+1

λnk+1
− λnk

↑ A, k → ∞,
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for this series by Lemma 4 we have λν(κk ,F) = λnk+1
, k ≥ 0. Therefore, using (26), we get

lim
σ↑A

λν(σ,F)

Φ −1(σ)
≥ lim

k→∞

λν(κk ,F)

Φ −1(κk)
= lim

k→∞

λnk+1

Φ −1(σk)
= 1.

Theorem 4 is proved.

Proof of Theorem 1. Let A ∈ (−∞,+∞] and Φ ∈ ΩA.

(i) Suppose that a Dirichlet series of the form (1) with β(F) = A satisfies the condition

tΦ(F) ≤ 1. Let q > 1 be an arbitrary fixed number, and let Ψ(σ) = qΦ(σ) for all σ ∈ DΦ. Then,

as it is easy to see, Ψ −1(σ) = qΦ −1(σ) for each σ ∈ (A0, A). From the condition tΦ(F) ≤ 1 it

follows that ln µ(σ, F) ≤ Ψ(σ), σ ∈ [σ1, A). Therefore, by Theorem 3 we have

µ(σ, F′)

µ(σ, F)
≤ Ψ −1(σ) = qΦ −1(σ), σ ∈ [σ2, A).

Since q > 1 is arbitrary, this implies estimate (7).

(ii) By Theorem 4 there exists a Dirichlet series of the form (1) such that for an infinite set

E of nonnegative integers we have an = e−Φ̃(λn) if n ∈ E and an = 0 if n /∈ E, and this series

satisfies (12). Then β(F) = A (see Remark 4). Using (13), for this series we obtain tΦ(F) = 1,

and hence, by the first part of our theorem, we have (7). From (7) and (12), due to the left of

inequalities (10), we immediately obtain (9).

Theorem 1 is proved.

Proof of Theorem 2. Suppose that A ∈ (−∞,+∞], Φ ∈ ΩA, and Γ is defined by (14). First, let us

prove that there exists a function Θ ∈ ΩA such that Θ(x) = Γ(x) for all x ∈ [α,+∞).

Let ϕ(x) = Φ̃′
+(x), x ∈ R. Put

θ(x) = ϕ(x)−
1

x
, x ∈ [α,+∞).

Since α > e (see above), the function θ is increasing and continuous from the right on [α,+∞),

and also limx↑+∞ θ(x) = A. Consider the function

θ−1(σ) = inf{x ∈ [α,+∞) : θ(x) > σ}, σ ∈ [a, A),

where a = θ(α). By Lemma 5, the function θ−1 is nondecreasing continuous on [a, A), and also

θ(x) = max{σ ∈ [a, A) : θ−1(σ) ≤ x}, x ∈ [α,+∞).

Put

Θ0(σ) =
∫ σ

a
θ−1(t)dt, σ ∈ [a, A).

Let A < +∞, and let η(x) = A − 1
x , x ∈ [α,+∞). Since ϕ(x) < A for all x ∈ R, we have

θ(x) < η(x) for each x ∈ [α,+∞). Then

θ−1(σ) ≥ η−1(σ) =
1

A − σ
, σ ∈ [a, A),

and hence for all ∈ [a, A) we get

Θ0(σ) ≥
∫ σ

a

dt

A − σ
= ln

A − a

A − σ
.
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This implies that Θ0(σ) → +∞ as σ → A − 0. In the case A = +∞, for all sufficiently large σ

we have

Θ0(σ) ≥
∫ σ

σ/2
θ−1(t)dt ≥

σ

2
θ−1

(σ

2

)
.

This implies that Θ0(σ)/σ → +∞ as σ → ∞. Therefore, Θ0 ∈ ΩA always.

Let x ∈ [α,+∞) be an arbitrary fixed number. Consider the function

h(σ) = xσ − Θ0(σ), σ ∈ [a, A).

Since h′(σ) = x − θ−1(σ), the function h assumes its maximum value on [a, A) at the point

σ = θ(x), and this point is maximal among all possible maximum points of h.

Therefore, from Lemma 1 we can see that for all x ∈ [α,+∞) the function θ(x) is defined

by Θ as well as ϕ(x) by Φ, and hence θ(x) = Θ̃′
+(x). Put C = −Φ̃(α) + ln α + Θ̃(α) and let

Θ(σ) = Θ0(σ) + C for all σ ∈ [a, A). Then Θ ∈ ΩA and for every x ∈ [α,+∞) we have

Θ̃(x) = Θ̃0(x)− C =
∫ x

α
θ(t)dt + Θ̃0(α)− C =

∫ x

α

(
ϕ(t)−

1

t

)
dt + Θ̃0(α)− C

= Φ̃(x)− ln x − Φ̃(α) + ln α + Θ̃0(α)− C = Φ̃(x)− ln x = xΓ(x),

and hence Θ(x) = Γ(x).

(i) Suppose that a Dirichlet series of the form (1) with β(F) = A satisfies the condition

tΦ(F) ≤ 1. Let q > 1 be an arbitrary fixed number. Then tΦ(F) < q, and therefore from (13)

for all n ≥ n1 we obtain the inequality

λn ≤ qΦ −1

(
1

λn
ln

1

|an|

)
,

which, as is easy to see, is equivalent to the inequality

ln |an| ≤ −qΦ̃

(
λn

q

)
.

Hence, for all n ≥ n2 we have

ln |λnan| ≤ ln λn − qΦ̃

(
λn

q

)
= −qΘ̃

(
λn

q

)
+ (1 − q) ln λn + q ln q ≤ −qΘ̃

(
λn

q

)
,

which implies that

λn ≤ qΘ −1

(
1

λn
ln

1

|λnan|

)
.

Therefore, using (13) with F′ and Θ instead of F and Φ respectively, we obtain tΘ(F′) ≤ q.

Since q > 1 is arbitrary, this implies that tΘ(F′) ≤ 1.

Recalling that Θ(x) = Γ(x) for all x ∈ [α,+∞), and using Theorem 1 with F′ and Θ instead

of F and Φ respectively, we have

lim
σ↑A

λν(σ,F′)

Γ−1(σ)
= lim

σ↑A

λν(σ,F′)

Θ −1(σ)
≤ lim

σ↑A

µ(σ, F′′)

µ(σ, F′)Θ −1(σ)
≤ 1.

(ii) Since Θ ∈ ΩA, by Theorem 4 there exists a Dirichlet series of the form

G(s) =
∞

∑
n=0

bnesλn
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such that for an infinite set E of positive integers we have bn = e−Θ̃(λn) if n ∈ E and bn = 0 if

n /∈ E, and this series satisfies the equation

lim
σ↑A

λν(σ,G)

Θ −1(σ)
= 1. (27)

We note also that β(G) = A (see Remark 4).

Put an = e−Φ̃(λn) = bn/λn if n ∈ E and an = 0 if n /∈ E, and consider series (1) with such

coefficients an. For this series we have F′ = G, and hence β(F) = β(G) = A. By (13) we obtain

tΦ(F) = 1. In addition, for this series equality (15) holds, because this equality coincides with

(27). Theorem 2 is proved.
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Фединяк С.I., Фiлевич П.В. Оцiнки зростання максимального члена та центрального показника

похiдної ряду Дiрiхле // Карпатськi матем. публ. — 2020. — Т.12, №2. — C. 269–279.

Нехай A ∈ (−∞,+∞], Φ : [a, A) → R — довiльна неперервна функцiя така, що xσ−Φ(σ) →

−∞, σ ↑ A, для кожного x ∈ R, Φ̃(x) = max{xσ − Φ(σ) : σ ∈ [a, A)} — функцiя, спряжена з

Φ за Юнгом, Φ(x) = Φ̃(x)/x i Γ(x) = (Φ̃(x) − ln x)/x для всiх достатньо великих x, (λn) —

невiд’ємна зростаюча до +∞ послiдовнiсть, а F(s) =
∞

∑
n=0

anesλn — ряд Дiрiхле, максимальний

член µ(σ, F) = max{|an|eσλn : n ≥ 0} та центральний iндекс ν(σ, F) = max{n ≥ 0 : |an|eσλn =

µ(σ, F)} якого визначенi для всiх σ < A. Доведено, що якщо ln µ(σ, F) ≤ (1 + o(1))Φ(σ), σ ↑ A,

то виконуються нерiвностi

lim
σ↑A

µ(σ, F′)

µ(σ, F)Φ −1(σ)
≤ 1, lim

σ↑A

λν(σ,F′)

Γ−1(σ)
≤ 1,

i цi нерiвностi є точними.

Ключовi слова i фрази: ряд Дiрiхле, максимальний член, центральний iндекс, центральний

показник, спряжена за Юнгом функцiя.


