PHYSICS AND CHEMISTRY OF SOLID STATE

V.21, No.2 (2020) pp. 272-278

DOI: 10.15330/pcss.21.2.272-278

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 21, № 2 (2020) С. 272-278

УДК 546.882

ISSN 1729-4428

Л. Ромака¹, Ю. Стадник¹, В.В. Ромака^{2,3}, А. Горпенюк²

Фазові рівноваги в потрійній системі Но-Fe-Sn при 670 К

¹ Львівський національний університет ім. І.Франка, Львів, Україна, lyubov.romaka@gmail.com ²Національний університет "Львівська політехніка", Львів, Україна, lygecka@i.ua ³Інститут дослідження твердого тіла, Дрезден, Німеччина, vromaka@gmail.com

Взаємодія компонентів у потрійній системі Ho-Fe-Sn досліджена методами рентгенівської дифракції, металографічного і рентгеноспектрального аналізів. Ізотермічний переріз діаграми стану системи побудований за температури 670 К в повному інтервалі концентрацій. Взаємодія компонентів у системі Ho-Fe-Sn при 670 К характеризується існуванням однієї тернарної сполуки HoFe₆Sn₆ (структурний тип YCo₆Ge₆, просторова група *P6/mmm*, a = 0,53797(2), c = 0,44446(2) нм). На основі бінарної сполуки HoSn₂ (структурний тип ZrSi₂) встановлено утворення твердого розчину включення HoFe_xSn₂ (до вмісту 8 ат.% Fe). Розчинність Sn в бінарній сполуці HoFe₂ (структурний тип MgCu₂) сягає до 5 ат. %.

Ключові слова: інтерметаліди; станіди; фазові діаграми; кристалічна структура; рентгенівська дифракція.

Подано до редакції 22.01.2020; прийнято до друку 15.06.2020.

Вступ

Інтерметалічні фази, які містять рідкісноземельні метали (R), ферум і *p*-елементи, проявляють цікаві фізичні властивості. Згідно досліджень магнітних властивостей станідів рідкісноземельних металів і феруму температурами високими магнітного впорядкування характеризуються сполуки Pr₆Fe₁₃Sn, $Nd_6Fe_{13}Sn i Sm_6Fe_{13}Sn$ (структурний тип $Pr_6Fe_{13}Ge$) [1, 2]. За результатами вимірювання намагніченості та спектроскопії Месбауера поведінка магнітних властивостей сполук RFe_6Sn_6 (R = Y, Gd, Tb, Dy, Ho, Er, Tm) характеризується антиферомагнітним впорядкуванням нижче температури Нееля ~ 400 К [3]. Дані нейтронографічних досліджень станідів RFe₆Sn₆ вказали на різне магнітне впорядкування підграток атомів феруму і рідкісноземельного металу за різних температур [4].

Фізичні властивості (магнітні, електричні, механічні) інтерметалідів у більшості випадків сильно залежать від методів синтезу, мікроструктури сплавів, температури гомогенізуючого відпалювання, областей гомогенності і структурного розупорядкування проміжних фаз. В цьому контексті важливим етапом є дослідження систем R-Fe-Sn за вибраних температур для отримання інформації з методів приготування сплавів, впливу температури на стабільність проміжних фаз, визначення складів і кристалічної структури особливостей сполук. Діаграми фазових рівноваг потрійних систем R-Fe-Sn побудовані для Y, Pr, Nd, Sm, Gd, Dy i Er [2, 5-9], попередні дослідження проведені також для систем La-Fe-Sn i Lu-Fe-Sn [10]. Дослідження системи Er-Fe-Sn за температур 670 і 770 К [9] засвідчили вплив температури відпалювання на стабільність тернарної фази при високому вмісті Sn. Для інших рідкісноземельних металів досліджувались тільки окремі сплави з метою пошуку ізоструктурних сполук для вимірювання фізичних властивостей. Аналіз літературних даних показує, що для більшості систем R-Fe-Sn характерним є утворення тернарних сполук зі стехіометрією RFe₆Sn₆. Сполуки RFe₆Sn₆ кристалізуються в гексагональному структурному типі YCo₆Ge₆, або в різних надструктурах до нього [5-9]. В системі Dy-Fe-Sn (1070 K) сполука DyFe₆Sn₆ належить до структурного типу YFe₆Sn₆ (просторова група *Стст*), тоді як $Dy_xFe_6Sn_6$ (x = 0.32 i 0.5) є ізоструктурною до частково впорядкованого структурного типу SmMn₆Sn₆ (просторова група Р6/тт) [8]. За інших температур відпалювання для

сполуки $DyFe_6Sn_6$ реалізуються структурні типи $DyFe_6Sn_6$ (1123 K) [11] та $TbFe_6Sn_6$ (1273 K) з орторомбічною коміркою [12].

На відміну від систем R-Fe-Sn, де R – рідкісноземельні метали підгрупи Церію, V {Y, досліджених системах Gd. Dy}-Fe-Sn утворюється тільки одна тернарна сполука зі стехіометрією 1:6:6 [5, 8]. При дослідженні системи Er-Fe-Sn за температури 670 К [9], окрім станіду ErFe₆Sn₆, встановлено утворення ще однієї сполуки Er₅Fe₆Sn₁₈ з кубічною структурою типу Tb₅Rh₆Sn₁₈. Про нову тернарну сполуку в системі Lu-Fe-Sn за високого вмісту стануму ~Lu₄Fe₆Sn₁₉, яку автори ідентифікували як кубічну фазу з періодом ґратки а = 1,3537 нм, повідомляється в праці [10]. Подальші структурні дослідження засвідчили, що фаза ~Lu₄Fe₆Sn₁₉ відповідає сполуці Lu₅Fe₆Sn₁₈ зі структурою типу Tb₅Rh₆Sn₁₈ (a = 1,3235 нм) [13] і є ізоструктурною до сполуки Er₅Fe₆Sn₁₈.

Метою цієї праці є дослідження взаємодії компонентів у системі Ho-Fe-Sn при 670 К методами рентгенівської дифракції та енергодисперсійної рентгенівської спектроскопії (ЕДРС).

I. Методика дослідження

1 г синтезували Зразки масою методом плавлення шихти електродугового вихілних компонентів (гольмій, чистота 99,9 мас.%; ферум, чистота 99,99 мас.%; станум, чистота 99,999 мас.%) в атмосфері очищеного аргону (Ті в якості гетера) на водоохолоджуваному мідному поді. Після сплавляння загальна втрати маси сплавів не перевищувала 1 мас.%. Частинки синтезованих сплавів піддавались гомогенізуючому відпалюванні у вакуумованих кварцевих ампулах за температури 670 К впродовж місяця. Температура відпалювання вибрана з огляду на низьку температуру плавлення Sn (232⁰C) і бінарних сполук системи Но-Sn з

високим вмістом Sn [14]. Після відпалювання ампули зі зразками гартували в холодній воді.

Рентгенівський фазовий аналіз синтезованих і відпалених при 670 К сплавів проводили за дифрактограмами, отриманими на порошковому дифрактометрі ДРОН-4.0 (Fe Ка випромінювання). Експериментальні дифракційні відбиття порівнювали з теоретичними дифрактограмами чистих елементів, бінарних і відомих тернарних сполук. Елементний і фазовий склади виготовлених зразків контролювали з використанням скануючої електронної мікроскопії (SEM) на скануючому електронному мікроскопі РЕММА-102-02. Кількісний мікрозондовий аналіз енергодисперсійним сплавів здійснювався рентгенівським аналізатором (ЕДРС) з чистими елементами в якості стандартів (прискорююча напруга 20 кВ; використані К- і L-смуги). Масив дифракційних даних для структурних розрахунків отриманий за кімнатної температури на автоматичному дифрактометрі STOE STADI Р (графітовий монохроматор, Си Кα₁ випромінювання). кристалографічних Розрахунок параметрів проводився з використанням пакетів програм WinCSD i FullProof suite [15, 16].

II. Результати та обговорення

Подвійні системи Ho-Fe, Ho-Sn і Fe-Sn, які обмежують систему Ho-Fe-Sn, досліджені в повній мірі, відповідні діаграми стану і кристалографічні характеристики бінарних сполук приведені в літературних джерелах [14, 17-19]. В системі Fe-Sn при 670 К ми підтвердили існування бінарних сполук FeSn (структурний тип CoSn) і FeSn₂ (структурний тип CuAl₂) згідно даних праць [17, 18], інші дві фази Fe₃Sn і Fe₃Sn₂, які існують вище 870 K, за температури дослідження не спостерігались.

Діаграма стану системи Ho-Sn використана для нашого дослідження згідно літературних посилань

Таблиця 1

				2	,	
Сполука	Структурний тип	Просторова група	П	Парилония		
			а	b	С	посилання
Ho ₂ Fe ₁₇	Th ₂ Ni ₁₇	P6 ₃ /mmc	0,8433(4)	-	0,8306(5)	дані праці
Ho ₆ Fe ₂₃	Th ₆ Mn ₂₃	Fm-3m	1,2027(4)	-	-	дані праці
HoFe ₃	PuNi ₃	<i>R</i> -3 <i>m</i>	0,5109(3)	-	2,4477(4)	дані праці
HoFe ₂	MgCu ₂	Fd-3m	0,7290(2)	-	-	дані праці
Ho ₅ Sn ₃	Mn ₅ Si ₃	<i>P</i> 6 ₃ / <i>mcm</i>	0,8845(3)	-	0,6446(3)	дані праці
Ho ₅ Sn ₄	Sm ₅ Ge ₄	Pnma	0,7963(3)	1,5302(5)	0,8053(2)	дані праці
Ho ₁₁ Sn ₁₀	Ho ₁₁ Ge ₁₀	I4/mmm	1,1526		1,6768	[22]
HoSn ₂	ZrSi ₂	Cmcm	0,4381(2)	1,6190(5)	0,4288(2)	дані праці
Ho_2Sn_5	Er ₂ Ge ₅	Pmmn	0,4307(2)	0,4387(3)	1,8907(5)	дані праці
HoSn ₃	GdSn _{2.75}	Amm2	0,4335	0,4373	2,1757	[14]
FeSn	CoSn	P6/mmm	0,5300		0,4450	[23]
FeSn ₂	CuAl ₂	I4/mcm	0,6531(3)		0,5326(3)	дані праці

Кристалографічні характеристики бінарних сполук систем Ho-Fe, Ho-Sn і Fe-Sn

[14, 19]. В ході дослідження було виготовлено зразки стехіометричних склалів. шо відповідають приведеним у літературі бінарним сполукам системи Ho-Sn. За результатами проведеного фазового аналізу підтверджено утворення бінарних сполук Ho₅Sn₃ (структурний тип Mn₅Si₃), Ho₅Sn₄ (структурний тип Sm₅Ge₄), Ho₁₁Sn₁₀ (структурний тип Ho₁₁Ge₁₀), HoSn₂ (структурний тип ZrSi₂), Но₂Sn₅ (структурний тип Er₂Ge₅) і HoSn₃ (структурний тип GdSn_{2.75}). Сполуки Ho₄Sn₅ [19] і Ho₃Sn₇ [20] за температури відпалювання ідентифікувати не вдалось, відповідні зразки містили дві фази Ho₁₁Sn₁₀, HoSn₂ і Ho₂Sn₅, HoSn₂, відповідно.

Згідно [17, 21] діаграма стану подвійної системи Но-Fe досліджена вище 970 K, в системі утворюються чотири бінарні сполуки Ho_2Fe_{17} (структурний тип Th_2Ni_{17}), Ho_6Fe_{23} (структурний тип Th_6Mn_{23}), $HoFe_3$ (структурний тип PuNi₃) і HoFe₂ (структурний тип MgCu₂). З метою перевірки літературних відомостей про утворення відповідних сполук за умов нашого дослідження виготовлено сплави, склади яких відповідають описаним у літературі бінарним сполукам. Фазовий аналіз відпалених за температури 670 К зразків засвідчив утворення сполук Ho₂Fe₁₇, Ho₆Fe₂₃, HoFe₃ і HoFe₂. Кристалографічні характеристики бінарних сполук систем Ho-Fe, Ho-Sn і Fe-Sn приведені в таблиці 1.

Розчинність Sn в бінарній сполуці HoFe₂ (структурний тип MgCu₂) сягає до 5 ат. % (a = 0,7290(2) нм для HoFe₂ і a = 0,73168(5) нм для зразка Ho₃₃Fe₆₂Sn₅). Розчинність Sn в інших сполуках системи Ho-Fe, а також третього компонента в бінарних сполуках систем Fe-Sn і Ho-Sn (за винятком HoSn₂) не перевищує 1-2 ат. %.

Для встановлення фазових рівноваг у потрійній системі Ho-Fe-Sn проведено рентгенофазовий і

Таблиця 2

Номінальний	Фаза	Структурний	Періоди гратки, нм			Дані ЕДРС, ат. %		
склад	Ŧusu	тип	а	b	С	Но	Fe	Sn
Ho ₃₃ Fe ₆₀ Sn ₇	$HoFe_xSn_{2-x}$	MgCu ₂	0,7316(6)					
	HoFe ₃	PuNi ₃	0,5091(3)		2,4479(6)			
	Ho ₅ Sn ₃	Mn ₅ Si ₃	0,8841(2)		0,6452(3)			
$Ho_{30}Fe_{60}Sn_{10}$	Ho ₆ Fe ₂₃	Th ₆ Mn ₂₃	1,2043(5)					
	HoFe ₃	PuNi ₃	0,5089(4)		2,4482(6)			
	Ho ₅ Sn ₃	Mn ₅ Si ₃	0,8846(3)		0,6453(4)	62,37		37,63
Ho55Fe30Sn15	HoFe ₂	MgCu ₂	0,7296(4)			33,11	66,89	
	Ho ₅ Sn ₃	Mn ₅ Si ₃	0,8848(4)		0,6456(3)	62,37		37,63
	(Ho)	Mg	0,3579(3)		0,5596(4)	99,98		
$Ho_{20}Fe_{60}Sn_{20}$	$Ho_{11}Sn_{10}$	Ho ₁₁ Ge ₁₀	1,1526(5)		1,6768(6)			
	(Fe)	W	0,2873(2)					
Ho ₁₅ Fe ₅₅ Sn ₃₀	(Fe)	W	0,2872(3)				99,99	
	HoFe _x Sn ₂	ZrSi ₂	0,4403(3)	1,6221(6)	0,4338(5)	30,29	7,63	62,08
$Ho_{50}Fe_{10}Sn_{40}$	$Ho_{11}Sn_{10}$	$Ho_{11}Ge_{10}$	1,1525(5)		1,6770(7)			
	Ho ₅ Sn ₄	Sm ₅ Ge ₄	0,7963(3)	1,5302(5)	0,8054(3)			
	(Fe)	W	0,2873(3)					
$Ho_{20}Fe_{40}Sn_{40}$	HoFe _x Sn ₂	ZrSi ₂	0,4403(3)	1,6222(5)	0,4337(4)	29,59	7,76	62,65
	(Fe)	W	0,2874(2)				99,97	
Ho ₃₀ Fe ₂₅ Sn ₄₅	HoFe _x Sn ₂	ZrSi ₂	0,4402(4)	1,6223(5)	0,4336(4)	30,46	7,77	61,77
	$Ho_{11}Sn_{10}$	$Ho_{11}Ge_{10}$	1,1525(5)		1,6767(7)	52,48		47,52
	(Fe)	W	0,2873(3)				99,98	
Ho ₅ Fe ₄₅ Sn ₅₀	FeSn	CoSn	0,5298(3)		0,4446(3)			
	HoFe ₆ Sn ₆	YCo ₆ Ge ₆	0,5380(4)		0,4445(4)			
	FeSn ₂	CuAl ₂	0,6532(3)		0,5318(3)			
Ho ₂₀ Fe ₃₀ Sn ₅₀	HoFe _x Sn ₂	ZrSi ₂	0,4404(4)	1,6224(5)	0,4335(3)	29,78	8,02	62,20
	HoFe ₆ Sn ₆	YCo ₆ Ge ₆	0,5379(4)		0,4444(4)	6,09	47,08	46,83
	(Fe)	W	0,2872(4)				100,0	
Ho ₁₅ Fe ₂₅ Sn ₆₀	HoFe _x Sn ₂	ZrSi ₂	0,4401(4)	1,6221(6)	0,4338(4)			
	FeSn ₂	CuAl ₂	0,6531(4)		0,5319(3)			
	HoFe ₆ Sn ₆	YCo ₆ Ge ₆	0,5380(5)		0,4445(4)			
Ho ₁₅ Fe ₂₀ Sn ₆₅	FeSn ₂	CuAl ₂	0,6533(4)		0,5321(3)		32,88	67,12
	HoFe _x Sn ₂	ZrSi ₂	0,4406(3)	1,6207(6)	0,4309(4)	30,24	7,39	62,20
Ho ₂₇ Fe ₁₃ Sn ₆₀	$HoFe_xSn_2$	ZrSi ₂	0,4401(3)	1,6222(6)	0,4335(3)	30,84	6,79	62,47
	HoFe ₆ Sn ₆	YCo ₆ Ge ₆	0,5380(4)		0,4444(4)	6,23	47,49	46,28
Ho ₂₀ Fe ₁₃ Sn ₆₇	FeSn ₂	CuAl ₂	0,6532(4)		0,5323(4)			
	$HoFe_xSn_2$	ZrSi ₂	0,4405(3)	1,6223(6)	0,4336(4)			
	Ho ₂ Sn ₅	Er ₂ Ge ₅	0,4305(3)	0,4392(4)	1,8925(5)			

Дані ЕДРС і кристалографічні характеристики окремих сплавів системи Ho-Fe-Sn відпалених при 670 К

Фазові рівноваги в потрійній системі Но-Fe-Sn при 670 К

Рис. 1. Ізотермічний переріз діаграми стану системи Но-Fe-Sn при 670 К.

Рис. 2. Фотографії мікроструктур сплавів системи Ho-Fe-Sn (670 K): *a*) $Ho_{20}Fe_{40}Sn_{40}$ (HoFe_xSn₂ – світла фаза, (Fe) – темна фаза); *б*) $Ho_{27}Fe_{13}Sn_{60}$ (HoFe_xSn₂ (Ho_{31,6}Fe_{5,3}Sn_{63,1}) – світла фаза, HoFe₆Sn₆ – темна фаза); *в*) $Ho_{20}Fe_{13}Sn_{67}$ (HoFe_xSn₂ – сіра фаза, FeSn₂ – темна фаза, Ho₂Sn₅ – світла фаза); *е*) $Ho_{20}Fe_{30}Sn_{50}$ (HoFe₆Sn₆ – сіра фаза, HoFe_xSn₂ – світла фаза); *д*) $Ho_{15}Fe_{25}Sn_{60}$ (HoFe_xSn₂ – світла фаза, HoFe₆Sn₆ – сіра фаза, FeSn₂ – темна фаза); *д*) $Ho_{15}Fe_{25}Sn_{60}$ (HoFe_xSn₂ – світла фаза, HoFe₆Sn₆ – сіра фаза, FeSn₂ – темна фаза); *е*) $Ho_{30}Fe_{25}Sn_{45}$ (HoFe_xSn₂ – світла фаза, Ho₁₁Sn₁₀ – сіра фаза, (Fe) – темна фаза).

рентгеноспектральний аналізи виготовлених подвійних і потрійних сплавів. За результатами проведеного аналізу побудований ізотермічний переріз діаграми стану системи Ho-Fe-Sn при 670 K в повному концентраційному інтервалі (рис. 1). Фазовий склад і дані ЕДРС для окремих сплавів приведені в таблиці 2, фотографії мікроструктур деяких сплавів показані на рис. 2.

дослідження Під час встановлено, шо інтеркаляція атомів феруму в тетрагональноантипризматичні пустоти структури бінарної сполуки HoSn₂ (структурний тип ZrSi₂, просторова група Стст) приводить до утворення твердого розчину включення HoFe_xSn₂ (до 8 ат. % Fe), що узгоджується з працями [24, 25]. Граничний склад даного твердого розчину встановлений за систематичним аналізом зміни періодів гратки зразків (a = 0,4403(3), b =1,6223(5), *c* = 0,4337(4) нм для зразка Ho₃₁Fe₈Sn₆₁) і за результатами рентгеноспектрального аналізу (Но_{30.29}Fe_{7.63}Sn_{62.08}). Збільшення об'єму елементарної комірки зі збільшенням вмісту Fe (V = 0,3041 нм³ для $HoSn_2$, V = 0.3098 HM^3 для зразка $Ho_{31}Fe_8Sn_{61}$) підтверджує утворення твердого розчину включення. Зразок Ho27Fe13Sn60 містить дві фази в рівновазі - $HoFe_xSn_2$ і $HoFe_6Sn_6$ (рис. 2,б).

Згідно результатів рентгенофазового і рентгеноспектрального аналізів система Ho-Fe-Sn при 670 К характеризується утворенням однієї тернарної сполуки Но Fe_6Sn_6 . Розрахунок кристалічної структури сполуки Но Fe_6Sn_6 засвідчив, що за використаних у нашій праці умов реалізується структурний тип YCo₆Ge₆ (просторова група *P6/mmm, a* = 0,53797(2), *c* = 0,44446(2) нм) [26]. Уточнені координати атомів для станіду Но Fe_6Sn_6 приведені в табл. 3. Згідно виконаних розрахунків спостерігається неповне заповнення позицій 1*a* для атомів Но та 2*e* для атомів Sn2 (табл. 3). Отриманий результат узгоджується з даними праці [26].

Структурний тип YCo6Ge6 (просторова група Р6/тт) можна розглядати як похідний від структурного типу CoSn (просторова група P6/mmm), який утворюється шляхом включення атомів рідкісноземельного металу в гексагональні пустоти структури CoSn [26]. Структурні дослідження станідів RFe₆Sn₆ показали, що при реалізації структурного типу YCo6Ge6 для сполук RFe6Sn6 характерною є неповна зайнятість позицій 1а для атомів R і 2e для атомів Sn2 [9, 10, 26], що може бути обумовлено невеликим значенням періоду с. Збільшення періоду с приводить до впорядкування структури і реалізації серії структурних типів YFe₆Sn₆, TbFe₆Sn₆, DyFe₆Sn₆, HoFe₆Sn₆, ErFe₆Sn₆ 3 орторомбічною коміркою [27]. Згідно праці [11] сполука HoFe₆Sn₆ за температури відпалювання 1123

Таблиця 3

Координати	и атомів та	ізотропні	параметри атомно:	го зміщення	сполук	и HoFe ₆ Sn ₆	
(magazonana parma D6)	/	0.52707(2)	a = 0.44446(2) mg	P = 0.0560	D = 0	0741 P	-0.0669

$(\text{IIpoc Ioposa Ipyna I 0/mmm}, u = 0.55777(2), c = 0.44440(2) \text{ HM}, R_p = 0.0509, R_{wp} = 0.0741, R_{Bragg} = 0.0008)$								
Атом	ПСТ	x/a	y/b	z/c	B_{i30} ·10 ² (нм ²)	КЗП		
Но	1a	0	0	0	0,60(1)	0,4(4)		
Fe	3g	1/2	0	1/2	0,60(1)	1		
Sn1	2c	1/3	2/3	0	0,59(8)	1		
Sn2	2 <i>e</i>	0	0	0,3329(8)	0,58(1)	0,47(3)		

Рис. 3. Сполуки HoFe₆Sn₆ і Ho₂Fe₁₇ похідні структурного типу CaCu₅.

К кристалізується в структурному типі HoFe₆Sn₆ (просторова група *Immm*), в той час як використання нижчої температури гомогенізуючого відпалювання (670 К, 870 К) приводить до реалізації структурного типу YCo₆Ge₆ з частковим заповненням кристалографічних позицій для атомів Ho i Sn2.

Структура сполуки HoFe₆Sn₆ (стр. тип YCo₆Ge₆) побудована з фрагментів структурного типу CaCu₅. В обох структурах основним структурним фрагментом ϵ гексагональна призма з шістьма додатковими атомами (рис. 3). Схожі фрагменти спостерігаються і для бінарної сполуки Ho₂Fe₁₇ зі структурою типу Th₂Ni₁₇ (просторова група *P*6₃/*mmc*).

Як повідомлялось в праці [9] в системі Er-Fe-Sn при 670 К встановлено утворення сполуки $Er_5Fe_6Sn_{18}$ з кубічною структурою типу $Tb_3Rh_6Sn_{18}$. Існування ізоструктурної сполуки встановлено і для Lu [13]. Наші спроби отримати аналогічну фазу в системі Ho-Fe-Sn не дали позитивного результату. Результати рентгенофазового і рентгеноспектрального аналізів зразка $Ho_{15}Fe_{25}Sn_{60}$ вказали на присутність трьох фаз у рівновазі - HoFe_xSn₂, FeSn₂ і HoFe₆Sn₆ (рис. 1, рис. 2, д). Фазовий аналіз зразків з вищим вмістом Sn показав, що відповідні зразки належать до дво- чи три-фазних областей: $Ho_{15}Fe_{20}Sn_{65}$ -FeSn₂ + HoSn₂; $Ho_{20}Fe_{13}Sn_{67}$ -HoFe_xSn₂ +FeSn₂ + Ho₂Sn₅ (рис. 2, в).

Висновки

Аналіз виконаного дослідження показав, що

взаємодія гольмію з ферумом і станумом при 670 К характеризується утворенням однієї тернарної сполуки HoFe₆Sn₆, яка належить до структурного типу YCo₆Ge₆. Варто зазначити, що утворення тільки однієї сполуки в системі Ho-Fe-Sn аналогічне як і для раніше вивчених споріднених систем {Y, Gd, Dy}-Fe-Sn та Er-Fe-Sn при 770 К. Для систем R-Fe-Sn з рідкісноземельними металами ітрієвої підгрупи характерним є утворення сполук RFe₆Sn₆, які, в залежності відпалювання, від температури кристалізуються в гексагональному структурному типі YCo6Ge6 (просторова група P6/mmm), або в орторомбічних надструктурах до типу YCo₆Ge₆. Особливістю систем R-Fe-Sn (R-рідкісноземельний елемент підгрупи ітрію) є утворення твердих розчинів включення RFe_xSn₂ на основі відповідних бінарних сполук RSn₂ зі структурою типу ZrSi₂.

Подяка

Робота виконана в рамках гранту Міністерства освіти і науки України № 0118U003609.

Ромака Л.П. - к.х.н., провідний науковий співробітник; Стадник Ю.В. - к.х.н., провідний науковий співробітник; Ромака В.В. – д.т.н., к.х.н., доцент; Горпенюк А.Я. - к.т.н., доцент.

- F. Weitzer, A. Leithe-Jasper, P. Rogl, K. Hiebl, H. Noel, G. Wiesinger, W. Steiner, Solid State Chem. 104, 368 (1993) (<u>https://doi.org/10.1006/jssc.1993.1172</u>).
- [2] J. Stepien-Damm, E. Galdeska, O.I. Bodak, B.D. Belan, J. Alloys Compd. 298, 26 (2000) (<u>https://doi.org/10.1016/S0925-8388(99)00626-X)</u>.
- [3] X.-L. Rao, J.M.D. Coey, J. Appl. Phys. 81, 5181 (1997) (https://doi.org/10.1063/1.365164).
- [4] J. M. Cadogan, D. H. Ryan, J. Alloys Compd. 326, 166 (2001) (<u>https://doi.org/10.1016/S0925-8388(01)01242-7)</u>.
- [5] Ya. Mudryk, L. Romaka, Yu. Stadnyk, O. Bodak, D. Fruchart, J. Alloys Compd. 383, 162 (2004) (<u>https://doi.org/10.1016/j.jallcom.2004.04.040</u>).
- [6] J. Stepien-Damm, O.I. Bodak, B.D. Belan, E. Galdeska, J. Alloys Compd. 298, 169 (2000) (<u>https://doi.org/10.1016/S0925-8388(99)00625-8</u>).
- [7] P. Salamakha, P. Demchenko, O. Sologub, O. Bodak, J. Stepien-Damm, Polish J. Chem. 71, 305 (1997).
- [8] L.C.J. Pereira, D.P. Rojas, J.C. Waerenborgh, J. Alloys Compd. 396, 108 (2005) (<u>https://doi.org/10.1016/j.jallcom.2004.11.061</u>).
- [9] L. Romaka, V.V. Romaka, P. Demchenko, R. Serkiz, J. Alloys Compd. 507, 67 (2010) (<u>https://doi.org/10.1016/j.jallcom.2010.07.137</u>).
- [10] R.V. Skolozdra, in: K.A. Gschneidner, Jr. and L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths 24, (1997).
- [11] B. Chafik, E. Idrissi, G. Venturini, B. Malaman, Mater. Res. Bull. 26, 1331 (1991) (<u>https://doi.org/10.1016/0025-5408(91)90149-G</u>).
- [12] O.Y. Oleksyn, H. Böhm, Z. Kristallogr. 213, 270 (1998) (<u>https://doi.org/10.1524/zkri.1998.213.5.270</u>).
- [13] I. Shcherba, L. Romaka, A. Skoblik, B. Kuzel, H. Noga, L. Bekenov, Yu. Stadnyk, P. Demchenko, A. Horyn, Acta Phys. Pol. A 136, 158 (2019) (<u>https://10.12693/APhysPolA.136.158</u>).
- [14] A. Palenzona, P. Manfrinetti, J. Alloys Compd. 201, 43 (1993) (<u>https://doi.org/10.1016/0925-8388(93)90859-L)</u>.
- [15] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Crystallogr. 47, 803 (2014) (<u>https://doi.org/10.1107/S1600576714001058</u>).

- [16] T. Roisnel, J. Rodriguez-Carvajal, Mater. Sci. Forum, Proc. EPDIC7, 378-381, 118 (2001) (<u>https://doi.org/10.4028/www.scientific.net/MSF.378-381.118</u>).
- [17] T.B. Massalski, in: Binary Alloy Phase Diagr., ASM (Metals Park, Ohio, 1990).
- [18] P. Villars, L.D. Calvert, in: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM (Metals Park, OH, 1991).
- [19] M.V. Bulanova, V.N. Eremenko, V.M. Petjukh, V.R. Sidorko, J. Phase Equil. 19, 136 (1998) (<u>https://doi.org/10.1361/105497198770342599</u>).
- [20] K. Meier, L. Vasylechko, R. Cardoso-Gil, U. Burkardt, W. Schnelle, M. Schmidt, Yu. Grin, U. Schwarz, Z. Anorgan, Allg. Chem. 636(9-10), 1695 (2010).
- [21] G.J. Roe, T.J. O'Keefe, Metallurg. Transact. 1, 2565 (1970).
- [22] L. Romaka, I. Romaniv, V.V. Romaka, M. Konyk, A. Horyn, Yu. Stadnyk, Phys. chem. solid state 19(2), 139 (2018) (<u>https://doi.org/10.15330/pcss.19.2.139-146</u>).
- [23] H. Noel, A.P. Goncalves, Intermetallics 9, 473 (2001) (<u>https://doi.org/10.1016/S0966-9795(01)00026-7)</u>.
- [24] G. Venturini, M. Francois, B. Malaman, B. Roques, J. Less-Common Met. 160, 215 (1990) (<u>https://doi.org/10.1016/0022-5088(90)90382-T)</u>.
- [25] M. Francois, G. Venturini, B. Malaman, B. Roques, J. less-Common Met. 160, 197 (1990) (<u>https://doi.org/10.1016/0022-5088(90)90381-S)</u>.
- [26] O.E. Koretskaya, R.V. Skolozdra, Inorg. Mater. 22, 690 (1986).
- [27] G. Venturini, H. Ihou-Mouko, C. Lefevre, S. Lidin, B. Malaman, T. Mazet, J. Tobola, A. Verniere, Chem. Met. Alloys. 1, 24 (2008).

L. Romaka¹, Yu. Stadnyk¹, V.V. Romaka^{2,3}, A. Horpenyuk²

Phase Equilibria in Ho-Fe-Sn Ternary System at 670 K

¹Ivan Franko L'viv National University, L'viv, Ukraine, lyubov.romaka@gmail.com ²Lviv Polytechnic National University, Lviv, Ukraine, lygecka@i.ua ³Institute for Solid State Research, IFW-Dresden, Dresden, Germany, vromaka@gmail.com

Interaction between the components in the Ho-Fe-Sn ternary system was studied using X-ray diffractometry, metallography and electron microprobe analysis. Isothermal section of the phase diagram was constructed at 670 K over the whole concentration range. Component interaction in the Ho-Fe-Sn system at 670 K results in the existence of one ternary compound HoFe₆Sn₆ which crystallizes in the YCo₆Ge₆ structure type (space group *P6/mmm, a* = 0.53797(2), *c* = 0.44446(2) nm). The interstitial-type solid solution HoFe_xSn₂ (up to 8 at.% Fe) based on the HoSn₂ (ZrSi₂-type structure) binary compound was found. Solubility of Sn in the HoFe₂ binary (MgCu₂ structure type) extends up to 5 at. %.

Keywords: intermetallics; stannides; phase diagrams; crystal structure; X-ray diffraction.