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THE GENERALIZED CENTRALLY EXTENDED LIE ALGEBRAIC STRUCTURES AND

RELATED INTEGRABLE HEAVENLY TYPE EQUATIONS

There are studied Lie-algebraic structures of a wide class of heavenly type non-linear integrable

equations, related with coadjoint flows on the adjoint space to a loop vector field Lie algebra on

the torus. These flows are generated by the loop Lie algebras of vector fields on a torus and their

coadjoint orbits and give rise to the compatible Lax-Sato type vector field relationships. The re-

lated infinite hierarchy of conservations laws is analysed and its analytical structure, connected

with the Casimir invariants, is discussed. We present the typical examples of such equations and

demonstrate in details their integrability within the scheme developed. As examples, we found

and described new multidimensional generalizations of the Mikhalev-Pavlov and Alonso-Shabat

type integrable dispersionless equation, whose seed elements possess a special factorized structure,

allowing to extend them to the multidimensional case of arbitrary dimension.
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1 INTRODUCTION

The main object of our study are integrable multidimensional dispersionless differential

equations, which possess modified Lax-Sato type representations, related with their hidden

Hamiltonian structures. Equations of this type arise and widely applied in mechanics, gen-

eral relativity, differential geometry and the theory of integrable systems. Among the most

one can mention the Boyer-Finley equation, heavenly type Plebański equations, which are

descriptive of a class of self-dual four-manifolds, as well as the dispersionless Kadomtsev-

Petviashvili (dKP) equation, also known as the Khokhlov-Zabolotskaya equation, which arises

in non-linear acoustics and the theory of Einstein-Weyl structures. Their integrability have

been investigated by a whole variety of modern techniques including symmetry analysis,

differential-geometric and algebro-geometric methods, dispersionless ∂̄-dressing, factoriza-

tion techniques, Virasoro constraints, hydrodynamic reductions, etc. The first examples and

the importance of the related Hamiltonian structures were before demonstrated in [29, 36, 38]

and later were developed in [25, 43], where there were analyzed in detail many examples of

dispersionless differential equations as flows on orbits of the coadjoint action of loop vector
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field algebras d̃i f f (Tn), generated by specially chosen seed elements l̃ ∈ d̃i f f (Tn)∗. In these

works there was observed that many integrable multidimensional dispersionless differential

equations are generated by seed elements of a very special structure, namely for them there

exist such analytical functional elements η̃, ρ̃ ∈ Λ0(C∞(Tn; R))⊗ C that l̃ = η̃dρ̃. As the latter

naturally generates the symplectic structure ω̃(2) :=
∫

Tn dη̃ ∧ dρ̃ ∈ Λ2(Tn) ⊗ C on the mod-

uli space [2, 42] of flat connections on Tn, related to coadjoint actions of the corresponding

Casimir functionals, the geometric nature of many integrable multidimensional dispersionless

differential equations can be also studied using cohomological techniques, devised in [2,10] in

the case of Riemannian surfaces. It is worth also to mention a revealed in [25] deep connec-

tion of the related Hamiltonian flows on d̃i f f (Tn)∗ with the well known in classical mechanics

Lagrange–d’Alembert principle.

In this article, in part developing the approach, devised in [29, 38], we describe a Lie al-

gebraic structure and integrability properties of a generalized hierarchy of the Lax-Sato type

compatible systems of Hamiltonian flows and related integrable multidimensional dispersion-

less differential equations. Such systems are called the heavenly type equations and were first

introduced by Plebański in [41]. The heavenly type equations were analyzed in many arti-

cles (see, e.g., [16, 19–22, 32, 38, 39] and [40, 46, 47, 52, 53]) using several different approaches.

In [7–9, 50] the heavenly type equations were analyzed by using nonassociative and noncom-

mutative current algebras on the torus T
m, m ∈ N. Mention also that [49, 51] B. Szablikowski

and A. Sergyeyev developed some generalizations of the classical AKS-algebraic and related

R-structures [11, 13, 15, 45, 54]. In [38, 39] and recently in [25] these ideas were applied to a

semi-direct Lie algebra T n)∗ of the loop Lie algebra d̃i f f (Tn) := Ṽect(Tn) of vector fields

on the torus T
n, n ∈ Z+, and its dual space d̃i f f (Tn)∗. Several interesting and deep results

about orbits of the corresponding coadjoint actions on the space G̃∗ ≃ G̃ and the classical Lie-

Poisson type structures on them were presented. It is worth to specially remark here that the

AKS-algebraic scheme is naturally imbedded into the classical R-structure approach via the

following construction.

Let (G̃ ; [·, ·]) denote a Lie algebra over C and G̃∗ be its natural adjoint space. Take some

tensor element r ∈ G̃ ⊗ G̃ ≃ Hom(G̃∗; G̃) and consider its splitting into symmetric and anti-

symmetric parts

r = k ⊕ σ,

respectively, and assume that the symmetric tensor k ∈ G̃ ⊗ G̃ is not degenerate. That allows

to define on the Lie algebra G̃ a symmetric nondegenerate bi-linear product (·|·) : G̃ ⊗ G̃ → C

via the expression

(a|b) := k−1a(b) (1)

for any a, b ∈ G̃ . The composed mapping R := σ ◦ k−1 : G̃ → G̃ , following the scheme G̃
k−1

→

G̃∗ σ
→ G̃ , defines the following R-structure on the Lie algebra G̃ :

[a, b]R := [Ra, b] + [a, Rb]

for all elements a, b ∈ G̃ . The following theorem, defining the related Poisson structure [10, 12,

45, 48] on the adjoint space G̃ holds.

Theorem 1. Let α, β ∈ G̃∗ be arbitrary and define the bracket

{α, β} := ad∗rαβ − ad∗rβα. (2)
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Then the bracket (2) is Poisson if and only if the R-structure on the Lie algebra G̃ defines the

Lie structure on G̃, that is there holds the Yang-Baxter equation

[Ra, Rb]− R[a, b]R = −[a, b]

for any a, b ∈ G̃ .

The above theorem makes it possible to consider the Hamiltonian flows on the coadjoint

space G̃∗ as those determined on the Lie algebra G̃ . The latter is exceptionally useful if for the

scalar product (1) there exists such a trace-type Tr(·) symmetric and ad-invariant functional

(of Killing type) that

Tr(ab) := (a|b), (a|[b, c]) = (([a, b]|, c)

for any a, b and c ∈ G̃ . Then any Hamiltonian flow of an element a ∈ G̃ is representable in the

standard Lax type form

da/dt = [∇(h), a],

where ∇(h) ∈ G̃ is generated by the corresponding Gateaux derivative of the corresponding

smooth Hamiltonian function h ∈ D(G̃).

Concerning the loop Lie algebra G̃ := d̃i f f (Tn) on the torus T
n, it is well known that such

a trace-type functional on G̃ does not exist, thus we need to study the Hamiltonian flows on

the adjoint loop space G̃∗ ≃ Λ̃1(Tn) of meromorphic differential forms on the torus Tn and

obtain, as a result, integrable dispersionless differential equations as compatibility conditions

for the related loop vector fields, generated by Casimir functionals on G̃∗. This procedure is

much more complicated for analysis than the standard one and employs more geometrical

tools and considerations about the orbit space structure of the seed elements l̃ ∈ G̃∗, generating

a hierarchy of integrable Hamiltonian flows. The latter, in part, is deeply related to its reduction

properties, guaranteeing the existence of nontrivial Casimir invariants on its coadjoint orbits.

By applying and extending these ideas to central extensions of Lie algebras, we construct

new classes of commuting Hamiltonian flows on an extended adjoint space Ḡ := G̃∗⊕C. These

Hamiltonian flows are generated by seed elements (ã ⋉ l̃; α) ∈ Ḡ∗ and specially constructed

Casimir invariants on the corresponding orbits of G̃∗. In most cases these seed elements ap-

peared to be represented as specially factorized differential objects, whose real geometric na-

ture is still much hidden and not clear. Moreover, we found that the corresponding com-

patibility condition of constructed Hamiltonian flows coincides exactly with the compatibility

condition for a system of related three Lax-Sato type linear vector field equations. As exam-

ples, we found and described new multidimensional generalizations of the Mikhalev-Pavlov

and Alonso-Shabat type integrable dispersionless equation, whose seed elements possess a

special factorized structure, allowing to extend them to the multidimensional case of arbitrary

dimension.

2 DIFFEOMORPHISMS GROUP Di f f (Tn) AND ITS DESCRIPTION

Consider the n-dimensional torus Tn and call points X ∈ Tn as the Lagrangian variables

of a configuration η ∈ Di f f (Tn). The manifold Tn, thought of as the target space of a con-

figuration η ∈ Di f f (Tn), is called the spatial or Eulerian configuration, whose points, called

spatial or Eulerian points, will be denoted by small letters x ∈ T
n. Then any one-parametric
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configuration of Di f f (Tn) is a time t ∈ R dependent family [1, 4, 6, 28, 34] of diffeomorphisms

written as

T
n ∋ x = η(X, t) := ηt(X) ∈ T

n

for any initial configuration X ∈ Tn and some mappings ηt ∈ Di f f (Tn), t ∈ R.

Being interested in studying flows on the space of Lagrangian configurations η ∈ Di f f (Tn)

with respect to the temporal variable t ∈ R, which are generated by group diffeomorphisms

ηt ∈ Di f f (Tn), t ∈ R, let us proceed to describing the structure of tangent Tηt(Di f f (Tn))

and cotangent T∗
ηt
(Di f f (Tn)) spaces to the diffeomorphism group Di f f (Tn) at the points

ηt ∈ Di f f (Tn) for any t ∈ R. Determine first the tangent space Tηt(Di f f (Tn)) to the diffeo-

morphism group manifold Di f f (Tn) at point η ∈ Di f f (Tn) for which we will make use of the

construction, devised before in [1, 4, 27]. Namely, let η ∈ Di f f (Tn) be a Lagrangian configu-

ration and try to determine the tangent space Tη(Di f f (Tn)) at η ∈ Di f f (Tn) as the collection

of vectors ξη := dητ/dτ|τ=0, where R ∋ τ → ητ ∈ Di f f (Tn), ητ|τ=0 = η, is a smooth curve

on Di f f (Tn), and for arbitrary reference point X ∈ Tn there holds ξη(X) = dητ(X)/dτ|τ=0 .

The latter equivalently means that the vectors ξη(X) ∈ Tη(X)(T
n), X ∈ Tn, represent a vector

field ξ : Tn → T(Tn) on the manifold Tn for any η ∈ Di f f (Tn). Thus, the tangent space

Tη(Di f f (Tn)) coincides with the set of vector fields on Tn :

Tη(Di f f (Tn)) ≃ {ξη ∈ Γ(T(Tn)) : ξη(X) ∈ Tξ(X)(T
n)}

and similarly, the cotangent space T∗
η (Di f f (Tn)) consists of all one-form densities on Tn over

η ∈ Di f f (Tn) :

T∗
η (Di f f (Tn)) = {αη ∈ Λ1(Tn)⊗ Λ3(Tn) : αη(X) ∈ T∗

η(X)(T
n)⊗ |Λ3(Tn)|}

subject to the canonical nondegenerate pairing (·|·)c on T∗
η (Di f f (Tn)) × Tη(Di f f (Tn)) : if

αη ∈ T∗
η (Di f f (Tn)), ξη ∈ Tη(Di f f (Tn)), where

αη|X = 〈αη(X)|dx〉 ⊗ d3X, ξη |X = 〈ξη(X)|∂/∂x〉,

then

(αη |ξη)c :=
∫

Tn
〈αη(X)|ξη (X)〉d3X.

The construction above makes it possible to identify the cotangent bundle T∗
η (Di f f (Tn))

at the fixed Lagrangian configuration η ∈ Di f f (Tn) to the tangent space Tη(Di f f (Tn)), as

the tangent space T(Tn) is endowed with the natural internal tangent bundle metric 〈·|·〉 at

any point η(X) ∈ Tn, identifying T(Tn) with T∗(Tn) via the related metric isomorphism

♯ : T∗(Tn) → T(Tn). The latter can be also naturally lifted to T∗
η (Di f f (Tn)) at η ∈ Di f f (Tn),

namely: for any elements αη, βη ∈ T∗
η (Di f f (Tn)), αη |X = 〈αη(X)|dx〉 ⊗ d3X and βη |X =

〈βη(X)|dx〉 ⊗ d3X ∈ T∗
η (Di f f (Tn)) we can define the metric

(αη |βη) :=
∫

Tn
〈α♯η(X)|β♯

η (X)〉d3X,

where, by definition, α♯η(X) := ♯〈αη(X)|dx〉), β♯
η(X) := ♯〈βη(X)|dx〉 ∈ Tη(X)(T

n) for any X ∈

T
n. Based on the notions above one can proceed to constructing smooth invariant functionals

on the cotangent bundle T∗(Di f f (Tn)) subject to the corresponding co-adjoint actions of the
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diffeomorphism group Di f f (Tn). Moreover, as the cotangent bundle T∗(Di f f (Tn)) is a priori

endowed with the canonical symplectic structure, equivalent [1, 4, 5, 11, 13, 26, 30, 31, 34, 45] to

the corresponding Poisson bracket on the space of smooth functionals on T∗(Di f f (Tn)), one

can study both the related Hamiltonian flows on it and their adjoint symmetries and complete

integrability.

Consider now the cotangent bundle T∗(Di f f (Tn)) as a smooth manifold endowed with the

canonical symplectic structure [1, 5] on it, equivalent to the corresponding canonical Poisson

bracket on the space of smooth functionals on it. Taking into account that the cotangent space

T∗
η (Di f f (Tn)) at η ∈ Di f f (Tn), shifted by the right Rη−1- action to the space T∗

Id(Di f f (Tn)),

Id ∈ Di f f (Tn), becomes diffeomorphic to the adjoint space di f f ∗(Tn) to the Lie algebra

di f f (Tn) ≃ Γ(T(Tn)) of vector fields on Tn, as there was stated [34, 35, 56, 57] still by S. Lie in

1887, this canonical Poisson bracket on T∗
η (Di f f (Tn)) transforms [4, 5, 24, 31, 33, 34, 55–57] into

the classical Lie-Poisson bracket on the adjoint space G∗. Moreover, the orbits of the diffeomor-

phism group Di f f (Tn) on T∗(Di f f (Tn)) respectively transform into the coadjoint orbits on

the adjoint space G∗, generated by suitable elements of the Lie algebra G . To construct in detail

this Lie-Poisson bracket, we formulate preliminary the following simple lemma.

Lemma 1. The Lie algebra di f f (Tn) ≃ Γ(T(Tn)) is determined by the following Lie commu-

tator relationships:

[a1, a2] = 〈a1|∇〉a2 − 〈a2|∇〉a1 (3)

for any vector fields a1, a2 ∈ Γ(T(Tn)) on the manifold T
n.

Proof. Proof of the commutation relationships (3) easily follows from the group multiplication

(ϕ1,t ◦ ϕ2,t)(X) = ϕ2,t(ϕ1,t(X))

for any local group diffeomorphisms ϕ1,t, ϕ2,t ∈ Di f f (Tn), t ∈ R, and X ∈ T
n under condition

that aj(X) := dϕj,t(X)/dt|t=0 and ϕj,t|t=0 = Id ∈ Di f f (Tn), j = 1, 2.

To calculate the Poisson bracket on the cotangent space T∗
η (Di f f (Tn)) at any η ∈ Di f f (Tn),

let us consider the cotangent space T∗
η (Di f f (Tn)) ≃ di f f ∗(Tn), the adjoint space to the tangent

space Tη(Di f f (Tn)) of left invariant vector fields on Di f f (Tn) at any η ∈ Di f f (Tn), and take

the canonical symplectic structure on T∗
η (Di f f (Tn)) in the form ω(2)(µ, η) := δα(µ, η), where

the canonical Liouville form α(µ, η) := (µ|δη)c ∈ Λ1
(µ,η)

(T∗
η (Di f f (Tn))) at a point (µ, η) ∈

T∗
η (Di f f (Tn)) is defined a priori on the tangent space Tη(Di f f (Tn)) ≃ Γ(T(M)) of right-

invariant vector fields on the torus manifold Tn. Having calculated the corresponding Pois-

son bracket of smooth functions (µ|a)c , (µ|b)c ∈ C∞(T∗
η (Di f f (Tn)); R) on T∗

η (Di f f (Tn)) ≃

di f f ∗(Tn), η ∈ Di f f (Tn), one can formulate the following proposition.

Proposition 1. The Lie-Poisson bracket on the coadjoint space T∗
η (Di f f (Tn)), η ∈ M, is equal

to the expression

{ f , g}(µ) = (µ|[δg(µ)/δµ, δ f (µ)/δµ])c (4)

for any smooth right-invariant functionals f , g ∈ C∞(G∗; R).

Proof. By definition (see [1, 5]) of the Poisson bracket of smooth functions (µ|a)c , (µ|b)c ∈

C∞(T∗
η (Di f f (Tn)); R) on the symplectic space T∗

η (Di f f (Tn)), it is easy to calculate that

{µ(a), µ(b)} := δα(Xa , Xb) = Xa(α|Xb)c − Xb(α|Xa)c − (α|[Xa , Xb])c, (5)
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where Xa := δ(µ|a)c/δµ = a ∈ di f f (Tn), Xb := δ(µ|b)c/δµ = b ∈ di f f (Tn). Since the

expressions Xa(α|Xb)c = 0 and Xb(α|Xa)c = 0 owing the right-invariance of the vector fields

Xa, Xb ∈ Tη(Di f f (Tn)), the Poisson bracket (5) transforms into

{(µ|a)c , (µ|b)c} = −(α|[Xa , Xb])c = (µ|[b, a])c = (µ|[δ(µ|b)c /δµ, δ(µ|a)c /δµ])c

for all (µ, η) ∈ T∗
η (Di f f (Tn)) ≃ di f f ∗(Tn), η ∈ Di f f (Tn) and any a, b ∈ di f f (Tn). The

Poisson bracket (5) is easily generalized to

{ f , g}(µ) = (µ|[δg(µ)/δµ, δ f (µ)/δµ])c

for any smooth functionals f , g ∈ C∞(G∗; R), finishing the proof.

Based on the Lie-Poisson bracket (4), one can naturally construct Hamiltonian flows on the

adjoint space di f f ∗(Tn) via the expressions

∂l/∂t = −ad∗∇h(l)l

for any element l ∈ di f f ∗(Tn), t ∈ R, where, by definition, d
dε h(l + εm)|ε=0 := (m|∇h(l))c ,

for some smooth Hamiltonian function h ∈ C∞(di f f ∗(Tn); R). If the system possesses enough

additional invariants except the Hamiltonian function, one can expect its simplification often

reducing to its complete integrability. Below we proceed to developing an effective enough

analytical scheme, before suggested in [25, 37] for suitably constructed holomorphic loop dif-

feomorphism groups on tori, allowing to generate infinite hierarchies of such completely inte-

grable Hamiltonian systems on related functional phase spaces.

3 HEAVENLY TYPE SYSTEMS: THE MODIFIED LIE-ALGEBRAIC INTEGRABILITY SCHEME

Let D̃i f f ±(T
n), n ∈ Z+, be subgroups of the loop diffeomorphisms group D̃i f f (Tn) :=

{C ⊃ S1 → Di f f (Tn)}, holomorphically extended, respectively, on the interior D1
+ ⊂ C and

on the exterior D
1
− ⊂ C regions of the unit centrally located disk D

1 ⊂ C
1 and such that for

any g̃(λ) ∈ D̃i f f −(T
n), λ ∈ D

1
−, g̃(∞) = 1 ∈ Di f f (Tn). The corresponding Lie subalgebras

d̃i f f ±(T
n) ≃ Ṽect±(Tn) of the loop subgroups D̃i f f ±(T

n) are vector fields on S1 × Tn, ex-

tended holomorphically, respectively, on regions D1
± ⊂ C1, where for any ã(λ) ∈ d̃i f f −(T

n)

the value ã(∞) = 0. The loop Lie algebra splitting d̃i f f (Tn) = d̃i f f +(T
n)⊕ d̃i f f −(T

n) can be

naturally identified with a dense subspace of the dual space d̃i f f (Tn)∗ through the pairing

(l̃|ã) := res
λ∈C

(l(x; λ)|a(x; λ))H0 (6)

with respect to the scalar product

(l(x; λ)|a(x; λ))H0 :=
∫

Tn

dx〈l(x; λ), a(x; λ)〉

on the usual Hilbert space H0 := L2(T
n; Cn) for any elements l̃ ∈ d̃i f f (Tn)∗ and ã ∈ d̃i f f (Tn),

naturally represented in their reduced canonical form

ã =
n

∑
j=1

a(j)(x; λ)
∂

∂xj
:=

〈
a(x; λ),

∂

∂x

〉
,

l̃ =
n

∑
j=1

lj(x; λ)dxj := 〈l(x; λ), dx〉,
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where we have introduced for brevity the gradient operator ∂
∂x :=

(
∂

∂x1
, ∂

∂x2
, ..., ∂

∂xn

)⊺
in the

Euclidean space (En; 〈·, ·〉). The corresponding Lie commutator [ã, b̃] ∈ d̃i f f (Tn) of any vector

fields ã, b̃ ∈ d̃i f f (Tn) is calculated the standard way and equals

[ã, b̃] = ãb̃ − b̃ã =

〈〈
a(x; λ),

∂

∂x

〉
b(x; λ),

∂

∂x

〉
−

〈〈
b(x; λ),

∂

∂x

〉
a(x; λ),

∂

∂x

〉
.

The Lie algebra G̃ is naturally split into the direct sum of two Lie subalgebras

d̃i f f (Tn) = d̃i f f +(T
n)+ ⊕ d̃i f f −(T

n),

for which one can identify the following dual spaces:

d̃i f f +(T
n)∗ ≃ d̃i f f −(T

n), d̃i f f −(T
n)∗ ≃ d̃i f f +(T

n),

where for any l̃(λ) ∈ d̃i f f −(T
n)∗ there holds the constraint l̃(0) = 0.

Construct now the Lie algebra G̃ := d̃i f f (Tn)⋉ d̃i f f (Tn)∗ as the semi-direct sum of the Lie

algebra d̃i f f (Tn) and its dual space d̃i f f (Tn)∗, whose Lie structure is given by the following

expression

[ã1 ⋉ l̃1, ã2 ⋉ l̃2] := [ã1, ã2]⋉ (ad∗ã2
l̃1 − ad∗ã1

l̃2) (7)

for any pair of elements (ã1 ⋉ l̃1), (ã2 ⋉ l̃2) ∈ G̃ , where ad∗
d̃i f f (Tn)

: d̃i f f (Tn)∗ → d̃i f f (Tn)∗,

(ad∗ã l̃|b̃) := (l̃|[ã, b̃]) for l̃ ∈ d̃i f f (Tn)∗ and any ã, b̃ ∈ d̃i f f (Tn), is the standard coadjoint map-

ping of the Lie algebra d̃i f f (Tn) on its adjoint space d̃i f f (Tn)∗ with respect to the pairing (6).

The Lie algebra G̃ can be metricized, as it can be endowed with the nondegenerate symmetric

product

(ã1 ⋉ l̃1|ã2 ⋉ l̃2) := (l̃2|ã1) + (l̃1|ã2), (8)

where ã1 ⋉ l̃1, ã2 ⋉ l̃2 ∈ G̃ are arbitrary elements. Owing to the holomorphic structure of the

Lie algebra d̃i f f (Tn), the ad-invariant product (8) makes it possible to identify the Lie algebra

G̃ with its dual G̃∗, that is G̃∗ ≃ G̃ . Moreover, the Lie algebra G̃ can be naturally split [38,39,49]

with respect to the pairing (6) and the Lie bracket (7) into two subalgebras G̃ = G̃+ ⊕ G̃−,

where, by definition,

G̃+ := d̃i f f (Tn)+ ⋉ d̃i f f (Tn)∗−, G̃− := d̃i f f (Tn)− ⋉ d̃i f f (Tn)∗+.

The latter allows to define on the Lie algebra G̃ a new Lie bracket

[w̃1, w̃2]R := [Rw̃1, w̃2] + [w̃1,Rw̃2]

for any elements w̃1, w̃2 ∈ G̃, where R := (P+ − P−)/2 is the standard R-matrix homomor-

phism [11,14,44,54] on G̃ and, by definition, P± : G̃ → G̃± ⊂ G̃ are projectors. The construction

above makes it possible to apply to the Lie algebra G̃ the classical AKS-scheme and, respec-

tively, to generate a wide class of completely integrable Hamiltonian systems as the commuting

flows on the adjoint space G̃∗ ≃ G̃, generated by the corresponding hierarchies of the Casimir

invariants subject to the basic Lie bracket (7).

To describe this scheme in more details, we need to find the corresponding Casimir func-

tionals h ∈ I(G̃∗), satisfying, by definition, the following relationship:

ad∗
∇h(l̃;ã)

(l̃; ã) = 0 (9)
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at (l̃; ã) ∈ G̃∗ ≃ G̃ , where, by definition, the gradient ∇h(l̃; ã) := ∇hl̃ ⋉∇hã ∈ d̃i f f (Tn)⋉

d̃i f f (Tn)∗ = G̃ satisfies the following from (9) differential-algebraic equations:

[∇hl̃ , ã] = 0, ad∗∇hl̃
l̃ − ad∗ã∇hã = 0 (10)

for arbitrarily chosen element ã ⋉ l̃ ∈ G̃. The equations (10) can be rewritten [25] in details as

〈∇hl , ∂/∂x〉 a − 〈a, ∂/∂x〉 ∇hl = 0,

〈∂/∂x,∇hl〉 l + 〈l, (∂/∂x∇hl )〉 − 〈∂/∂x, a〉 ∇ha − 〈∇ha, (∂/∂xa)〉 = 0,

(11)

where we put, by definition, that

∇hl̃ := 〈∇hl , ∂/∂x〉 , ã := 〈a, ∂/∂x〉 ,

(12)

l̃ := 〈l, dx〉 , ∇hã := 〈∇ha, dx〉 .

The system of linear equation (11) for a given element ã ⋉ l̃ ∈ G̃ , singular as λ → ∞, can be, in

general, resolved by means of the asymptotical expressions

∇hl ∼ ∑
j∈Z+

∇h
(j)
l λ−j, ∇ha ∼ ∑

j∈Z+

∇h
(j)
a λ−j, (13)

giving rise to an infinite hierarchy of gradients ∇h(p)(ã, l̃) = λp∇h(ã, l̃) ∈ G̃ , p ∈ Z+, for

the corresponding Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+. Similarly, if a given element

ã ⋉ l̃ ∈ G̃ is chosen to be singular as λ → 0, the system of linear equations (11) can be resolved

by means of the asymptotical expressions

∇hl ∼ ∑
j∈Z+

∇h
(j)

l λj, ∇ha ∼ ∑
j∈Z+

∇h
(j)
a λ−j, (14)

also generating an infinite hierarchy of gradients ∇h(p)(l̃, ã) = λ−p∇h(ã, l̃) ∈ G̃, p ∈ Z+, for

the corresponding Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+.

Let us now assume that we have already found the gradients ∇h(y)(ã, l̃) := λpy∇h(1)(ã, l̃),

∇h(t)(ã, l̃) := λpy∇h(2)(ã, l̃) ∈ G̃ , related with two Casimir invariants h(1), h(2) ∈ I(G̃∗) (not

necessary different) for some integers py, pt ∈ Z, satisfying the determining equations (11).

Then, owing to the classical AKS-scheme [11, 14, 48, 54], one can construct two commuting to

each other flows with respect to the evolution parameters y, t ∈ R on the adjoint space G̃∗ ≃ G̃

∂

∂y
ã = −[∇h

(y)

l̃,+
, ã],

∂

∂t
ã = −[∇h

(t)

l̃ ,+
, ã], (15)

and
∂

∂y
l̃ = −ad∗

∇h
(y)

l̃,+

l̃ + ad∗ã (∇h
(y)
ã,+

),
∂

∂t
l̃ = −ad∗

∇h
(t)

l̃,+

l̃ + ad∗ã (∇h
(t)
ã,+

), (16)

where, we have denoted by (∇h
(y)

l̃,+
⋉∇h

(y)
ã,+

) := P+∇h(y)(ã, l̃) ∈ G̃+ and (∇h
(t)

l̃,+
⋉∇h

(t)
ã,+

) :=

P+∇h(t)(ã, l̃) ∈ G̃+ the corresponding projections on positive degree parts of the correspond-

ing asymptotic expansions (12)–(14). The flows (15) and (16) are, by construction, Hamiltonian,

as they are a result of the expressions

∂

∂y
(ã ⋉ l̃) = {ã ⋉ l̃, h(y)}R,

∂

∂t
(ã ⋉ l̃) = {ã ⋉ l̃, h(t)}R (17)
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for a chosen element ã⋉ l̃ ∈ G̃∗ ≃ G̃ , stemming from the R-deformed Lie-Poisson [11,14,48,54]

bracket

{h, f}R := (ã ⋉ l̃, [∇h(l̃, ã),∇ f (l̃, ã)]R) (18)

on the adjoint space G̃∗ ≃ G̃ , defined for any smooth functionals h, f ∈ D(G̃∗). Their commu-

tativity condition is equivalent to two equations such as

[∇h
(y)

l̃,+
,∇h

(t)

l̃,+
]−

∂

∂t
∇h

(y)

l̃,+
+

∂

∂y
∇h

(t)

l̃,+
= 0, (19)

and

ad∗ã P̃ = 0,

P̃ = ad∗
∇h

(y)

l̃,+

(∇h
(t)
ã,+)− ad∗

∇h
(t)

l̃,+

(∇h
(y)
ã,+)−

∂

∂t
∇h

(y)
ã,+ +

∂

∂y
∇h

(t)
ã,+

for any ã ⋉ l̃ ∈ G̃ . Thus, the following important proposition holds.

Proposition 2. The Hamiltonian flows (17) generate the separately commuting evolution equa-

tions (15) and (16). The evolution equations (15) give rise to the Lax type compatibility con-

dition (19), being equivalent to some system of nonlinear heavenly type equations in partial

derivatives.

The presented above construction of Hamiltonian flows on the adjoint space G̃∗ still allows

the next important generalization. Namely, let us endow the point product G̃S
1: = ∏

z∈S1

G̃ of

the loop Lie algebra G̃ with the central extension generated by a two-cocycle ω2 : G̃ × G̃ → C,

where

ω2(ã1 ⋉ l̃1, ã2 ⋉ l̃2) :=
∫

S1
[(l1, ∂ã2/∂z)− (l2, ∂ã1/∂z)]

for any elements ã1 ⋉ l̃1, ã2 ⋉ l̃2 ∈ G̃. The resulting centrally extended Lie-algebra G̃ := G̃ ⊕ C

is defined by the commutator

[(ã1 ⋉ l̃1; α1), (ã2 ⋉ l̃2; α1)] := ([ã1, a2]⋉ (ad∗ã1
l̃2 − ad∗ã2

l̃1); ω2(ã1 ⋉ l̃1, ã2 ⋉ l̃2)

for any pair of elements (ã1 ⋉ l̃1; α1), (ã2 ⋉ l̃2; α1) ∈ G̃ . The resulting R-deformed Lie-Poisson

bracket (18) for any smooth functionals h, f ∈ D(G∗) on the adjoint space G̃∗ becomes equal to

{h, f}R := (ã ⋉ l̃, [∇h(l̃, ã),∇ f (l̃ , ã)]R)

+ ω2(R∇h(l̃, ã),∇ f (l̃, ã)) + ω2(∇h(l̃, ã),R∇ f (l̃, ã)).
(20)

The corresponding Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+, are defined with respect to

the standard Lie-Poisson bracket as

{h(p), f} := (ã ⋉ l̃, [∇h(p)(l̃, ã),∇ f (ã, l̃)]) + ω2(∇h(p)(ã, l̃),∇ f (ã, l̃)) = 0 (21)

for all smooth functionals f ∈ D(G̃∗). Based on the equality (21) one easily finds that the

gradients ∇h(p) ∈ G̃ of the Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+, satisfy the following

equations:

[∇hl̃ , ã]−
∂

∂z
∇hl̃ = 0, ad∗∇hl̃

l̃ − ad∗ã∇hã −
∂

∂z
∇hã = 0
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for any chosen element ã ⋉ l̃ ∈ Ḡ∗. Making use of suitably constructed Casimir functionals

h(y), h(t) ∈ I(G̃), one can construct from (20) the following commuting Hamiltonian flows on

the adjoint space G̃∗ :

∂

∂y
(ã ⋉ l̃) = {ã ⋉ l̃, h(y)}R,

∂

∂t
(ã ⋉ l̃) = {ã ⋉ l̃, h(t)}R, (22)

which are equivalent to the evolution equations

∂

∂y
ã = −[∇h

(y)

l̃,+
, ã] +

∂

∂z
∇h

(y)

l̃,+
,

∂

∂t
ã = −[∇h

(t)

l̃ ,+
, ã] +

∂

∂z
∇h

(t)

l̃,+
, (23)

and

∂

∂y
l̃ = −ad∗

∇h
(y)

l̃,+

l̃ + ad∗ã (∇h
(y)
ã,+

) +
∂

∂z
∇h

(y)
ã,+

, (24)

∂

∂t
l̃ = −ad∗

∇h
(t)

l̃,+

l̃ + ad∗ã (∇h
(t)
ã,+

) +
∂

∂z
∇h

(t)
ã,+

.

The commutativity condition for these flows is split into two equations such as

[∇h
(y)

l̃,+
,∇h

(t)

l̃,+
]−

∂

∂t
∇h

(y)

l̃,+
+

∂

∂y
∇h

(t)

l̃,+
= 0, (25)

and

∂P̃

∂z
+ ad∗ã P̃ = 0,

P̃ = ad∗
∇h

(y)

l̃,+

(∇h
(t)
ã,+)− ad∗

∇h
(t)

l̃,+

(∇h
(y)
ã,+)−

∂

∂t
∇h

(y)
ã,+ +

∂

∂y
∇h

(t)
ã,+

for any ã ⋉ l̃ ∈ G̃ . The first of them can be considered as the Lax type compatibility condi-

tion for the evolution equations (23). As a consequence of the obtained above results one can

formulate the following proposition.

Proposition 3. The Hamiltonian flows (22) on the adjoint space G̃∗ generate the separately

commuting evolution equations (23) and (24). The evolution equations (23) give rise to the

Lax type compatibility condition (25), being equivalent to some system of nonlinear heavenly

type equations in partial derivatives. Moreover, the system of evolution equations (23) can be

considered as the compatibility condition for the following set of linear vector equations

∂ψ/∂y +∇h
(y)

l̃,+
ψ = 0, ∂ψ/∂z + ãψ = 0, ∂ψ/∂t +∇h

(t)

l̃,+
ψ = 0

for all (y, t; λ, z, x) ∈ R
2 × (C × S

1)× T
n) and a function ψ ∈ C2(R2 × C ×(S1 × T

n); C).

The following example demonstrates the analytical applicability of the devised above Lie-

algebraic scheme for construction a wide class of nonlinear multidimensional heavenly type

integrable Hamiltonian systems on functional spaces.
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3.1 Example: the modified Mikhalev-Pavlov heavenly type system

Let a seed element ã ⋉ l̃ ∈ G̃∗ be chosen in its reduced form as

ã ⋉ l̃ = ((ux + vxλ − λ2)∂/∂x ⋉ (wx + ζxλ)dx, (26)

where u, v, w, ζ ∈ C2(R2 × S1 × T1; R). The asymptotic splits for the components of the gradi-

ent of the corresponding Casimir functional h ∈ I(Ḡ∗), as |λ| → ∞ have the following forms:

∇hl̃ ≃ 1 − vxλ−1 − uxλ−2 − vzλ−3 − (uz + vxvz − 2(∂−1
x vxxvz))λ

−4

+ vyλ−5 − (−uy − vxvy + 2(∂−1
x vxxvy))λ

−6 + . . . ,

∇hã ≃ −ζxλ−1 − wxλ−2 − ζzλ−3 − (wz − ζxvz + 2vxζz + (∂−1
x vxζx)z)λ

−4

+ ζyλ−5 − (−wy + ζxvy − 2vxζy + (∂−1
x vxζx)y)λ

−6 + . . . .

In the case when

∇h
(y)

l̃,+
:= λ4 − vxλ3 − uxλ2 − vzλ − (uz + vxvz − 2(∂−1

x vxxvz)),

∇h
(y)
ã,+ := −ζxλ3 − wxλ2 − ζzλ − (wz − ζxvz + 2vxζz − (∂−1

x vxζx)z),

and

∇h
(t)

l̃,+
:= λ6 − vxλ5 − uxλ4 − vzλ3 − (uz + vxvz − 2(∂−1

x vxxvz))λ
2

+ vyλ − (−uy − vxvy + 2(∂−1
x vxxvy)),

∇h
(t)
ã,+ := −ζxλ5 − wxλ4 − ζzλ3 − (wz − ζxvz + 2vxζz − (∂−1

x vxζx)z)λ
2

+ ζyλ − (−wy + ζxvy − 2vxζy + (∂−1
x vxζx)y),

the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-

tion equations:

uzt + uyy = −uyuxz + uzuxy − vyvxy + vzvxt − uzvyvxx + uyvzvxx

− v2
xvzvxy + v2

xvyvxz − 2euxy − 2suxz + 2et − 2sy + 2evyvxx + 2svzvxx,

vzt + vyy = −uyvxz + uzvxy − vyuxz + vzuxy − 2evxy − 2svxz − 2vxvyvxz + 2vxvzvxy,

−uxy − uzz = uxuxz − uzuxx − uxxvxvz + uxvxzvx − uxvxxvz + (vxvz)z + 2uxxe − 2ez,

−vxy − vzz = uxzvx − uzvxx − uxxvz + uxvxz − 2vxxvxvz + v2
xvxz + 2vxxe,

−uxt + uyz = −uxuxy + uyuxx + uxxvxvy − uxvxyvx + uxvxxvy − (vxvy)z + 2uxxs − 2sz,

−vxt + vyz = −uxyvx + uyvxx + uxxvy − uxvxy + 2vxxvxvy − v2
xvxy + 2vxxs,

(27)

where

exx = vxxvz, sxx = −vxxvy. (28)

Under the constraint v = 0 one obtains a set of independent scalar differential equations before

listed in [17, 18, 23]; two equations are spatially four-dimensional:

uzt + uyy = −uyuxz + uzuxy (29)

and

−uxt + uyz = −uxuxy + uyuxx, (30)
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a one is spatially three-dimensional:

−uxy − uzz = uxuxz − uzuxx. (31)

In particular, under the spatial variable reductions x → y ∈ R, t → z ∈ R, the second equation

becomes trivial and the first (32) and third (31) equations bring about the reduced Mikhalev-

Pavlov type equation

uzz + uyy = −uyuyz + uzuyy. (32)

Proposition 4. The constructed set of heavenly type equations (27), (28) has the Lax-Sato vector

field representation (19) with the “spectral” parameter λ ∈ C, which is related with the seed

element ã ⋉ l̃ ∈ G̃∗ in the form (26).

Remark 1. The following remark concerning the dimensionality of the differential systems

obtained above proves to be essential. The generalized Mikhalev-Pavlov differential system

(29) as the one considered on the related jet-manifold J(R4; R
2) for smooth mappings (u, v) :

R4 → R2 presents, in reality, a differential system with effective dimension equal 2 = 4 − 2.

This fact is important from the geometric point of view devised recently in E.V. Ferapontov and

others [19,22] works, devoted to the Plücker manifold imbedding into the Grassmannians and

a classification of related integrable differential systems. There was, in particular, stated that

the corresponding integrable systems associated with fourfolds in Gr(3, 5) also appeared to be

effectively two-dimensional, ensuing at the present time in some sense a challenging problem.

As it was also mentioned above concerning a generalization of spatially multidimensional

Mikhalev-Pavlov type equations by means of the seed element (33), there is a possibility to

check directly the existence of effectively three and more dimensional integrable differential

systems and then, eventually, to construct them.

We can here observe that the seed element (26) can be presented in the following special

compact form:

ã ⋉ l̃ :=
dη̃

dx
∂/∂x ⋉ dρ̃, η̃ = u + vλ − λ2x, ρ̃ = w + ζλ,

deeply connected with geometry of the related moduli space of flat connections, related to

coadjoint actions of the corresponding Casimir functionals. Its possible generalization to spa-

tially multidimensional Mikhalev-Pavlov type equations can be done by the seed element

ã ⋉ l̃ := 〈∇η̃,∇〉⋉ dρ̃ (33)

for some elements η̃, ρ̃ ∈ Ω0(Tn)⊗ C, n ∈ N. An analysis of the case (33) and corresponding

systems of spatially multidimensional Mikhalev-Pavlov type equations is planned to be done

in a separate study.

3.2 The modified Martinez Alonso-Shabat heavenly type system

If the seed element ã ⋉ l̃ ∈ G̃∗ is chosen in its reduced form as

ã ⋉ l̃ = (((ux1 + cux2) + λ)∂/∂x1 + ((vx1 + cvx2) + cλ)∂/∂x2)

⋉ ((wx1 + cwx2)dx1 + (ζx1 + cζx2)dx2),
(34)
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where u, v, w, ζ ∈ C2(R2 × S1 × T2; R), c ∈ R\{0}, one has the following asymptotic splits for

the components of the gradients of the corresponding Casimir functionals h(1), h(2) ∈ I(Ḡ∗) as

|λ| → ∞:

∇h
(1)

l̃
≃

(
1 + (ux1 + cux2)λ

−1 − uzλ−2 + . . .

c + (vx1 + cvx2)λ
−1 − vzλ−2 + . . .

)
,

∇h
(1)
ã ≃

(
(wx1 + cwx2)λ

−1 − wzλ−2 + . . .

(ζx1 + cζx2)λ
−1 − ζzλ−2 + . . .

)
,

and

∇h
(2)

l̃
≃

(
1 + (ux1 − cux2)λ

−1 + κλ−2 + . . .

−c + (vx1 − cvx2)λ
−1 + ωλ−2 + . . .

)
,

∇h
(2)
ã ≃

(
(wx1 − cwx2)λ

−1 + ̺λ−2 + . . .

(ζx1 − cζx2)λ
−1 + χλ−2 + . . .

)
,

where

κx1 + cκx2 = −(uzx1 − cuzx2) + 2c(ux1 ux1x2 − ux2 ux1x1 + vx1 ux2x2 − vx2 ux1x2),

ωx1 + cωx2 = −(vzx1 − cvzx2) + 2c(ux1 vx1x2 − ux2 vx1x1 + vx1 vx2x2 − vx2 vx1x2),
(35)

and

̺x1 + c̺x2 =− (wzx1 − cwzx2) + 2c(ux1 wx1x2 − ux2 wx1x1 + 2wx2 ux1x1

− 2wx1 ux1x2 + vx1 wx2x2 − vx2 wx1x2 + wx2 vx1x2 − wx2 vx2x2 + ζx2 vx1x1 − ζx1 vx1x2),

χx1 + cχx2 =− (ζzx1 − cζzx2) + 2c(vx1 ζx2x2 − vx2 ζx1x2 + 2ζx2 vx1x2

− 2ζx1 vx2x2 + ux1 ζx1x2 − ux2 ζx1x1 + ζx2 ux1x1 − ζx1 ux1x2 + wx2 ux1x2 − wx1 ux2x2).

In the case when

∇h
(y)

l̃,+
:=

(
λ2 + (ux1 + cux2)λ − uz

cλ2 + (vx1 + cvx2)λ − vz

)
,

∇h
(y)
ã,+ :=

(
(wx1 + cwx2)λ − wz

(ζx1 + cζx2)λ − ζz

)
,

and

∇h
(t)

l̃,+
:=

(
λ2 + (ux1 − cux2)λ +κ

−cλ2 + (vx1 − cvx2)λ + ω

)
,

∇h
(t)
ã,+ :=

(
(wx1 − cwx2)λ + ̺

(ζx1 − cζx2)λ + χ

)
,
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the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-

tion equations:

uzt +κy = −uzx1κ − uzx2 ω + uzκx1 + vzκx2 ,

vzt + ωy = −vzx1κ − vzx2 ω + uzωx1 + vzωx2 ,

uyx1 + cuyx2 = −(ux1 + cux2)uzx1 − (vx1 + cvx2)uzx2 + (ux1x1 + cux1x2)uz

+ (ux1x2 + cux2x2)vz − uzz,

vyx1 + cvyx2 = −(ux1 + cux2)vzx1 − (vx1 + cvx2)vzx2 + (vx1 x1 + cvx1x2)uz

+ (vx1 x2 + cvx2x2)vz − vzz,

utx1 + cutx2 = (ux1 + cux2)κx1 + (vx1 + cvx2)κx2 − (ux1x1 + cux1x2)κ

− (ux1x2 + cux2x2)ω + κz,

vtx1 + cvtx2 = (ux1 + cux2)ωx1 + (vx1 + cvx2)ωx2 − (vx1x1 + cvx1x2)κ

− (vx1 x2 + cvx2x2)ω + ωz.

(36)

Thus, the following proposition holds.

Proposition 5. The constructed system of heavenly type equations (36) and (35) has the Lax-

Sato vector field representation (19) with the “spectral” parameter λ ∈ C, which is related with

the element ã ⋉ l̃ ∈ G̃∗ in the form (34).

The system of equations (36) and (35) admits the reduction when v = u and ω = κ. In this

case, under c = 1 one obtains

uzt +κy = −(uzx1 + uzx2)κ + uz(κx1 +κx2),

κx1 +κx2 = −(uzx1 − uzx2)− 2((ux1 ux2)x1 − (ux1 ux2)x2).
(37)

The change uz = ux1 + ux2 in (37) leads to the system:

(ut̃x1
+ ut̃x2

)− (uỹx1 − uỹx2) = ux1x2(ux1 − ux2)− ux1x1 ux2 + ux2x2 ux1

− ux1x2(u
2
x1
− u2

x2
)− ux1x1 ux2(ux1 + ux2) + ux2x2 ux1(ux1 + ux2)

− 2ρỹ + (ux1x1 + 2ux1x2 + ux2x2)ρ,

ρx1 + ρx2 = (ux1 ux2)x1 − (ux1 ux2)x2 ,

where t̃ = 2t and ỹ = 2y. Thus, the system (37) can be considered as some modification of the

Martinez Alonso-Shabat one [3].

4 HEAVENLY TYPE SYSTEMS: THE GENERALIZED LIE-ALGEBRAIC STRUCTURES

Concerning a further generalization of the multi-dimensional case related with the loop

group D̃i f f (Tn) on the torus Tn, n ∈ Z+, one can proceed, as before, [25] the following nat-

ural way: as the Lie algebra d̃i f f (Tn) consists of the loop group elements, holomorphically

continued from the circle S1 := ∂D1, being the boundary of the disk D1 ⊂ C, by means of the

complex “spectral” variable λ ∈ C both into the interior D
1
+ ⊂ C and the exterior D

1
− ⊂ C

parts of the disk D
1 ⊂ C, one can take into account its analytical invariance subject to the
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circle S1 := ∂D1 diffeomorphism group Di f f (S1). The latter gives rise to the naturally ex-

tended holomorphic Lie algebra d̃i f f (Tn) = d̃i f f +(T
n)+ ⊕ d̃i f f−(Tn) on the Cartesian prod-

uct C × T
n, whose elements are representable as

ā :=

〈
a(x; λ),

∂

∂x

〉
= a0(x; λ)

∂

∂λ
+

n

∑
j=1

aj(x; λ)
∂

∂xj

for some holomorphic in λ ∈ D
1
± vectors a(x; λ) ∈ E × En for all x ∈ T

n, and where we

denoted by ∂
∂x := ( ∂

∂λ , ∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)⊺the generalized Euclidean vector gradient with respect

to the vector variable x := (λ, x) ∈ Tn.

Construct now the semi-direct sum Ḡ := di f f (Tn) ⋉ di f f (Tn)∗ of the loop Lie algebra

di f f (Tn) and its adjoint space di f f (Tn)∗, taking into account their natural pairing

(l̄|ā) := res
λ∈C

(l(x)|a(x))H0

for any l̄ := 〈l(x; λ), dx〉 = l0(x; λ)dλ +
n

∑
j=1

lj(x; λ)dxj ∈ di f f (Tn)∗ and ā ∈ di f f (Tn). The

corresponding Lie commutator on the loop Lie algebra Ḡ is naturally given by the expression

[ā1 ⋉ l̄1, ā2 ⋉ l̄2] = [ā1, a2]⋉ ad∗a2
l̄1 − ad∗a1

l̄2

for any ā1 ⋉ l̄1, ā2 ⋉ l̄2 ∈ Ḡ . The Lie algebra Ḡ also splits into the direct sum of two subalgebras

Ḡ = Ḡ+ ⊕ Ḡ−,

allowing to introduce on it the classical R-structure

[ā1 ⋉ l̄1, ā2 ⋉ l̄2]R := [R(ā1 ⋉ l̄1), ā2 ⋉ l̄2] + [ā1 ⋉ l̄1,R(ā2 ⋉ l̄2)]

for any ā1 ⋉ l̄1, ā2 ⋉ l̄2 ∈ Ḡ, where, by definition,

R := (P+ − P−)/2, and P±Ḡ := Ḡ± ⊂ Ḡ .

The space Ḡ∗ adjoint to the Lie algebra Ḡ can be functionally identified with the space Ḡ subject

to the nondegenerate symmetric product

(ā ⋉ l̄|r̄ ⋉ m̄) := res
λ∈C

(ā ⋉ l̄|r̄ ⋉ m̄)H0 ,

where we put, by definition, that

(ā ⋉ l̄|r̄ ⋉ m̄)H0 = (m̄|ā)H0 + (l̄|r̄)H0 (38)

for any pair of elements ā ⋉ l̄, r̄ ⋉ m̄ ∈ Ḡ .

Owing to the convolution (38), the Lie algebra Ḡ becomes metricized. If now to take arbi-

trary smooth functions f , g ∈ D(Ḡ∗), one can naturally determine two Lie-Poisson brackets

{ f , g} := (ā ⋉ l̄|[∇ f (l̄ , ā),∇g(l̄, ā)])

and

{ f , g}R := (ā ⋉ l̄|[∇ f (l̄ , ā),∇g(l̄, ā)]R), (39)
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where at any seed element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ the gradient element ∇ f (l̄ , ā) := ∇ f l̄ ⋉∇ fā ≃

〈∇ f (l, a), (∂/∂x, dx)⊺〉 ∈ Ḡ and ∇ f l̄ = 〈∇ fl , ∂/∂x〉, ∇ fā = 〈∇ fa , dx〉, and, similarly, the gra-

dient element ∇g(l̄, ā) := ∇gl̄ ⋉∇gā ≃ 〈∇g(l, a), (∂/∂x, dx)⊺〉 ∈ Ḡ∗ and ∇gl̄ = 〈∇gl , ∂/∂x〉,

∇gā = 〈∇ga, dx〉 are calculated with respect to the metric (38).

Let now assume that a smooth function h ∈ I(Ḡ∗) is a Casimir invariant, that is

ad∗∇h(l̄,ā)(ā ⋉ l̄) = 0 (40)

for a chosen seed element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ . Since for an element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ and arbitrary

f ∈ D(Ḡ∗) the adjoint mapping

ad∗∇ f (l̄,ā)(ā ⋉ l̄) = ([∇hl̄ , ā]⋉ (ad∗∇hl̄
l̄ − ad∗ā∇hā),

the condition (40) can be rewritten as

[∇hl̄ , ā] = 0, ad∗∇hl̄
l̄ − ad∗ā∇hā = 0,

from which one easily obtains that the Casimir functional h ∈ I(Ḡ∗) satisfies the system of

determining equations

〈∇hl , ∂/∂x〉 a − 〈a, ∂/∂x〉 ∇hl = 0,

〈∂/∂x,∇hl〉 l + 〈l, (∂/∂x∇hl)〉 − 〈∂/∂x, a〉 ∇ha − 〈a, (∂/∂x∇ha)〉 = 0.
(41)

For the Casimir functional h ∈ D(Ḡ∗) the equations (41) should be solved analytically. In

the case when an element l̄ ⋉ ā ∈ Ḡ∗ is singular as |λ| → ∞, one can consider the general

asymptotic expansion

∇h(p)(l, a) ∼ λp ∑
j∈Z+

(∇h
(p)
l,j ;∇h

(p)
a,j )λ

−j (42)

for some suitably chosen p ∈ Z+, which is substituted into the equations (41). The latter is

then solved recurrently giving rise to a set of gradient expressions for the Casimir functionals

h(p) ∈ D(Ḡ∗) at the specially found integers p ∈ Z+.

Assume now that h(y), h(t) ∈ I(Ḡ∗) are such Casimir functionals for which the Hamiltonian

vector field generators

∇h(y)(l̄, ā)+ := (∇h(py)(l̄, ā))+, ∇h(t)(l̄, ā)+ := (∇h(pt)(l̄, ā))+, (43)

where ∇h(y)(l̄, ā)+ := (∇h
(y)

l̄,+
⋉∇h

(y)
ā,+

) ∈ Ḡ+ and ∇h(t)(l̄, ā)+ := (∇h
(t)

l̄,+
⋉∇h

(t)
ā,+

) ∈ Ḡ+, are,

respectively, defined at some specially found integers py, pt ∈ Z+. These invariants generate

owing to the Lie-Poisson bracket (39) the following commuting to each other Hamiltonian

flows:

∂

∂y
(ā ⋉ l̄) = −ad∗

∇h(y)(l̄,ā)+
(ā ⋉ l̄),

∂

∂t
(ā ⋉ l̄) = −ad∗

∇h(t)(l̄,ā)+
(ā ⋉ l̄)

of an element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ with respect to the corresponding evolution parameters t, y ∈ R.

The flows (43) can be rewritten as

∂a/∂y = −

〈
∇h

(py)

l ,
∂

∂x

〉
a +

〈
a,

∂

∂x

〉
∇h

(py)

l ,

∂a/∂t = −

〈
∇h

(pt)
l ,

∂

∂x

〉
a +

〈
a,

∂

∂x

〉
∇h

(pt)
l ,

(44)
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and

∂l/∂y = −

〈
∂

∂x
,∇h

(py)
l

〉
l −

〈
l, (

∂

∂x
∇h

(py)
l )

〉
+

〈
∂

∂x
, a

〉
∇h

(py)
a +

〈
a, (

∂

∂x
∇h

(py)
a )

〉
,

∂l/∂t = −

〈
∂

∂x
,∇h

(pt)
l

〉
l −

〈
l, (

∂

∂x
∇h

(pt)
l )

〉
+

〈
∂

∂x
, a

〉
∇h

(pt)
a +

〈
a, (

∂

∂x
∇h

(pt)
a )

〉
,

where y, t ∈ R are the corresponding evolution parameters. Since the invariants h(y), h(t) ∈

I(Ḡ∗) are commuting to each other with respect to the Lie-Poisson bracket (39), the flows (44)

are commuting too. This is equivalent that the following equalities

[∇h
(y)

l̄,+
,∇h

(t)

l̄,+
]−

∂

∂t
∇h

(y)

l̄,+
+

∂

∂y
∇h

(t)

l̄,+
= 0, (45)

and

ad∗ā P̄ = 0,

P̄ = ad∗
∇h

(y)

l̄,+

(∇h
(t)
ā,+)− ad∗

∇h
(t)

l̄,+

(∇h
(y)
ā,+)−

∂

∂t
∇h

(y)
ā,+ +

∂

∂y
∇h

(t)
ā,+

hold for any ā ⋉ l̄ ∈ Ḡ. On the other hand, the equation (45) is equivalent to the compatibility

condition of three linear equations

∂ψ

∂y
+∇h

(y)

l̄,+
ψ = 0, 〈a, ∂/∂x〉ψ = 0,

∂ψ

∂t
+∇h

(t)

l̄,+
ψ = 0 (46)

for a function ψ ∈ C2(R2 × C × T
n; C), all y, t ∈ R and any x ∈ T

n. The obtained above results

can be formulated as the following proposition.

Proposition 6. Let a seed element ā ⋉ l̄ ∈ Ḡ∗ and h(y), h(t) ∈ I(Ḡ∗) are some Casimir func-

tionals subject to the product (·|·) on the holomorphic Lie algebra Ḡ and the natural coadjoint

action on the co-algebra Ḡ∗ ≃ Ḡ . Then the following dynamical systems

∂

∂y
(ā ⋉ l̄) = −ad∗

∇h(y)(l̄,ā)+
(ā ⋉ l̄),

∂

∂t
(ā ⋉ l̄) = −ad∗

∇h(t)(l̄,ā)+
(ā ⋉ l̄)

are commuting to each other Hamiltonian flows for evolution parameters y, t ∈ R. Moreover,

the compatibility condition of these flows leads to the vector field representation (46).

Remark 2. As it was mentioned above, the expansion (42) is effective if a chosen seed element

ā ⋉ l̄ ∈ Ḡ∗ is singular as |λ| → ∞. In the case when it is singular as |λ| → 0, the expression

(42) should be respectively replaced by the expansion

∇h(p)(l̄, ā) ∼ λ−p ∑
j∈Z+

∇h
(p)
j (l̄, ā)λj

for suitably chosen integers p ∈ Z+, and the reduced Casimir function gradients then are

given by the Hamiltonian vector field generators

∇h(y)(l̄, ā)− := λ(λ−py−1∇h(py)(l̄, ā))−, ∇h(t)(l̄, ā)− := λ(λ−pt−1∇h(pt)(l̄, ā))−

for suitably chosen positive integers py, pt ∈ Z+ and the corresponding Hamiltonian flows

are, respectively, written as

∂

∂t
(ā ⋉ l̄) = ad∗

▽h(t)(l̄,ā)−
(ā ⋉ l̄),

∂

∂y
(ā ⋉ l̄) = ad∗

▽h(y)(l̄,ā)−
(ā ⋉ l̄)

for evolution parameters y, t ∈ R.
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As in Section 3 the presented above construction of Hamiltonian flows on the adjoint space

Ḡ∗ can be generalized proceeding to the point product ḠS
1

:= ∏
z∈S1

Ḡ of the holomorphic Lie

algebra Ḡ endowed with the central extension, generated by a two-cocycle ω2 : Ḡ × Ḡ → C,

where

ω2(ā1 ⋉ l̄1, ā2 ⋉ l̄2) :=
∫

S1
[(l̄1, ∂ā2/∂z)1 − (l̄2, ∂ā1/∂z)1]

for any pair of elements ā1 ⋉ l̄1, ā2 ⋉ l̄2 ∈ Ḡ. The resulting R-deformed Lie-Poisson bracket (18)

for any smooth functionals h, f ∈ D(Ḡ∗) on the adjoint space Ḡ∗ to the centrally extended loop

Lie algebra Ḡ := Ḡ ⊕ C becomes equal to

{h, f}R := (ā ⋉ l̄, [∇h(l̄, ā),∇ f (l̄, ā)]R) (47)

+ ω2(R∇h(l̄ , ā),∇ f (l̄, ā)) + ω2(∇h(l̄ , ā),R∇ f (l̄, ā)).

The corresponding Casimir functionals h(p) ∈ I(Ḡ∗) for specially chosen p ∈ Z+, are defined

with respect to the standard Lie-Poisson bracket as

{h(p), f} := (ā ⋉ l̄, [∇h(p)(l̄, ā),∇ f (l̄, ā)]) + ω2(∇h(p)(l̄, ā),∇ f (l̄ , ā)) = 0

for all smooth functionals f ∈ D(Ḡ∗). Based on the equality (21) one easily finds that the

gradients ∇h(p) ∈ Ḡ of the Casimir functionals h(p) ∈ I(Ḡ∗), p ∈ Z+, satisfy the following

equations:

[∇hl̄ , ā]−
∂

∂z
∇hl̄ = 0, ad∗∇hl̄

l̄ − ad∗ā∇hā −
∂

∂z
∇hā = 0

for a chosen element ā ⋉ l̄ ∈ Ḡ∗. Making use of the suitable Casimir functionals h(y), h(t) ∈

I(Ḡ∗), one can construct, making use of (47), the following commuting Hamiltonian flows on

the adjoint space Ḡ∗ :

∂

∂y
(ā ⋉ l̄) = {ā ⋉ l̄, h(y)}R,

∂

∂t
(ā ⋉ l̄) = {ā ⋉ l̄, h(t)}R, (48)

which are equivalent to the evolution equations

∂

∂y
ā = −[∇h

(y)

l̄,+
, ā] +

∂

∂z
∇h

(y)

l̄,+
,

∂

∂t
ā = −[∇h

(t)

l̄,+
, ā] +

∂

∂z
∇h

(t)

l̄,+
(49)

and
∂

∂y
l̄ = −ad∗

∇h
(y)

l̄,+

l̄ + ad∗ā (∇h
(y)
ā,+

) +
∂

∂z
∇h

(y)
ā,+

,

∂

∂t
l̄ = −ad∗

∇h
(t)
l,+

l̄ + ad∗ā (∇h
(t)
ā,+

) +
∂

∂z
∇h

(t)
ā,+

.

(50)

The commutativity condition for these flows is split into two equations

[∇h
(y)

l̄,+
,∇h

(t)

l̄,+
]−

∂

∂t
∇h

(y)

l̄,+
+

∂

∂y
∇h

(t)

l̄,+
= 0, (51)

and

∂P̄

∂z
+ ad∗ā P̄ = 0,

P̄ = ad∗
∇h

(y)

l̄,+

(∇h
(t)
ā,+)− ad∗

∇h
(t)

l̄,+

(∇h
(y)
ā,+)−

∂

∂t
∇h

(y)
ā,+ +

∂

∂y
∇h

(t)
ā,+

for any ā ⋉ l̄ ∈ Ḡ. The obtained above results one can be formulated as the following proposi-

tion.
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Proposition 7. The Hamiltonian flows (48) on the adjoint space Ḡ∗ generate the separately

commuting evolution equations (49) and (50). The evolution equations (49) give rise to the

Lax type compatibility condition (51), being equivalent to some system of nonlinear heavenly

type equations in partial derivatives. Moreover, the system of evolution equations (49) can be

considered as the compatibility condition for the following set of linear vector equations

∂ψ

∂y
+∇h

(y)

l̄,+
ψ = 0,

∂ψ

∂z
+ 〈a, ∂/∂x〉ψ = 0,

∂ψ

∂t
+∇h

(t)

l̄,+
ψ = 0

for all (y, t, z; x) ∈ (R2 × S1)× Tn and a function ψ ∈ C2((R2 × C×S1)× Tn; C).

4.1 Example: the generalized Mikhalev-Pavlov heavenly type system

Let a seed element ā ⋉ l̄ ∈ Ḡ∗ be chosen as

ā ⋉ l̄ = ((ux − λ)∂/∂x + vx∂/∂λ)⋉ (wxdx + ηxdλ), (52)

where u, v, w, η ∈ C2(R2 × (S1 × T1); R). The asymptotic splits for the components of the

gradients of the corresponding Casimir functionals h(p) ∈ I(Ḡ∗), p ∈ Z+, as |λ| → ∞ have the

following forms:

∇hl̃ ≃ λp

(
1 − uxλ−1 + (−uz + (p − 1)v)λ−2 + (uy + (p − 2)(−uxv + κ))λ−3 + . . .

−vxλ−1 − vzλ−2 + (vy − (p − 2)vxv)λ−3 + . . .

)
,

∇hã ≃ λp

(
−wxλ−1 − wzλ−2 + (wy − (p − 2)(wv)x)λ−3 + . . .

−ηxλ−1 − (ηz + (p − 1)w)λ−2 + (ηy − (p − 2)(−uxw + vηx + ω))λ−3 + . . .

)
,

where p ∈ Z+ and

κx = vz + uxvx, ωx = wz − uxwx − vxηx. (53)

In the case when

∇h
(y)

l̃,+
:=

(
λ2 − uxλ + (−uz + v)

−vxλ − vz

)
,

∇h
(y)
ã,+ :=

(
−wxλ − wz

−ηxλ − (ηz + w)

)
,

and

∇h
(t)

l̃,+
:=

(
λ3 − uxλ2 + (−uz + 2v)λ + (uy − uxv + κ)

−vxλ2 − vzλ + (vy − vxv)

)
,

∇h
(t)
ã,+ :=

(
−wxλ2 − wzλ + (wy − (wv)x)

−ηxλ2 − (ηz + 2w)λ + (ηy + uxw − vηx − ω)

)
,
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the compatibility condition of the Hamiltonian vector flows (48) leads to the system of

evolution equations:

uzt + uyy = −uyuzx + uzuxy − uxyv − uzzv −κuxz,

vzt + vyy = vv2
x − v2

z − vvxy − vvzz − uyvxz + uzvxy − uzv2
x −κvxz,

−uxy − uzz = uxuxz − uzuxx + uxxv,

−vxy − vzz = v2
x + vxxv + uxvxz − uzvxx,

−uxt + uyz = −uxuxy + uyuxx + uxzv + uxxκ,

−vxt + vyz = −uxvxy + uyvxx + uxv2
x + vxzv + κvxx + 2vxvz.

(54)

Under the constraint v = 0 one obtains the set of equations (29)–(31). Thus, the following

proposition holds.

Proposition 8. The constructed system of heavenly type equations (54) and (53) has the Lax-

Sato vector field representation (51) with the “spectral” parameter λ ∈ C, which is related with

element ā ⋉ l̄ ∈ Ḡ∗ in the form (52).
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Гентош О.Є., Балiнський О.А., Прикарпатський А.К. Узагальненi центрально розширенi Лi-алгеб-

раїчнi структури та асоцйованi iнтегровнi рiвняння небесного типу // Карпатськi матем. публ.

— 2020. — Т.12, №1. — C. 242–264.

Вивчаються центрально розширенi Лi-алгебраїчнi структури та аоцiйованi iнтегровнi рiв-

няння небесного типу як потокiв на орбiтах коприєднаної дiї пiвпрямої суми алгебри вектор-

них полiв на торi та її спряженого простору. Показано, що ц потоки породжують сумiснi ве-

кторнi поля типу Лакса-Сато, з якими тiсно пов’язана нескiнченна iєрархiя законiв збереже-

ння, породжених вiдповiдними iнварiантами Казiмiра. Наводено типовi приклади таких рiв-

нянь i детально продемонстрована їх iнтегровнiсть в межах запропоновоної схеми. Як при-

клади ми отримали та описали новi багатовимiрнi iнтегровнi узагальнення бездисперсiйних

рiвнянь Михальова-Павлова та Алонсо-Шабата, для котрих генераторнi елементи мають осо-

бливу факторизовану структуру, що дозволяє поширити їх на випадок довiльного вимiру.

Ключовi слова i фрази: рiвняння небесного типу, iнтегровнiсть за Лаксом, динамiчна система

Гамiльтона, дифеоморфiзми тора, алгебра Лi петель, центральне розширення, Лi-алгебраїчна

схема, iнварiанти Казiмiра, структура Лi-Пуассона, R-структура, рiвняння Мiхальова-Павлова.


