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THE GENERALIZED CENTRALLY EXTENDED LIE ALGEBRAIC STRUCTURES AND
RELATED INTEGRABLE HEAVENLY TYPE EQUATIONS

There are studied Lie-algebraic structures of a wide class of heavenly type non-linear integrable
equations, related with coadjoint flows on the adjoint space to a loop vector field Lie algebra on
the torus. These flows are generated by the loop Lie algebras of vector fields on a torus and their
coadjoint orbits and give rise to the compatible Lax-Sato type vector field relationships. The re-
lated infinite hierarchy of conservations laws is analysed and its analytical structure, connected
with the Casimir invariants, is discussed. We present the typical examples of such equations and
demonstrate in details their integrability within the scheme developed. As examples, we found
and described new multidimensional generalizations of the Mikhalev-Pavlov and Alonso-Shabat
type integrable dispersionless equation, whose seed elements possess a special factorized structure,
allowing to extend them to the multidimensional case of arbitrary dimension.
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1 INTRODUCTION

The main object of our study are integrable multidimensional dispersionless differential
equations, which possess modified Lax-Sato type representations, related with their hidden
Hamiltonian structures. Equations of this type arise and widely applied in mechanics, gen-
eral relativity, differential geometry and the theory of integrable systems. Among the most
one can mention the Boyer-Finley equation, heavenly type Plebariski equations, which are
descriptive of a class of self-dual four-manifolds, as well as the dispersionless Kadomtsev-
Petviashvili (dKP) equation, also known as the Khokhlov-Zabolotskaya equation, which arises
in non-linear acoustics and the theory of Einstein-Weyl structures. Their integrability have
been investigated by a whole variety of modern techniques including symmetry analysis,
differential-geometric and algebro-geometric methods, dispersionless o-dressing, factoriza-
tion techniques, Virasoro constraints, hydrodynamic reductions, etc. The first examples and
the importance of the related Hamiltonian structures were before demonstrated in [29, 36, 38]
and later were developed in [25,43], where there were analyzed in detail many examples of
dispersionless differential equations as flows on orbits of the coadjoint action of loop vector
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field algebras dif f(T"), generated by specially chosen seed elements [ € diff(T")*. In these
works there was observed that many integrable multidimensional dispersionless differential
equations are generated by seed elements of a very special structure, namely for them there
exist such analytical functional elements 77, 5 € A?(C®(T";R)) ® C that [ = 7jdp. As the latter
naturally generates the symplectic structure @2 := Jpodif Ndp € A%(T") @ C on the mod-
uli space [2,42] of flat connections on T", related to coadjoint actions of the corresponding
Casimir functionals, the geometric nature of many integrable multidimensional dispersionless
differential equations can be also studied using cohomological techniques, devised in [2,10] in
the case of Riemannian surfaces. It is worth also to mention a revealed in [25] deep connec-
tion of the related Hamiltonian flows on c@f/f (T™)* with the well known in classical mechanics
Lagrange—d’Alembert principle.

In this article, in part developing the approach, devised in [29, 38], we describe a Lie al-
gebraic structure and integrability properties of a generalized hierarchy of the Lax-Sato type
compatible systems of Hamiltonian flows and related integrable multidimensional dispersion-
less differential equations. Such systems are called the heavenly type equations and were first
introduced by Plebaniski in [41]. The heavenly type equations were analyzed in many arti-
cles (see, e.g., [16,19-22,32,38,39] and [40, 46, 47, 52, 53]) using several different approaches.
In [7-9,50] the heavenly type equations were analyzed by using nonassociative and noncom-
mutative current algebras on the torus T™,m € IN. Mention also that [49, 51] B. Szablikowski
and A. Sergyeyev developed some generalizations of the classical AKS-algebraic and related
R-structures [11, 13, 15, 45, 54]. In [38,39] and recently in [25] these ideas were applied to a
semi-direct Lie algebra 7")* of the loop Lie algebra dif f(T") := Vect(T") of vector fields
on the torus T",n € Z,, and its dual space cﬂ};‘ (T™)*. Several interesting and deep results
about orbits of the corresponding coadjoint actions on the space G* ~ G and the classical Lie-
Poisson type structures on them were presented. It is worth to specially remark here that the
AKS-algebraic scheme is naturally imbedded into the classical R-structure approach via the
following construction.

Let (G;[,]) denote a Lie algebra over C and G* be its natural adjoint space. Take some
tensor element r € G ® G ~ Hom(G*;G) and consider its splitting into symmetric and anti-
symmetric parts

r=kodo,

respectively, and assume that the symmetric tensor k € G ® G is not degenerate. That allows
to define on the Lie algebra G a symmetric nondegenerate bi-linear product (-|-) : G ® G — C
via the expression
(alb) == k~a(b) 1)
for any a,b € G. The composed mapping R := cok~! : § — G, following the scheme G L
G* % G, defines the following R-structure on the Lie algebra G :
[a,b]r := [Ra,b] + [a, Rb]

for all elements a,b € G. The following theorem, defining the related Poisson structure [10,12,
45,48] on the adjoint space G holds.

Theorem 1. Letwa, B € G* be arbitrary and define the bracket

{0,B} i= adiy — adjpe. e
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Then the bracket (2) is Poisson if and only if the R-structure on the Lie algebra G defines the
Lie structure on G, that is there holds the Yang-Baxter equation

[Ra, Rb] — Ra,b]g = —[a, 1]
foranya,b € G.

The above theorem makes it possible to consider the Hamiltonian flows on the coadjoint
space G* as those determined on the Lie algebra G. The latter is exceptionally useful if for the
scalar product (1) there exists such a trace-type Tr(-) symmetric and ad-invariant functional
(of Killing type) that

Tr(ab) = (alb), (allb,<]) = (([a,b]l,c)

for any a,b and ¢ € §. Then any Hamiltonian flow of an element a € § is representable in the
standard Lax type form
da/dt = [V (h),a],

where V(h) € G is generated by the corresponding Gateaux derivative of the corresponding
smooth Hamiltonian function h € D(G).

Concerning the loop Lie algebra G := cﬂ}? (T") on the torus T", it is well known that such
a trace-type functional on G does not exist, thus we need to study the Hamiltonian flows on
the adjoint loop space G* ~ A!(T") of meromorphic differential forms on the torus T" and
obtain, as a result, integrable dispersionless differential equations as compatibility conditions
for the related loop vector fields, generated by Casimir functionals on G*. This procedure is
much more complicated for analysis than the standard one and employs more geometrical
tools and considerations about the orbit space structure of the seed elements [ € G*, generating
a hierarchy of integrable Hamiltonian flows. The latter, in part, is deeply related to its reduction
properties, guaranteeing the existence of nontrivial Casimir invariants on its coadjoint orbits.

By applying and extending these ideas to central extensions of Lie algebras, we construct
new classes of commuting Hamiltonian flows on an extended adjoint space G := G* @ C. These
Hamiltonian flows are generated by seed elements (4 x ;&) € G* and specially constructed
Casimir invariants on the corresponding orbits of G*. In most cases these seed elements ap-
peared to be represented as specially factorized differential objects, whose real geometric na-
ture is still much hidden and not clear. Moreover, we found that the corresponding com-
patibility condition of constructed Hamiltonian flows coincides exactly with the compatibility
condition for a system of related three Lax-Sato type linear vector field equations. As exam-
ples, we found and described new multidimensional generalizations of the Mikhalev-Pavlov
and Alonso-Shabat type integrable dispersionless equation, whose seed elements possess a
special factorized structure, allowing to extend them to the multidimensional case of arbitrary
dimension.

2 DIFFEOMORPHISMS GROUP Dif f(T") AND ITS DESCRIPTION

Consider the n-dimensional torus T" and call points X € T" as the Lagrangian variables
of a configuration € Diff(T"). The manifold T", thought of as the target space of a con-
figuration 7 € Dif f(T"), is called the spatial or Eulerian configuration, whose points, called
spatial or Eulerian points, will be denoted by small letters x € T". Then any one-parametric
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configuration of Dif f(T") is a time t € R dependent family [1,4, 6,28, 34] of diffeomorphisms
written as
T > x =5(X, t) :=m(X) € T"

for any initial configuration X € T" and some mappings #; € Diff(T"),t € R.

Being interested in studying flows on the space of Lagrangian configurations 7 € Dif f(T")
with respect to the temporal variable t € IR, which are generated by group diffeomorphisms
ne € Diff(T"), t € R, let us proceed to describing the structure of tangent T,,(Diff(T"))
and cotangent T;; (Diff(T")) spaces to the diffeomorphism group Diff(T") at the points
nt € Dif f(T") for any t € R. Determine first the tangent space Ty, (Dif f(T")) to the diffeo-
morphism group manifold Dif f(T") at point 7 € Dif f(T") for which we will make use of the
construction, devised before in [1,4,27]. Namely, let y € Dif f(T") be a Lagrangian configu-
ration and try to determine the tangent space T, (Dif f(T")) at # € Dif f(T") as the collection
of vectors ¢, := dn¢/dt|—o, where R 5 T — 5 € Diff(T"), 11¢|r=0 = 7, is a smooth curve
on Dif f(T"), and for arbitrary reference point X € T" there holds ¢, (X) = dn(X)/dt|.=o.
The latter equivalently means that the vectors ¢, (X) € T, x)(T"), X € T", represent a vector
field ¢ : T" — T(T") on the manifold T" for any # € Diff(T"). Thus, the tangent space
T, (Diff(T")) coincides with the set of vector fields on T" :

Ty(Dif f(T")) = {&y € T(T(T")) : &3 (X) € Ty (T") }

and similarly, the cotangent space T;; (Dif f(T")) consists of all one-form densities on T" over

n € Diff(T") :
T, (Dif f(T")) = {ay € AN(T") @ A%(T") = ay(X) € Ty (T") @ [A%(T")[}

subject to the canonical nondegenerate pairing (-|-)c on T, (Diff(T")) x T,(Diff(T")) : if
ay € Ty (Diff(T")), & € Ty(Diff(T")), where

aylx = (a0 (X)dx) @ X, &ylx = (§4(X)[0/0x),

then
(wyl2n)e = [ {og(X)12, (X)X,

The construction above makes it possible to identify the cotangent bundle T, (Dif f(T"))
at the fixed Lagrangian configuration # € Diff(T") to the tangent space T, (Dif f(T")), as
the tangent space T(T") is endowed with the natural internal tangent bundle metric (-|-) at
any point 7(X) € T", identifying T(T") with T*(T") via the related metric isomorphism
g:T*(T") — T(T"). The latter can be also naturally lifted to T, (Dif f(T")) at n € Dif f(T"),
namely: for any elements ay, B, € Ty (Diff(T")),ay|x = (ay(X)|dx) @ X and By|x =
(By(X)]dx) @ d®X € T (Diff(T")) we can define the metric

(g By) = |

where, by definition, (x%(X) = #(ay (X)]dx)), 5?7(}() 1= §(By(X)|dx) € T, x)(T") forany X €
T". Based on the notions above one can proceed to constructing smooth invariant functionals
on the cotangent bundle T*(Dif f(T")) subject to the corresponding co-adjoint actions of the

(o (X) 185 (X)X,

n
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diffeomorphism group Dif f(T"). Moreover, as the cotangent bundle T*(Dif f(T")) is a priori
endowed with the canonical symplectic structure, equivalent [1,4, 5,11, 13,26, 30, 31, 34,45] to
the corresponding Poisson bracket on the space of smooth functionals on T*(Dif f(T")), one
can study both the related Hamiltonian flows on it and their adjoint symmetries and complete
integrability.

Consider now the cotangent bundle T*(Dif f(T")) as a smooth manifold endowed with the
canonical symplectic structure [1,5] on it, equivalent to the corresponding canonical Poisson
bracket on the space of smooth functionals on it. Taking into account that the cotangent space
T;(Diff(T")) aty € Dif f(T"), shifted by the right R, -1- action to the space Tj,(Diff(T")),
Id € Diff(T"), becomes diffeomorphic to the adjoint space diff*(T") to the Lie algebra
dif f(T") ~T(T(T")) of vector fields on T”, as there was stated [34, 35,56,57] still by S. Lie in
1887, this canonical Poisson bracket on Ty (Dif f(T™")) transforms [4,5,24,31,33,34,55-57] into
the classical Lie-Poisson bracket on the adjoint space G*. Moreover, the orbits of the diffeomor-
phism group Diff(T") on T*(Dif f(T")) respectively transform into the coadjoint orbits on
the adjoint space G*, generated by suitable elements of the Lie algebra G. To construct in detail
this Lie-Poisson bracket, we formulate preliminary the following simple lemma.

Lemma 1. The Lie algebra dif f(T") ~ I'(T(T")) is determined by the following Lie commu-
tator relationships:

[a1, 2] = (1| V)az — (a2 V)ay 3)
for any vector fields a1, a; € T(T(T")) on the manifold T".

Proof. Proof of the commutation relationships (3) easily follows from the group multiplication

(160 @2,6)(X) = @2t(p1,4(X))

for any local group diffeomorphisms ¢4, g2+ € Dif f(T"),t € R,and X € T" under condition
that a;(X) := dg;,(X)/dt|;—o and @;4|;—o = Id € Dif f(T"),j =1,2. O

To calculate the Poisson bracket on the cotangent space Ty (Dif f(T")) atany 7 € Dif f(T"),
let us consider the cotangent space Ty (Dif f(T")) ~dif f*(T"), the adjoint space to the tangent
space T, (Dif f(T")) of left invariant vector fields on Dif f(T") at any 7 € Dif f(T"), and take
the canonical symplectic structure on T, (Dif f(T")) in the form w® (u, 1) = da(u,n), where
the canonical Liouville form a(p, 1) := (u|dn)c € A%y,n)(T;(Diff(T"))) at a point (u,7) €
T;(Diff(T")) is defined a priori on the tangent space T, (Diff(T")) ~ I'(T(M)) of right-
invariant vector fields on the torus manifold T". Having calculated the corresponding Pois-
son bracket of smooth functions (u|a)c, (u|b)c € C*(T; (Diff(T"));R) on Ty (Diff(T")) ~
dif f*(T"),n € Dif f(T"), one can formulate the following proposition.

Proposition 1. The Lie-Poisson bracket on the coadjoint space T;; (Dif f(T")),n € M, is equal
to the expression

1,83 (n) = (ullog(m)/op, 6 (u)/op])e @)
for any smooth right-invariant functionals f,g € C®(G*; R).

Proof. By definition (see [1, 5]) of the Poisson bracket of smooth functions (p|a)c, (u|b). €
C*(T; (Diff(T")); R) on the symplectic space Ty (Diff(T")), it is easy to calculate that

{u(a), u(b)} = da(Xe, Xp) = Xa(a|Xp)e — Xp ([ Xa)e — (a|[Xa, Xp])e, ()
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where X, = d(pla)./ou = a € dif f(T"), X, = 6(u|b)./ou = b € dif f(T"). Since the
expressions X, («|X,). = 0 and Xp(a|X,). = 0 owing the right-invariance of the vector fields
Xa, Xy € Ty (Dif f(T")), the Poisson bracket (5) transforms into

{(ula)e, (uIb)c} = —(a[[Xa, Xp))e = (ul[b,al)e = (ul[0(u[b)c /S, 6(pla)c /Sp])e
for all (u,n) € Ty (Diff(T")) ~ diff*(T"),n € Diff(T") and any a,b € diff(T"). The
Poisson bracket (5) is easily generalized to
{f 83 (w) = (|08 (w)/om, 8f (1) / p])c

for any smooth functionals f, g € C*(G*; R), finishing the proof. O

Based on the Lie-Poisson bracket (4), one can naturally construct Hamiltonian flows on the
adjoint space dif f*(T") via the expressions

o1 /0t = —adiyy

for any element | € diff*(T"),t € R, where, by definition, £h(I + em)|e—o := (m|Vh(1))c,
for some smooth Hamiltonian function h € C®(dif f*(T"); R). If the system possesses enough
additional invariants except the Hamiltonian function, one can expect its simplification often
reducing to its complete integrability. Below we proceed to developing an effective enough
analytical scheme, before suggested in [25, 37] for suitably constructed holomorphic loop dif-
feomorphism groups on tori, allowing to generate infinite hierarchies of such completely inte-
grable Hamiltonian systems on related functional phase spaces.

3 HEAVENLY TYPE SYSTEMS: THE MODIFIED LIE-ALGEBRAIC INTEGRABILITY SCHEME

Let Bﬁ’? L(T"), n € Z, be subgroups of the loop diffeomorphisms group 53? (T") :=
{C > 8! — Diff(T")}, holomorphically extended, respectively, on the interior D} C C and
on the exterior DL C C regions of the unit centrally located disk D' C C! and such that for

any 3(A) € 155‘?_(11"”), A € D!, g(c0) =1 € Diff(T"). The corresponding Lie subalgebras
Ji}?i(T”) ~ VectL(T") of the loop subgroups Diff_ (T") are vector fields on S! x T”, ex-
tended holomorphically, respectively, on regions D). C C!, where for any (1) € diff_(T")
the value d(c0) = 0. The loop Lie algebra splitting dif f (T") = %‘+(T")@ diff_(T") can be
naturally identified with a dense subspace of the dual space dfsz (T™)* through the pairing

(1) = res (1(6:1) a3 A)) o ©
with respect to the scalar product

(1) a6 ) = [ dxli(x2),a(x;))
']1—'71

on the usual Hilbert space H? := L,(T";C") for any elements [ € diff(T")*and a € dif f(T"),
naturally represented in their reduced canonical form

8 d
ax]- = <a(x, A), $> ,

(x; A)dx; := (I(x; A), dx),

IIM: ”M
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T
where we have introduced for brevity the gradient operator aa—x = <%, %, . %) in the

Euclidean space (E"; (-, -)). The corresponding Lie commutator [, b] € dif f(T") of any vector
fields 4,b € dif ff(T") is calculated the standard way and equals

- )

a,b] = ab — ba = <<a(x;)\), $> b(x; M), %> - <<b(x;}\), %> a(x;A), %> .

The Lie algebra G is naturally split into the direct sum of two Lie subalgebras
dif f(T") = dif f . (T") @ diff_(T"),
for which one can identify the following dual spaces:
diff (T = diff _(T"),  diff_(T")* = diff . (T"),

where for any [(A) € diff_(T")* there holds the constraint [(0) = 0.

Construct now the Lie algebra G := diff = dif f(T") dif f (T")* as the semi-direct sum of the Lie
algebra diff(T") and its dual space diff(T")*, whose Lie structure is given by the following
expression

[ﬁl X Tl,ﬁz X Tz] = [ﬁl,ﬁz] X (lllz‘l>l< Tl — ad;lfz) (7)
for any pair of elements (4 x [1), (42 x [) € G, where ad” T Cdif (T — diff(T")*,

(ad:1|b) := (I|[a, b)) for I € dif f(T")* and any a,b € dsz(T”) is the standard coadjoint map-
ping of the Lie algebra dif f (T") on its adjoint space dif f (T")* with respect to the pairing (6).
The Lie algebra G can be metricized, as it can be endowed with the nondegenerate symmetric
product

(ﬁl X T1|ﬁz X Tz) = (T2|ﬁl) + (T1|ﬁz), (8)
where @ x I1,d x I € G are arbitrary elements. Owing to the holomorphic structure of the
Lie algebra tﬂ?f (T™), the ad-invariant product (8) makes it possible to identify the Lie algebra
G with its dual G*, that is G* ~ G. Moreover, the Lie algebra G can be naturally split [38,39,49]
with respect to the pairing (6) and the Lie bracket (7) into two subalgebras G = G+ © G,
where, by definition,

Gy = diff (T"). w diff(T")*, G- i= diff(T")_ x dif f(T")}.
The latter allows to define on the Lie algebra G a new Lie bracket
[@1, W2 g 1= [R1, 2] + [W1, Ry

for any elements @, @, € G, where R := (P4 — P_)/2 is the standard R-matrix homomor-
phism [11,14,44,54] on G and, by definition, P4 : G — G C Gare projectors. The construction
above makes it possible to apply to the Lie algebra G the classical AKS-scheme and, respec-
tively, to generate a wide class of completely integrable Hamiltonian systems as the commuting
flows on the adjoint space G* ~ G, generated by the corresponding hierarchies of the Casimir
invariants subject to the basic Lie bracket (7).

To describe this scheme in more details, we need to find the corresponding Casimir func-
tionals h € 1(G*), satisfying, by definition, the following relationship:

a0 () =0 9)
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at ( ;@) € G* ~ G, where, by definition, the gradient Vh([;d) := Vhy x Vh; € EE}?(T") X
dif f(T")* =

G satisfies the following from (9) differential-algebraic equations:
for arbitrarily chosen element 4 x I €G. The equations (10) can be rewritten [25] in details as

(Vh;,0/0x)a— (a,d/0x) Vh; =0,

(11)
(0/0x,Vhy) I+ (1,(0/9xVhy)) — (9/9x,a) Vhy — (Vh,, (d/0xa)) =0,
where we put, by definition, that
Vhj:= (Vh;,9/0x), i:= (a,d/0x),
(12)

[:=(l,dx), Vha := (Vh,,dx) .

The system of linear equation (11) for a given element 4 x [ € G, singular as A — oo, can be, in
general, resolved by means of the asymptotical expressions

Viy~ Y VEOAT, Vi~ Y VRYA, (13)
j€Z+ J€Z+
giving rise to an infinite hierarchy of gradients Vh(p)(ﬁ, l~) = APVh(a, T) e g, p € Z,, for
the corresponding Casimir functionals h(P) € I1(G*),p € Z.. Similarly, if a given element
@ x [ € G is chosen to be singular as A — 0, the system of linear equations (11) can be resolved
by means of the asymptotical expressions

iy~ Y VRN, Yk~ Y VR, (14)
j€Z+ J€Z+

also generating an infinite hierarchy of gradients Vi(P)(I,a) = A=PVh(a,I) € G, p € Z., for
the corresponding Casimir functionals 1) € I(§*),p € Z..

Let us now assume that we have already found the gradients Vi) (a,1) := APy Vh( )(a,T),
Vh®(a,1) := APvWh2) (4,1) € G, related with two Casimir invariants h(1), h(2) € I(G*) (not
necessary different) for some integers py, p; € Z, satisfying the determining equations (11).
Then, owing to the classical AKS-scheme [11, 14,48, 54], one can construct two commuting to
each other flows with respect to the evolution parameters y, t € R on the adjoint space G* ~ §

0 0
CR ) &
and 3 3
[y AUy L * (v) Y7 g 7 * Et)
ayl adv Hl + ad; (Vh ) atl ath;l,il + ada(Vha,+), (16)

where, we have denoted by (Vhl(yl X Vhéyl) = P.VhW(a,I) € G, and (VhlgtjL X Vhfltl) =
P, VK" (4,1) € G, the corresponding projections on positive degree parts of the correspond-

ing asymptotic expansions (12)—(14). The flows (15) and (16) are, by construction, Hamiltonian,
as they are a result of the expressions

—(ax])={ax T,h@/)}R,E(a xI) = {axh}g (17)



250 HENTOSH O.YE., BALINSKY A.A., PRYKARPATSKI A.K.

for a chosen elementd x [ € G* ~ G, stemming from the R-deformed Lie-Poisson [11,14,48,54]
bracket

{h, fir = (ax 1, [Vh(l,a),Vf(l,a)]r) (18)
on the adjoint space G* ~ G, defined for any smooth functionals i, f € D(G*). Their commu-
tativity condition is equivalent to two equations such as

W o1 9o ), 9 o) _
(VA V'] = = Vi) + @Wm -0, (19)
and
ad;P =0,
5 (t R Wy _ 9o | 9 oplt)
P =l (Vh{)) — a0 (Vis/) = 5pVialt + 5, Vs

for any @ x [ € G. Thus, the following important proposition holds.

Proposition 2. The Hamiltonian flows (17) generate the separately commuting evolution equa-
tions (15) and (16). The evolution equations (15) give rise to the Lax type compatibility con-
dition (19), being equivalent to some system of nonlinear heavenly type equations in partial
derivatives.

The presented above construction of Hamiltonian flows on the adjoint space G* still allows
the next important generalization. Namely, let us endow the point product gs' = H G of

zeSl!
the loop Lie algebra G with the central extension generated by a two-cocycle w, : G x § — C,

where
Wiy x I,y x ) i= /S (1, 982/32) — (12, 801 /32)

for any elements d; x I1,d x I, € G. The resulting centrally extended Lie-algebra G := G & C
is defined by the commutator

[(ﬁl X l~1; 0(1), (ﬁz X l~2,' 0(1)] = ([ﬁl,ﬂz] X (ﬂd;liz — lldzzil);wz(ﬁl X Tl,ﬁz X l~2)

for any pair of elements (d; x [1;a1), (A2 X Ip;a1) € G. The resulting R-deformed Lie-Poisson
bracket (18) for any smooth functionals , f € D(G*) on the adjoint space G* becomes equal to

{h fir = @xL[Vh({,a),Vf(L,a)r)

. . . . (20)
+wy(RVK(1,d),Vf(l,a))+w(Vh(l,d),RVf(l,a)).

The corresponding Casimir functionals h(P) € I(G*),p € Z, are defined with respect to
the standard Lie-Poisson bracket as

{n'P), f} = (aw L[VR')(T,4),Vf(@,D)]) + w2 (VAP (a,1),Vf(a,I)) =0 (21)
for all smooth functionals f € D(G*). Based on the equality (21) one easily finds that the

gradients VA(P) € § of the Casimir functionals h(?) € I(G*),p € Z., satisfy the following

equations:
d

9z

Vhl* = O, ad*Vhl_T— ad§th — thg =0

[Vhfl ﬁ] - oz
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for any chosen element 4 x [ € G*. Making use of suitably constructed Casimir functionals
h(y ), AONS| (G ), one can construct from (20) the following commuting Hamiltonian flows on
the adjoint space G* :

%(a x 1) ={ax,hW}g, i(a x 1) ={ax,h"}g, (22)

which are equivalent to the evolution equations

2= — (Vi) 2] + iwlﬁy)

9 oy (1)
oy 0z +’ ot Vhf ’ (23)

and

7 * 7 * a
[ = —adwlgy)l +ady(Vh)) + Ewg‘{j,
~+

0

7 x 7 * (1) (1)
tl = —athlgil + ad} (Vhﬁ,+) + EWLM

(24)

o &

QU

The commutativity condition for these flows is split into two equations such as

wn?, vn ) = 2on + Lont — o

Vi = g Vi gy Vi =0 (25)

and

Son) 4+ 2

()
ot a,+ ay Vhd

B % t * ()
P=ad. (V) —ad o (Vh Y~ "

I+

for any @ x [ € G. The first of them can be considered as the Lax type compatibility condi-
tion for the evolution equations (23). As a consequence of the obtained above results one can
formulate the following proposition.

Proposition 3. The Hamiltonian flows (22) on the adjoint space G* generate the separately
commuting evolution equations (23) and (24). The evolution equations (23) give rise to the
Lax type compatibility condition (25), being equivalent to some system of nonlinear heavenly
type equations in partial derivatives. Moreover, the system of evolution equations (23) can be
considered as the compatibility condition for the following set of linear vector equations

W)y — i — () p —
oY /oy + Vhi,+l/] =0, oY/0z+ayp =0, oY /ot + Vhi,_i_l[J =0
forall (y,t; A, z,x) € R? x (C x S') x T") and a function p € C>(R? x C x(S! x T");C).
The following example demonstrates the analytical applicability of the devised above Lie-

algebraic scheme for construction a wide class of nonlinear multidimensional heavenly type
integrable Hamiltonian systems on functional spaces.
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3.1 Example: the modified Mikhalev-Pavlov heavenly type system

Let a seed element @ x [ € G* be chosen in its reduced form as
ix ] = ((ux+va—A2)a/ax X (wy + {xA)dx, (26)

where u,v,w,{ € C?>(R? x S! x T!;R). The asymptotic splits for the components of the gradi-
ent of the corresponding Casimir functional i € I(G*), as |A| — oo have the following forms:

Vh; ~1— oA —u A2 — A — (uz + vy0; — 2(8;10”02))}\’4
+ vy}\*S — (—uy — vxvy + 2(8;10xxvy))}\*6 +...,

Vha = =A™ —wed ™2 = AT — (wy — §avz + 202z + (95 '0xx)2)A ™
+ ZyA T — (—wy + Gxvy — 2028y + (07 0xla)y)A O+

In the case when
Vhlgy) =AY — 0 A3 — A2 — oA — (u; + vy0, — 2(8;10xxvz)),
Vhfiy+ - _Cx)\?) — Wy A2 — (A — (wz — {x0; + 20405 — (a;lvxgx)z)'
and
Vhlgt}r =A% — 0 A5 — At — A% — (uz + vyv, — 2(8;1vxxvz)))\2
VI, = A% — weh* = A — (W — Loz + 20,0 — (35 02li)2) A
+ CyA — (—wy + Cx0y — 20xy + (aglvxgx)y)/

the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-
tion equations:

Uy + Uyy = —Uyllxz + Uzlyxy — UyUxy + V04 — UzVyUxx + UyVz0xx
— vgzcvzvxy + vgzcvyvxz — 2euyy — 28Uz + 2ep — 28y + 200, Uxx + 250, Uxx,
Uzt + Uyy = —UyUxz + Uz0xy — Uylyz + Vzlxy — 20y — 250y — 2050y Vxz + 2050, Vyxy,
—Uyy — Uzz = UxUyz — Uzlyx — UxxUxVz + UxUxz0x — UxUxx0Vz + (vaz)z + 2uyxe — 2e;, (27)

2
—Uxy — Uzz = UxzUx — UzUxx — UxxUz + UxUxz — 20xxUx0Vz + UyUxz + 20xx€,

_uxt + uyz — _uxuxy + uyuxx —‘I_ uxxvxvy - uxvxyvx —‘I_ uxvxxvy - (vay)z —‘I_ 2uxxs - 2SZ/
2
_Uxt + Uyz = _uxyvx + uyvxx + uxxvy - uxvxy + vaxvxvy - vaxy + vaxs,
where
€xx = Uxx0z, Sxx = —Uxx0Uy. (28)

Under the constraint v = 0 one obtains a set of independent scalar differential equations before
listed in [17,18,23]; two equations are spatially four-dimensional:

and
—Uxt + Uyz = —UxUyy + Uylxy, (30)
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a one is spatially three-dimensional:
_uxy _— MZZ - uxuxz — uzuxx. (31)

In particular, under the spatial variable reductions x — v € R, t — z € IR, the second equation
becomes trivial and the first (32) and third (31) equations bring about the reduced Mikhalev-
Pavlov type equation

Proposition 4. The constructed set of heavenly type equations (27), (28) has the Lax-Sato vector
tield representation (19) with the “spectral” parameter A € C, which is related with the seed
element i x [ € G* in the form (26).

Remark 1. The following remark concerning the dimensionality of the differential systems
obtained above proves to be essential. The generalized Mikhalev-Pavlov ditferential system
(29) as the one considered on the related jet-manifold ] (R*;IR?) for smooth mappings (u,v) :
R* — R? presents, in reality, a differential system with effective dimension equal 2 = 4 — 2.
This fact is important from the geometric point of view devised recently in E.V. Ferapontov and
others [19,22] works, devoted to the Pliicker manifold imbedding into the Grassmannians and
a classification of related integrable ditferential systems. There was, in particular, stated that
the corresponding integrable systems associated with fourfolds in Gr(3,5) also appeared to be
effectively two-dimensional, ensuing at the present time in some sense a challenging problem.
As it was also mentioned above concerning a generalization of spatially multidimensional
Mikhalev-Pavlov type equations by means of the seed element (33), there is a possibility to
check directly the existence of effectively three and more dimensional integrable differential
systems and then, eventually, to construct them.

We can here observe that the seed element (26) can be presented in the following special
compact form:
axl:= Z—Za/ax X dp, 7T = u+vA — A%x,p = w+ (A,
deeply connected with geometry of the related moduli space of flat connections, related to

coadjoint actions of the corresponding Casimir functionals. Its possible generalization to spa-
tially multidimensional Mikhalev-Pavlov type equations can be done by the seed element

axl:=(Vi, V) xdp (33)

for some elements 77,9 € Q°%(T") ® C,n € IN. An analysis of the case (33) and corresponding
systems of spatially multidimensional Mikhalev-Pavlov type equations is planned to be done
in a separate study.

3.2 The modified Martinez Alonso-Shabat heavenly type system

If the seed element @ x [ € G* is chosen in its reduced form as

ax = (((uy, + ctixy) + A)3/0x1 + ((vy, + cVx,) +cA)d/0x2)

(34)
X ((wx1 + waz)dxl + (€x1 + ngz)dXZ)/
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where u,v,w,{ € C?(R? x S! x T R), c € R\{0}, one has the following asymptotic splits for
the components of the gradients of the corresponding Casimir functionals 11, h(2) € 1(G*) as
|A| — oo

vh) ~ 1+ (ux, + Cuxz))\_l — U AT
! c+ (vxl + CUJCz)A_l - va_z 4 ... !
thl) ~ ( (wxl + waZ))\il - wz)\iz + e )
! (Cxl + Csz)Ail - CZA*Z + ... !
and
thz) ~ ( 1+ (uxl - Cuxz))t_l + A2 4. )
/. _ _ —1 -2 s
c+ (vx1 C’(Jx;_))L + WA+
(2) (wy, — cwy, )AL+ 0A72 4.
Vhﬁ = -1 -2 s
(gxl - CCJCZ)A + X)\ =+ ...
where
Py €y = = (Uzry — Cllzxy) + 20 (U Uiy — Uyl + Vs Uiyry — Oxylhnyxg)s (35)
Wy, + Wy, = —(Vzx, — CVzxy) + 2¢(Ux; Vxyxy — UxyVxyx; + Vg Vstyxy — Vs Uy 2z )
and
0x; + COxy = — (Way, — ClWizxy) + 20 (U Wayxy — Uy Wieyyy + 2Way Uy, 3,

- 2wxluleC2 + vx1 waJCZ - UXwale + wXQle.Xz - wXQUxZXQ + é’vaxlxl - Cxl vxl.')(z)/
Xx; T CXxy = — (gle - ngxz) + ZC(le Cxoxn — UxyCxyxy + 200, Uy xy

- 2€x1 Uxyx7 + Uy gxlxz - ux2Cx1x1 + gxz Uxixg — €x1ux1x2 + Wy Uxyxp — wxluxzxz)'

In the case when

vhW . ( A2 + (1t + iy )A — >
A2 + (vy, + o)A —0; )

vhlY) .— ( (W, + cwy)A — w, ) )
ot (gxl + ngz))\ -z

and
vplt) A2+ (thy, — Cligy)A + 3¢
I, —cA? + (g, — o)A+ w )’
i = (e ),
’ (€X1 - ngZ))L + X
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the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-
tion equations:

Uzt + 2y = — Uz 2 — Uzyy, W + Uz My + Uz,
Uzt + Wy = —Uzx) 7 — Uzxy, W + Uz Wy + VzWx,,
Uyx; + Clyx, = _(uxl + cuxz)ule - (le + Cvxz)uzxz + (ux1x1 + cuxle)uZ
+ (uxlxz + Cuxzxz)vz — Uzz,
Oyxq + COyx, = _(uxl + cuxz)vle - (le + Cvxz)vzxz + (lexl + Cvxlxz)uz

(36)
+ (vxlxz + Cvxzxz)vz — OUzz,

Uty + Cllpxy, = (Uxy + Clhxy ) 20y + (Vxy + CUxy ) 50wy — (Uiyzy + Clhyyxy ) 72
- (uxlxz + Cuxzxz)w + sz,
Utxy + CUtxy = (ux1 + Cuxz)wx1 + (UX1 + C’(sz)wxz - (lexl + Cvxlxz)%

— (Uxyx, + COxyxy )W + W
Thus, the following proposition holds.

Proposition 5. The constructed system of heavenly type equations (36) and (35) has the Lax-
Sato vector field representation (19) with the “spectral” parameter A € C, which is related with
the element i x [ € G* in the form (34).

The system of equations (36) and (35) admits the reduction when v = 1 and w = . In this
case, under ¢ = 1 one obtains

Uzt + 2ty = _(ule + uzxz)% + uz(%xl + %xz)/

(37)
Py F 2y = = (Uzxy = taxy) = 2((tho Uy ); = (U Uy )3y )-

The change u, = uy, + uy, in (37) leads to the system:

(ufxl + u?x2> - (uﬁxl - uﬁx2> = uxlxz(uxl - uxz) — Uy Uy T Unpxp Uy
- uxlxz(uazq - uyzcz) — gy Uy (g + Uy) + Unyy Uy (g + Uhxy)
— 205+ (ayxy + 263y + Uy, )0,

Px; + Px, = (uxluxz)x1 - (ux1ux2)x2'

where f = 2t and 7 = 2y. Thus, the system (37) can be considered as some modification of the
Martinez Alonso-Shabat one [3].

4 HEAVENLY TYPE SYSTEMS: THE GENERALIZED LIE-ALGEBRAIC STRUCTURES

Concerning a further generalization of the multi-dimensional case related with the loop
group 53? (T") on the torus T", n € Z., one can proceed, as before, [25] the following nat-
ural way: as the Lie algebra dif f(T") consists of the loop group elements, holomorphically
continued from the circle S! := 9ID!, being the boundary of the disk D! C C, by means of the
complex “spectral” variable A € C both into the interior D1 C C and the exterior D! C C
parts of the disk D! C C, one can take into account its analytical invariance subject to the
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circle §! := 9D! diffeomorphism group Diff(S'). The latter gives rise to the naturally ex-

tended holomorphic Lie algebra diff(T") = diff (T @ cﬂfﬁ (T™) on the Cartesian prod-
uct C x T", whose elements are representable as

A - . a . a < . a
a:=(a(x;A), =)= ao(x,)\)ﬁ + Z%aj(x,A)a—Jq
]:

for some holomorphic in A € D} vectors a(x;A) € E x E" for all x € T", and where we
denoted by % = (%, %, %, e %)Tthe generalized Euclidean vector gradient with respect
to the vector variable x := (A, x) € T".

Construct now the semi-direct sum G := dif f(T") x dif f(T")* of the loop Lie algebra
dif f(T") and its adjoint space dif f(T")*, taking into account their natural pairing

(Tla) = res (I(x)]a(x)) o

for any [ := (I(x;A),dx) = lo(x;A)dA + i li(x; A)dx; € dif f(T")* and @ € dif f(T"). The
corresponding Lie commutator on the loogiie algebra G is naturally given by the expression
a1 x [, ay x ] = [ay, a2 x ady, [ — ad; I
for any @ x [, x I € G. The Lie algebra G also splits into the direct sum of two subalgebras
g=G+0G_,
allowing to introduce on it the classical R-structure
a1 x I, 83 % D] g = [R(a1 x 1), 35 x ] + [y x I, R (a2 % )]
for any a; x I,y x I; € G, where, by definition,
R := (P, —P_)/2, and P.G:=G. CQG.

The space G* adjoint to the Lie algebra G can be functionally identified with the space G subject
to the nondegenerate symmetric product

(@ax 1|7 xm) = res (axI|Fx m)yo,
where we put, by definition, that
(@ax 17 x m) o = (m|a) go + (I|7) o (38)

for any pair of elements a x [,7 x m € G.
Owing to the convolution (38), the Lie algebra G becomes metricized. If now to take arbi-
trary smooth functions f, g € D(G*), one can naturally determine two Lie-Poisson brackets

{f.8} = (axI|[Vf(,a),Vg(La)])

and

{f.8}r = (@xI|[Vf(La), Vg a)lr), (39)
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where at any seed element @ X [ € G* ~ G the gradient element Vf(I,a) := Vf; x Vfz ~
(Vf(l,a),(9/9x,dx)T) € Gand Vf; = (Vf,9/0x), Vfz = (Vfa,dx), and, similarly, the gra-
dient element V¢(I,a) := Vg; x Vgz ~ (Vg(l,a),(d/9x,dx)T) € G* and Vg; = (Vg;,9/0x),
Vga = (Vga,dx) are calculated with respect to the metric (38).

Let now assume that a smooth function h € I(G*) is a Casimir invariant, that is

Ay 1) (@ X T) =0 (40)

for a chosen seed element  x [ € G* ~ §G. Since for an element @ X [ € G* ~ G and arbitrary
f € D(G*) the adjoint mapping

ad*vf(l—,ﬁ)(ﬁ x [) = ([Vhy,a] x (ad*wl_l_— ad;Vh),
the condition (40) can be rewritten as
[Vhy,a]l =0, ad*Vh[l_— ad;Vh; =0,

from which one easily obtains that the Casimir functional i € I(G*) satisfies the system of
determining equations

(Vh;,0/0x)a — (a,d/9x) Vh; =0,

(@/3%, Vi) 1+ (1,(3/3xVhy)) — (3/0x,a) Vhy — (a, (3/9xVh,)) = 0. “h

For the Casimir functional 1 € D(G*) the equations (41) should be solved analytically. In
the case when an element [ x 7 € G* is singular as [A\| — oo, one can consider the general
asymptotic expansion
VhP) (La) ~ AP Y (VI P A (42)
iEZ, /] a,]
for some suitably chosen p € Z., which is substituted into the equations (41). The latter is
then solved recurrently giving rise to a set of gradient expressions for the Casimir functionals
h(P) € D(G*) at the specially found integers p € Z.
Assume now that #¥), 1Y) € I(G*) are such Casimir functionals for which the Hamiltonian
vector field generators

v (I,a), = (VR ([Ta)),,  VhWO(La), := (VAP)([a)),, (43)
where VA®) (I,a), = (VA x Vi) € G; and VRO (La), = (Vi) x Vi) € G, are,

respectively, defined at some specially found integers Py, Pt € Z+. These invariants generate
owing to the Lie-Poisson bracket (39) the following commuting to each other Hamiltonian
flows:

@(ﬁ X 1) ad*w(y)(l ﬁ)+(ﬁ X 1),
Jd, _ = « _ 7
g(a X [) ath<t)(l-ﬁ)+(a x I)

of an element 7 x [ € G* ~ G with respect to the corresponding evolution parameters t,y € R.
The flows (43) can be rewritten as

da/dy = — <Vhl(”y), %> a+ <a, ;—X> vt

0 ) (44)
da/dt = — <vhl<pf), &> ot <a, &> v,
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and

2 2 2 2
a1 /dy = — <& Vhl(”y)> - <l, (&wf’?y))> + <&a> VA" + <a, (&wfﬂ))>,
al/at = — <;—X Vhl(”f)> - <z, (%w}””)> 4 <%a> Vi) 4 <a, (a—iwlg”f>>>,

where y,t € R are the corresponding evolution parameters. Since the invariants h(y), QNS
1(G*) are commuting to each other with respect to the Lie-Poisson bracket (39), the flows (44)
are commuting too. This is equivalent that the following equalities

W) w01 Lo 4 9 gy
(VL VI = gV 5 L =0, (45)
and
ad;P =0,
. . d d
—adg (VR ) - o0 (Vh)) = SV + = 5 Zonlt),

hold for any @ x [ € G. On the other hand, the equation (45) is equivalent to the compatibility
condition of three linear equations

oY W), _ _ P
s +Vhlp=0,  (a,0/0x)9 =0, = T Vh = (46)

for a function ¥ € C2(R? x C x T";C), ally,t € R and any x € T". The obtained above results
can be formulated as the following proposition.

Proposition 6. Let a seed element a x [ € G* and h'¥),h(") € [(G*) are some Casimir func-
tionals subject to the product (-|-) on the holomorphic Lie algebra G and the natural coadjoint
action on the co-algebra G* ~ G. Then the following dynamical systems

= 7 * = T d T * _ 7
—(axl)= —adw<y)(l-ﬁ)+(a x 1), at( X)) = ath<t)(l-,a)+(a x [)

are commuting to each other Hamiltonian flows for evolution parameters y,t € R. Moreover,
the compatibility condition of these flows leads to the vector field representation (46).

Remark 2. As it was mentioned above, the expansion (42) is effective if a chosen seed element
ax I € G* is singular as || — oo. In the case when it is singular as |A| — 0, the expression
(42) should be respectively replaced by the expansion

VHP La) ~ A7 Y Vi (T a)N
JEZ+
for suitably chosen integers p € Z,, and the reduced Casimir function gradients then are
given by the Hamiltonian vector field generators

VW (L a)_ = AA PP a)) ., vEO(@a)_ = AA PRI (T a))

for suitably chosen positive integers py, p; € Z and the corresponding Hamiltonian tlows
are, respectively, written as

9 - . - J ,_ -
at( x 1) =ad, (l)(axl), —(axl)=ad’

for evolution parameters y,t € R.

onn () (@ % I)
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As in Section 3 the presented above construction of Hamiltonian flows on the adjoint space

G* can be generalized proceeding to the point product G5' := [ ] G of the holomorphic Lie
zeS!
algebra G endowed with the central extension, generated by a two-cocycle w, : G x G — C,

where

wa(@y x I, 8y X Ip) = /51[(1_1,352/32)1 — (I, 9a1/9z)1]

for any pair of elements 4y X I, X [ € G. The resulting R-deformed Lie-Poisson bracket (18)
for any smooth functionals i, f € D(G*) on the adjoint space G* to the centrally extended loop
Lie algebra G := G @ C becomes equal to

{h, fir = (axL[Vh(l,a),Vf(a)lr) (47)
+ wo(RVK(I,a),Vf(I,a)) 4+ wa(Vh(l,a), RVf(I,a)).

The corresponding Casimir functionals h(P) € I(G*) for specially chosen p € Z, are defined
with respect to the standard Lie-Poisson bracket as

(P, 1y = (aw I, [V (I,a),Vf(I,a)]) + w2 (VAP (T,a),Vf(I,a)) =0

for all smooth functionals f € D(G*). Based on the equality (21) one easily finds that the
gradients Vi(P) € G of the Casimir functionals h(?) € I1(G*),p € Z., satisfy the following

equations:
9 T 0
(Vh;, a] — $Vhl- =0, adwl_l —ad;Vh; — $th =0
for a chosen element 7 x I € G*. Making use of the suitable Casimir functionals 1), h(t) ¢
I(G*), one can construct, making use of (47), the following commuting Hamiltonian flows on
the adjoint space G* :

0

@(a xI) = {ax [ h¥}g, %(ﬁ xI) = {ax [ h}g, (48)
which are equivalent to the evolution equations
9, _ O 24 Svn® 2 ron® a4 Lgp®
—ya = —[Vhl-,+,a] + EVhZ}L’ 5= —[Vhl-,Jr,a] + EVhl_,Jr (49)
and
O —ad T+ adi(Vh?) + Lyp
gy et T ) T g Ve 0
Of — ad* T+ad:(Vh)+ Lyn Y
FYi —a Vhl(/fl adg a4 oz Mt
The commutativity condition for these flows is split into two equations
W) 01— Lo L gyt
[Vhl',+’Vhl',+] - §Vhl',+ + @th =0, (51)
and
oP -
E —+ ﬂdﬁp = 0,
b — ad* (1)) _ ag* IR A R VD
P = ﬂthlg/yl(Vhﬁ/+) ath;lfi(Vhﬁ’Jr) at Vhﬁ,+ + ay Vhﬁ,+

for any @ x I € G. The obtained above results one can be formulated as the following proposi-
tion.
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Proposition 7. The Hamiltonian flows (48) on the adjoint space G* generate the separately
commuting evolution equations (49) and (50). The evolution equations (49) give rise to the
Lax type compatibility condition (51), being equivalent to some system of nonlinear heavenly
type equations in partial derivatives. Moreover, the system of evolution equations (49) can be
considered as the compatibility condition for the following set of linear vector equations

op Wy _o Y _o, W () 4 =
5 +VIp =0, ="+ 0,0/ =0, =+ Vi p=0

for all (y,t,z;x) € (R? x S!) x T" and a function ¢ € C?((R? x CxS!) x T"; C).

4.1 Example: the generalized Mikhalev-Pavlov heavenly type system

Let a seed element @ x [ € G* be chosen as
ax T = ((1tx — A)3/dx +0xd/N) X (wydx + 1xdA), (52)

where u,v,w,7 € C?(R? x (S' x T!);R). The asymptotic splits for the components of the
gradients of the corresponding Casimir functionals #(P) € 1(G*), p € Z, as |A\| — oo have the
following forms:

Vhy = AP ( T—u A 4 (—uz + (p— 1)0)A2 + (uy + (p — 2) (—uxv + 50)) A3 + .. ),

—0x A =0 A2 4 (vy — (p — 2)vx0)A 3 4L

Vha ~ AP ( —WxA™h = w A2 A+ (wy — (p = 2)(wo))A 7+ )

1A = (112 + (p = Dw)A2 + (1y — (p — 2) (—ux0 + v1jx + W))A? ..
where p € Z and

My = Uz + UxUy, Wy = Wz — UyWx — Oxl]x. (53)
In the case when

opw A% —uyA + (—uz +0)
l’+ ' _va - vz !

() ._ —WyA — W,
Vha s = < — 1A — (72 + w) )

and

up . A% — uxA? + (—uz 4+ 20)A + (uy — uyv + 3)
' —0 A2 — A+ (vy — vx0) !

Ho._ ( —wxA? — wA + (wy — (wo)y) >
2 —11xA% — (2 + 20)A + (y + uxw — vy —w) )’

DN~

Vh
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the compatibility condition of the Hamiltonian vector flows (48) leads to the system of
evolution equations:

uzt + uyy - _uyuzx + uzuxy - uxyv - uzzv - %uxz,
) 2 2
vzt + Uyy —_— UUx - UZ - Uny - UUZZ - uyvxz + uzvxy - uzvx - %sz,

—Uxy — Uzz = UxUyz — Uzlyxy + UxxT,

» (54)
—Uxy — Uzz = Uy + UxxU + UxUxz — UzUxy,
—Uxt + Uyz = —UxUyy + Uylyx + Uxz0 + Uxx X,
_Uxt —‘I_ Uyz — _uxvxy + uyvxx + Mx'(')i —‘I_ sz'(') + %vxx + 2vxvz.

Under the constraint v = 0 one obtains the set of equations (29)—(31). Thus, the following
proposition holds.

Proposition 8. The constructed system of heavenly type equations (54) and (53) has the Lax-
Sato vector field representation (51) with the “spectral” parameter A € C, which is related with
elementa x [ € G* in the form (52).
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BuBuaroThCs IEHTPAaAbHO po3lmpeHi Ai-aarebpaiuHi CTpyKTypH Ta aolilioBaHi iHTerpoBHi piB-
HSTHHSI HeOeCHOTO TMITY SIK ITOTOKIB Ha OpbiTax KoIpreAHaHOI Aiil miBIpsIMOi cyMM aATe6py BeKTOp-
HMX TIOAIB Ha TOpi Ta ii crpsikeHoro npocropy. IloxasaHo, IIo I MOTOKM MOPOAXYIOTh CyMicHi Be-
KTOpHi moAst Tmiry Aaxca-Cato, 3 sSIKMMM TiCHO ITOB’sI3aHa HeCKiHJYeHHa iepapxisi 3aKoHiB 36epexe-
HHsI, IOPOAKEeHMX BiamoBiaHMMY iHBapianTamy Kasimipa. HaBoaeHO THIIOBI IpMKAaAM TakMX piB-
HSIHD i AeTaAbHO ITPOAEMOHCTPOBaHa iX IHTErpOBHICTh B MeXax 3alpONOHOBOHOI cxeMu. Sk mpw-
KAAAM MM OTPVIMaAM Ta OIMCAAM HOBi 6araTOBMMIipHi iHTerpOBHi y3araabHeHHs 6e3AVCIIepCilfHix
piBHSHb MuxaaboBa-ITaBaoBa Ta AroHco-Illabarta, AAsT KOTPUX TeHEpaTOPHI eAeMEHTH MalOTh OCO-
6AMBY paKTOPM30BaHy CTPYKTYPY, IO AO3BOASIE TTOIIMPUTH IX Ha BUIIAAOK AOBIABHOTO BUMIpY.

Kntouosi cnoea i ppasu: piBHSHHS HebeCHOTO THITY, iHTeTPOBHICTD 3a AakCOM, AMHaMiUHa cucTeMa
I'aminbTOHA, AMdeoMopdizmu Topa, arrebpa Ai IleTeAb, IeHTpaAbHe po3IperHs, Ai-aarebpaiura
cxeMa, imBapianTu Kasimipa, crpyxrypa Ai-Ilyaccona, R-cTpyxTypa, piBHsiHHA MixaaboBa-l1aBaoBa.



