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CERTAIN RESULTS FOR A CLASS OF NONLINEAR FUNCTIONAL SPACES

In this article, we study properties of a class of functional spaces, so-called pn-spaces, which

arise from investigation of nonlinear differential equations. We establish some integral inequalities

to analyse the structures of the pn-spaces with the constant and variable exponent. We prove embed-

ding theorems, which indicate the relation of these spaces with the well known classical Lebesgue

and Sobolev spaces with the constant and variable exponents.
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INTRODUCTION

This paper is concerned with some features of a class of functional spacesб which are emer-

ged from investigation of nonlinear differential equations. Studying boundary value problems

(BVPs) require to examine and understand the functional spacesб which are directly related

with the considered problem. In other words, it is required to work on the domain of the

operator generated by the addressed boundary value problem. We specify that it is better

to study each BVPs on its own space. Furthermore, detailed analysis of these spaces and

examining their topology, structure etc. cause to gain better results of the possed problem (for

example, regularity of the solution).

The spaces generated by boundary value problems for the linear differential equations are

generally linear spaces such as Sobolev spaces and different generalizations of them. Apart

from boundary value problems for linear differential equations, the spaces generated by non-

linear differential equations (essentially the domain of the corresponding operator) are subsets

of linear spaces and do not have linear structure. The class of spaces of this type were intro-

duced and investigated by Soltanov in the abstract case (see, e.g. [21–26]), and also in the case

of functions spaces (see, e.g. [23–30] and references therein, where various subsets of linear

spaces of this type were searched). In the mentioned articles, topology of these spaces were in-

vestigated and shown that under what circumstances they are metric or pseudo-metric spaces.

Starting from these features of the introduced spaces, they were defined as the class of pseudo-

normed spaces or pn-spaces and the class of quasi-pseudo normed spaces or qn-spaces.

In this work, we focus on the characteristics of certain class of functional pn-spaces. Essen-

tially, we deal with the following class of functional pn-spaces.
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Let Ω ⊂ R
n (n ≥ 1) be bounded domain with sufficiently smooth boundary. In this work

the class of functions u : Ω −→ R of the following type will be investigated

Sm,α,β (Ω) :=
{

u ∈ L1 (Ω) : [u]
α+β
Sm,α,β(Ω)

< ∞
}

,

where

[u]
α+β
Sm,α,β(Ω)

:= ∑
0≤|k|≤m





∫

Ω

|u|α
∣

∣

∣
Dku

∣

∣

∣

β
dx



 , D = (D1, D2, . . . , Dn) ,

Di =
∂

∂xi
, Dk ≡ Dk1

1 Dk2
2 , . . . , Dkn

n , i = 1, n, |k| =
n

∑
i=1

ki. Here, we only address the cases m = 1, 2.

It is important to note that the following subset of Lp (Ω), p ≥ 2,

M :=







u ∈ L1 (Ω) :
n

∑
i=1





∫

Ω

|u|p−2 |Diu|2 dx



 < ∞, u | ∂Ω = 0







was arose in the article of Dubinskii earlier ( [7, 8, 11]) while studying the following nonlinear

problem
∂u

∂t
−

n

∑
i=1

Di

(

|u|p−2 Diu
)

= h(x, t), (t, x) ∈ (0, T)×Ω,

u (0, x) = u0 (x) , u
∣

∣

∣(0,T]×∂Ω = 0 .

Here, compact inclusion of subset M to the space Lp (Ω) and also necessary compactness the-

orems for analysis of the parabolic problem were proved. Later on, different new subsets of

L1 (Ω) appeared in the articles of Soltanov (see, e.g. [23–25]) while studying the mixed prob-

lem for the following nonlinear equation, which is type of the Prandtl-von-Mises equation

∂u

∂t
− |u|ρ ∂2u

∂x2
= h (t, x) , ρ > 0, (t, x) ∈ (0, T)×Ω. (1)

For example, one of the emerged class in the case of Ω = (a, b) ⊂ R can be expressed in the

form






u ∈ L1 (Ω) :
∫

Ω

|u|α
∣

∣

∣
D2u

∣

∣

∣

β
dx < ∞, u (a) = u (b) = 0







,

and also as type of subsets in the form Sm,α,β (Ω). Here, we specify that different problems to

the equation (1) were studied under various additional conditions as well (see, e.g. [12, 14, 18,

35–37]).

Accordingly, in the papers [24, 25] etc. different classes of sets of this type were examined

and it was shown that these sets are nonlinear topological spaces, moreover they are either

metric or pseudo-metric spaces. Many other properties of the introduced spaces were investi-

gated as well in these works. For instance, relations of these spaces amongst themselves and

with well known functional spaces (e.g. Lebesgue or Sobolev spaces etc).

Consequently, in the mentioned works pn-spaces and qn-spaces were defined with taking

into account the principal attributes of the presented spaces.

These spaces may arise from the research of the existence of smooth solution of the follow-

ing differential equation

−∆u + u + |u|p u = h (x) , x ∈ Ω ⊂ R
n, n ≥ 2,
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(

∂u

∂η
+ |u|µ u

)

∣

∣

∣

∂Ω
= ψ

(

x′
)

, x′ ∈ ∂Ω, p, µ ≥ 0,

which was studied by Soltanov [32]. We emphasize that equation of this form was considered

by many authors, who tried to answer various questions of different problems for this equa-

tion, (see, e.g. Berestycki ve Nirenberg [3], Brezis [4], etc.). In [15], Pohozaev employed another

approach for this problem that led to gaining distinct results other than [32].

This kind of nonlinear spaces are generated by the differential equations, which ensue from

the mathematical models of some processes in flood mechanics. For example, we may present

the nonlinear equation of type

∂u

∂t
− |u|p−2

∆u = h (x, t) , p ≥ 2,

where this equation were studied [24,31] and [33]. Similar equations were handled by Oleynik

[14], Walter [36] only using the approximation way and Tsutsumi, Ishiwata [35] focused on

understanding the behavior of the solution.

In recent years, there have been an increasing interest in the study of equations with vari-

able exponents of nonlinearities. The interest in the study of differential equations that in-

volves variable exponents is motivated by their applications to the theory of elasticity and

hydrodynamics, in particular, the models of electrorheological fluids [17] in which a substan-

tial part of viscous energy, the thermistor problem [38], image processing [5] and modeling of

non-Newtonian fluids with thermo-convective effects [2] etc.

In the most of these papers, that concern with equations, which have non standard growth,

authors studied the problems, which involve p(.)-Laplacian type equation or equations, which

fulfill monotonicity conditions, where enable to apply monotonicity methods. Unlike these

works, in the articles [19, 20] investigating some properties of nonlinear spaces with variable

exponent, we developed an approach based on the spaces corresponding to problem under

consideration. It is necessary to note, that the questions mentioned above may arise for the

problems, which have variable exponent nonlinearity. Eventually, here we also study vari-

able exponent nonlinear spaces that are essential for the investigation of the following type of

equations

∇ ·
[(

|∇u|p0(x)−2 + |u|p1(x)−2
)

∇u
]

= h (x, u) .

Since we want to establish the regularity of solution of the nonlinear differential equations

related with mentioned pn-spaces, thus our aim is to understand the structure and nature of

these spaces better, that allows to investigate the characteristics of solutions. For this reason,

in this article we prove some embedding results, which indicate the relation of these spaces

between Sobolev and Lebesgue spaces. We show that these spaces are not merely subsets of

Lebesgue spaces also subsets of Sobolev spaces.

This paper is organized as follows. In the next section, we give the definitions of certain

type of pn-spaces with variable and constant exponents ( [20, 33] and for general definition

see [34]) as well as recall some basic results for these spaces and variable exponent spaces. In

Section 2, we prove embedding theorems for constant exponent pn-spaces and give certain

results with examples in one dimensional case. In Section 3 firstly, we establish some inte-

gral inequalities with variable exponents, which are required to prove embedding theorems

of variable exponent nonlinear spaces then investigate some attributes of variable exponent

pn-spaces.
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1 PRELIMINARIES

In this section in the beginning we will give the general definition of spaces that are studied

here in the functional case. Let X, Y be locally convex vector topological spaces, B ⊆ Y be a

Banach space and g : D (g) ⊆ X −→ Y. Let’s introduce the following subset of X

MgB ≡ {x ∈ X : g (x) ∈ B, Im g ∩ B 6= ∅} .

Definition 1. A subsetM ⊆ X is called a pn-space (i.e. pseudonormed space) if S is a topo-

logical space and there is a function [·]M :M−→ R
1
+ ≡ [0, ∞) (which is called p-norm ofM)

such that

qn) [x]M ≥ 0, ∀x ∈ M and x = 0 =⇒ [x]M = 0;

pn) [x1]M 6= [x2]M =⇒ x1 6= x2 for x1, x2 ∈ M, and [x]M = 0 =⇒ x = 0.

The following conditions are often fulfilled in the spacesMgB.

N1) There exist a convex function ν : R
1 −→ R

1
+ and number K ∈ (0, ∞] such that [λx]M ≤

ν (λ) [x]M for any x ∈ M and λ ∈ R
1, |λ| < K, moreover, lim

|λ|−→λj

ν(λ)
|λ| = cj, j = 0, 1,

where λ0 = 0, λ1 = K and c0 = c1 = 1 or c0 = 0, c1 = ∞, i.e. if K = ∞ then λx ∈ M for

any x ∈ M and λ ∈ R
1.

Let g : D (g) ⊆ X −→ Y be such a mapping thatMgB 6= ∅ and the following conditions are

fulfilled

G1) g : D (g) ←→ Im g is a bijection and g (0) = 0;

G2) there is a function ν : R
1 −→ R

1
+ satsfying the condition N1 such that

‖g (λx)‖B ≤ ν (λ) ‖g (x)‖B , ∀x ∈ MgB, ∀λ ∈ R1.

If the mapping g satisfies the conditions G1 and G2 then MgB is a pn-space with p-norm

defined in the following way: there is a one-to-one function ψ : R
1
+ −→ R

1
+, ψ (0) = 0,

ψ, ψ−1 ∈ C0 such that [x]MgB
≡ ψ−1 (‖g (x)‖B). In this case MgB is a metric space with a

metric: dM (x1; x2) ≡ ‖g (x1)− g (x2)‖B. Further, we consider just such type of pn-spaces.

Definition 2. The pn-space MgB is called weakly complete if g
(

MgB

)

is weakly closed in

B. The pn-space MgB is “reflexive” if each bounded weakly closed subset ofMgB is weakly

compact inMgB.

It is clear that if B is a reflexive Banach space andMgB is a weakly complete pn-space, then

MgB is “reflexive”. Moreover, if B is a separable Banach space, then MgB is separable, also.

For complementary properties see, e.g. [23, 33, 34].

We now remind certain integral inequalities and facts about the functional pn-spaces with

constant exponent that are concerned in this paper (for general case see [21–25] and for func-

tional case [21, 25, 27] etc).

Let Ω ⊂ R
n (n ≥ 1) be a bounded domain with Lipschitz boundary ∂Ω. Throughout the

paper, we denote by |Ω| the Lebesgue measure of Ω.
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Lemma 1. Let α ≥ 0, β ≥ 1, |Ω| < ∞ and i = 1, n, then for all u ∈ C(Ω̄)∩C1(Ω) the inequality
∫

Ω

|u|α+β dx ≤ C1

∫

Ω

|u|α |Diu|β dx + C2

∫

∂Ω

|u|α+β dx′

is satisfied. Here, C1 = C1 (α, β, |Ω|) , C2 = C2 (|Ω|) > 0 are constants.

Lemma 2. Assume that α, α1 ≥ 0, β ≥ 1 and β > β1 > 0, α1
β1
≥ α

β , α1 + β1 ≤ α + β be satisfied.

Then for u ∈ C(Ω̄) ∩ C1(Ω)
∫

Ω

|u|α1 |Diu|β1 dx ≤ C3

∫

Ω

|u|α |Diu|β dx + C4

∫

∂Ω

|u|α+β dx′ + C5

holds. Here, for r = 3, 4, 5, Cr = Cr (α, β, α1, β1, |Ω|) > 0 are constants.

Lemma 3. Let α ≥ 0, β0 + β1 ≥ 2 and β1 ≥ β0 ≥ 0 be fulfilled. Then for all u ∈ C1 (Ω̄)∩C2 (Ω)
∫

Ω

|u|α |Diu|β0+β1 dx ≤ C6

∫

Ω

|u|α+β0

∣

∣

∣
D2

i u
∣

∣

∣

β1
dx

+ C7

∫

∂Ω

(|u|α+β0+β1 + |u|α+1 |Diu|β0+β1−1)dx′

holds. Here, for j = 6, 7, Cj = Cj (α, β, β0) > 0 are constants.

Definition 3. Let α ≥ 0, β ≥ 1, k = (k1, . . . , kn) be multi-index and |k| =
n

∑
i=1

ki, m ∈ Z
+,

Ω ⊂ R
n (n ≥ 1) is bounded domain with sufficiently smooth boundary (at least Lipschitz

boundary)

Sm,α,β (Ω) :=







u ∈ L1 (Ω) : [u]
α+β
Sm,α,β(Ω)

≡ ∑
0≤|k|≤m





∫

Ω

|u|α
∣

∣

∣
Dku

∣

∣

∣

β
dx



 < ∞







and

S̊m,α,β (Ω) := Sm,α,β (Ω) ∩
{

Dku | ∂Ω ≡ 0, 0 ≤ |k| ≤ m0 < m
}

.

We state a proposition which can be easily proved by the help of Lemmas 1–3 and Defini-

tion 3.

Proposition 1. Assume that α ≥ 0, β ≥ 1, then we have the following equivalence

S̊1,α,β (Ω) :=







u ∈ L1 (Ω) : [u]
α+β

S1,α,β(Ω)
≡

n

∑
i=1





∫

Ω

|u|α |Diu|β dx



 < ∞







and 1

S̊2,α,β (Ω) :=







u ∈ L1 (Ω) : [u]
α+β
S2,α,β(Ω)

≡
n

∑
i=1





∫

Ω

|u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx



 < ∞







.

1 S1,α,β (Ω) is a complete metric space with the following metric

dS1,α,β
(u, v) =

∥

∥

∥|u|
α
β u− |v|

α
β v
∥

∥

∥

W1,β(Ω)
, ∀u, v ∈ S1,α,β (Ω) .
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Theorem 1. Let α ≥ 0, β ≥ 1, then g : R −→ R, g(t) := |t|
α
β t is an one to one correspondence

from S1,α,β(Ω) onto W1,β(Ω).

Now, we recall some basic definitions and results about variable exponent Lebesgue and

Sobolev spaces [1, 6, 9, 10, 13].

Let Ω be a Lebesgue measurable subset of R
n such that |Ω| > 0. The function set M (Ω)

denotes the family of all measurable functions p : Ω −→ [1, ∞] and the set M0 (Ω) is defined

by

M0 (Ω) :=
{

p ∈ M (Ω) : 1 ≤ p− ≤ p (x) ≤ p+ < ∞, a.e. x ∈ Ω
}

,

where p− := ess
Ω

inf |p (x)| , p+ := ess
Ω

sup |p (x)|.
For p ∈ M (Ω) , Ω

p
∞ ≡ Ω∞ ≡ {x ∈ Ω| p (x) = ∞}. On the set of all functions on Ω, define

the functional σp and ‖.‖p by

σp (u) ≡
∫

Ω\Ω∞

|u|p(x) dx + ess
Ω∞

sup |u (x)|

and

‖u‖Lp(x)(Ω) ≡ inf
{

λ > 0 : σp

(u

λ

)

≤ 1
}

.

If p ∈ L∞ (Ω), then p ∈ M0 (Ω), σp (u) ≡
∫

Ω

|u|p(x) dx and the variable exponent Lebesgue

space is defined as follows

Lp(x) (Ω) :=
{

u : u is a measurable real-valued function such that σp (u) < ∞
}

.

If p− > 1, then the space Lp(x) (Ω) becomes a reflexive and separable Banach space with the

norm ‖.‖Lp(x)(Ω), which is so-called Luxemburg norm.

If 0 < |Ω| < ∞, and p1, p2 ∈ M (Ω), then the continuous embedding Lp1(x) (Ω) ⊂
Lp2(x) (Ω) exists ⇐⇒ p2 (x) ≤ p1 (x) for a.e. x ∈ Ω.

For u ∈ Lp(x) (Ω) and v ∈ Lq(x) (Ω), where p, q ∈ M0 (Ω) and 1
p(x)

+ 1
q(x)

= 1, the following

inequalities be satisfied

∫

Ω

|uv| dx ≤ 2 ‖u‖Lp(x)(Ω) ‖v‖Lq(x)(Ω),

and

min
{

‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}

≤ σp (u) ≤ max
{

‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}

.

Lemma 4. Let u, uk ∈ Lp(x) (Ω) , k = 1, 2, . . . . Then the following statements are equivalent to

each other:

1. lim
k→∞
‖uk − u‖Lp(x)(Ω) = 0;

2. lim
k→∞

σp (uk − u) = 0;

3. uk converges to u in Ω in measure and lim
k→∞

σp (uk) = σp (u) .
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Let Ω ⊂ R
n be a bounded domain and p ∈ L∞ (Ω), then variable exponent Sobolev space

is defined by

W1, p(x) (Ω) :=
{

u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)
}

and this space is a separable Banach space with the norm

‖u‖W1, p(x)(Ω) ≡ ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) .

In the following discussion, we give the definition of generalized nonlinear spaces (func-

tional pn-spaces with variable exponent) and features of them that indicate their relation

with known spaces. These classes are nonlinear spaces, which are generalization of nonlin-

ear spaces with constant exponent studied in [24] (see also references therein). We also specify

that some of the results and its proofs can be found in [19, 20].

Definition 4. Let Ω ⊂ R
n (n ≥ 2) be a bounded domain with Lipschitz boundary and γ, β

∈ M0 (Ω) . We introduce S1,γ(x),β(x) (Ω) , the class of functions u : Ω → R, and the functional

[ · ]Sγ,β
: S1,γ(x),β(x) (Ω) −→ R+ as follows

S1,γ(x),β(x) (Ω) :=







u ∈ L1 (Ω) :
∫

Ω

|u|γ(x)+β(x) dx +
n

∑
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx < ∞







,

[u]Sγ,β
:= inf











λ > 0 :
∫

Ω

∣

∣

∣

u

λ

∣

∣

∣

γ(x)+β(x)
dx +

n

∑
i=1







∫

Ω

∣

∣

∣

∣

∣

∣

|u|
γ(x)
β(x) Diu

λ
γ(x)
β(x)

+1

∣

∣

∣

∣

∣

∣

β(x)





dx ≤ 1











.

[ · ]Sγ,β
defines a pseudo-norm on S1,γ(x),β(x) (Ω) , actually it can be readily verified that

[ · ]Sγ,β
fulfills all axioms of pseudo-norm (see [33, 34]), i.e. [u]Sγ,β

≥ 0, u = 0 ⇒ [u]Sγ,β
= 0,

[u]Sγ,β
6= [v]Sγ,β

⇒ u 6= v and [u]Sγ,β
= 0⇒ u = 0.

Let S1,γ(x),β(x) (Ω) be the space given in the Definition 4 and θ (x) ∈ M0 (Ω), we denote

S1,γ(x),β(x),θ(x) (Ω) , the class of functions u : Ω→ R, by the following intersection

S1,γ(x),β(x),θ(x) (Ω) := S1,γ(x),β(x) (Ω) ∩ Lθ(x) (Ω)

with the pseudo-norm

[u]Sγ,β,θ
:= [u]Sγ,β

+ ‖u‖Lθ(x)(Ω) , ∀u ∈ S1,γ(x),β(x),θ(x) (Ω) .

Proposition 2. If γ, β, θ ∈ M0 (Ω) and θ (x) ≥ γ (x) + β (x) + ε0 a.e. x ∈ Ω for some ε0 > 0,

then we have the following equivalence

S1,γ(x),β(x),θ(x) (Ω) ≡
{

u ∈ L1 (Ω) : Rγ,β,θ (u) < ∞
}

,

where Rγ,β,θ (u) :=
∫

Ω

|u|θ(x) dx + ∑
n
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx, and the pseudo-norm on this

space is

[u]Sγ,β,θ
≡ inf











λ > 0 :
∫

Ω

∣

∣

∣

u

λ

∣

∣

∣

θ(x)
dx +

n

∑
i=1







∫

Ω

∣

∣

∣

∣

∣

∣

|u|
γ(x)
β(x) Diu

λ
γ(x)
β(x)

+1

∣

∣

∣

∣

∣

∣

β(x)





dx ≤ 1











.
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Lemma 5. Assume that conditions of Proposition 2 are fulfilled. Let u ∈ S1,γ(x),β(x),θ(x) (Ω)

and λu := [u]Sγ,β,θ
, then the following inequality

max
{

λ
γ−+β−
u , λθ+

u

}

≥ Rγ,β,θ (u) ≥ min
{

λ
γ−+β−
u , λθ+

u

}

holds.

Theorem 2. Suppose that conditions of Proposition 2 are satisfied and let p ∈ M0 (Ω) , p (x) ≥
θ (x) a.e. x ∈ Ω. Then, the embedding

W1, p(x) (Ω) ⊂ S1,γ(x),β(x),θ(x) (Ω)

holds.

Definition 5. Let η ∈ M0 (Ω) , we introduce L1, η(x) (Ω) the class2 of functions u : Ω→ R

L1, η(x) (Ω) ≡
{

u ∈ L1 (Ω) : Diu ∈ Lη(x) (Ω) , i = 1, n
}

.

Theorem 3. Let γ, β ∈ M0 (Ω) ∩ C1 (Ω̄) and L1, β(x) (Ω) be the space given in Definition 5.

Then the function ϕ : Ω × R −→ R, ϕ (x, t) := |t|
γ(x)
β(x) t is a bijective mapping between

S1,γ(x),β(x),θ(x) (Ω) and L1, β(x) (Ω) ∩ Lψ(x) (Ω), where ψ (x) := θ(x)β(x)
γ(x)+β(x)

.

Theorem 4. Suppose that conditions of Theorem 3 are satisfied. Let p ∈ M0 (Ω) , additionally

1 ≤ β− ≤ β (x) < n, x ∈ Ω holds and for ε > 0, the inequality

p (x) + ε <
n(γ(x)+β(x))

n−β(x)
, x ∈ Ω,

is satisfied. Then the following compact embedding

S1,γ(x),β(x),θ(x) (Ω) →֒ Lp(x) (Ω)

exists.

2 SOME RELATIONS BETWEEN CONSTANT EXPONENT PN-SPACES AND SOBOLEV SPACES

In this section, we give some embedding results for constant exponent pn-spaces with

proofs.

Theorem 5. Let α ≥ 0, β ≥ 1. Then for all p satisfying the following conditions

(i) if β = n, then p > β,

(ii) if β > n, then p ≥ β,

(iii) if β < n, then p ≥ n(α+β)
α+n ,

the embedding

W
1,p
0 (Ω) ⊂ S̊1,α,β(Ω) (2)

holds.

2 This space is not Banach one unlike to the space W1, η(x) (Ω) [6].
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Proof. The cases (i) and (ii) are evident as by virtue of the Sobolev imbedding theorems occurs

the inclusion

W
1,p
0 (Ω) ⊂ C(Ω̄).

For the last case (iii), if β < n and p > n, then the proof is same with the proofs of the cases

(i) and (ii).

On the other side, let β < n and p ∈
[

n(α+β)
α+n , n

)

, by Sobolev imbedding theorems we have

W
1,p
0 (Ω) ⊂ Lq̃(Ω) (3)

for all q̃ ∈
[

1,
np

n−p

]

. Hence, for u ∈ W
1,p
0 (Ω) we have the following estimate by Young’s in-

equality
∫

Ω

|u|α |Diu|β dx ≤
(

p− β

p

)

∫

Ω

|u|
αp

p−β dx +

(

p

β

)

∫

Ω

|Diu|p dx. (4)

We deduce from the equation
αp

p−β −
np

n−p = p[n(α+β)−p(α+n)]
(p−β)(n−p)

and p ∈
[

n(α+β)
α+n , n

)

that

αp

p− β
≤ np

n− p
.

Thus, by (3) and (4) we arrive at

[u]
α+β

S̊1,α,β
=
∫

Ω

|u|α |Diu|β dx ≤ C̃ ‖u‖
αp

p−β

W
1,p
0 (Ω)

+ C̃1 ‖u‖p

W
1,p
0 (Ω)

,

which implies [u]
α+β

S̊1,α,β
≤ C̃2 ‖u‖p

W
1,p
0 (Ω)

+ C3.

To complete the proof if p = n > β, by employing the embedding W
1,p
0 (Ω) ⊂ Lr(Ω),

1 ≤ r < ∞, one can obtain the desired result by the help of above approach.

Remark 1. Under the conditions of Theorem 5, if p ≥ α + β is satisfied, then we have the

imbedding (2) independently from dimension of Ω.

Actually for u ∈W
1,p
0 (Ω), we deduce from Lemma 2 that

∫

Ω

|u|α |Diu|β dx ≤ C
∫

Ω

|Diu|p dx + C1,

which yields [u]
α+β

S̊1,α,β
≤ C ‖u‖p

W
1,p
0 (Ω)

+ C1.

Theorem 6. Suppose that β > α ≥ 0, β ≥ 2. Then for all p satisfying the following conditions

(i) if α + β = n, then 1 ≤ p < 2β,

(ii) if α + β > n, then 1 ≤ p ≤ 2β,

(iii) if α + β < n, then 1 ≤ p ≤ 2nβ(α+β)
2nβ−(α+β)(β−α)

,

the embedding

S̊2,α,β (Ω) ⊂W
1,p
0 (Ω) (5)

holds.
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Proof. Considering these conditions, by Lemma 3 when 1 ≤ p ≤ α + β following inequality

∫

Ω

|Diu|p dx ≤ C
∫

Ω

|u|α
∣

∣

∣
D2

i u
∣

∣

∣

β
dx + C1

holds independently of the dimension n, that yields the imbedding (5). So, if 1 ≤ p ≤ 2, then

1 ≤ p ≤ α + β, which concludes the proof.

First, we prove (5) in line with conditions of (i). Let α + β = n and p > 2 (from now on we

assume p > 2).

For u ∈ S̊2,α,β (Ω) , by Lemma 3 we have the following estimate

∫

Ω

|Diu|α+β dx ≤ C
∫

Ω

|u|α
∣

∣

∣
D2

i u
∣

∣

∣

β
dx. (6)

On the other hand, from Sobolev imbedding theorems

W
1,α+β
0 (Ω) ⊂ Lq (Ω) ∀q, q ∈ [1, ∞) . (7)

Hence, from (6) and (7) for all q satisfying 1 ≤ q < ∞ we get

‖u‖q ≤ C̃

(

n

∑
i=1

‖Diu‖α+β
α+β

) 1
α+β

≤ C̃0





n

∑
i=1





∫

Ω

|u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx









1
α+β

= C̃0 [u]S̊2,α,β
. (8)

Therefore, for all u ∈ S̊2,α,β (Ω) and i = 1, n

∫

Ω

|Diu|p dx =
∫

Ω

(

Diu |Diu|p−2
)

Diudx = (p− 1)
∫

Ω

uD2
i u |Diu|p−2 dx

≤ (p− 1)
∫

Ω

|u|
β−α

β |u|
α
β

∣

∣

∣
D2

i u
∣

∣

∣ |Diu|p−2 dx.
(9)

Employing Hölder’s inequality in (9) with exponents
(

pβ
2β−p , β,

p
p−2

)

, we obtain

∫

Ω

|Diu|p dx ≤ C





∫

Ω

|u|
p(β−α)
2β−p dx





2β−p
pβ




∫

Ω

|u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx





1
β




∫

Ω

|Diu|p dx





p−2
p

= C ‖u‖
β−α

β

p(β−α)
2β−p

[u]
α+β

β

S̊2,α,β
‖Diu‖p−2

p .

(10)

Estimating (10) by using (8) we get

∫

Ω

|Diu|p dx ≤ C̃ [u]
β−α

β

S̊2,α,β
[u]

α+β
β

S̊2,α,β
‖Diu‖p−2

p = C̃ [u]2S̊2,α,β
‖Diu‖p−2

p . (11)

By using Young’s inequality in (11), we arrive at

‖Diu‖p
p ≤ C̃ (ε) [u]

p

S̊2,α,β
+ C̃ε ‖Diu‖p

p ,
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choosing ε such that C̃ε < 1, then we acquire

‖Diu‖p ≤ C̃ [u]S̊2,α,β
< ∞,

which completes the proof for the case (i).

Assume that (ii) holds, i.e. α + β > n and 2 < p ≤ 2β. Then

W1,α+β (Ω) ⊂ C (Ω̄) ,

by (6) and (8), we obtain

‖u‖C(Ω̄) ≤ C̃ [u]S̊2,α,β
. (12)

For all u ∈ S̊2,α,β (Ω) from (9) one concludes

‖Diu‖p
p ≤ (p− 1)

∫

Ω

|u|
β−α

β |u|
α
β

∣

∣

∣
D2

i u
∣

∣

∣ |Diu|p−2 dx

≤ (p− 1)C(ε)
∫

Ω

|u|β−α |u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx + (p− 1)ε

∫

Ω

|Diu|
β(p−2)

β−1 dx

≤ (p− 1)C (ε) ‖u‖β−α

C(Ω̄)

∫

Ω

|u|α
∣

∣

∣
D2

i u
∣

∣

∣

β
dx + (p− 1)ε ‖Diu‖

β(p−2)
β−1

β(p−2)
β−1

.

By using (12) and
β(p−2)

β−1 − p = p−2β
β−1 with p ≤ 2β to estimate ‖u‖β−α

C(Ω̄)
and ‖Diu‖

β(p−2)
β−1

β(p−2)
β−1

respec-

tively, we arrive at

‖Diu‖p
p ≤ C (ε) (p− 1) [u]

β−α

S̊2,α,β
[u]

α+β

S̊2,α,β
+ (p− 1)εC̃C ‖Diu‖p

p + (p− 1)εC1

= C (ε) [u]
2β

S̊2,α,β
+ εC̃C ‖Diu‖p

p + εC1,

which implies

‖Diu‖p
p ≤ C̃ [u]

2β

S̊2,α,β
+ C1,

that ends the proof.

For the last case (iii), let α + β < n and 1 ≤ p ≤ 2nβ(α+β)
2nβ−(α+β)(β−α)

. From Sobolev imbedding

theorems

W1,α+β (Ω) ⊂ Lq̃ (Ω) ∀q̃, q̃ ∈
[

1,
n (α + β)

n− (α + β)

]

. (13)

By (6) and (13), we attain

‖u‖q̃ ≤ C [u]S̊2,α,β
. (14)

For all u ∈ S̊2,α,β (Ω) , we deduce from the inequality p ≤ 2nβ(α+β)
2nβ−(α+β)(β−α)

< 2β that

‖Diu‖p
p ≤ C ‖u‖

β−α
β

p(β−α)
2β−p

[u]
α+β

β

S̊2,α,β
‖Diu‖p−2

p . (15)

If we take the inequality p(β−α)
2β−p ≤

n(α+β)
n−(α+β)

into account and estimate ‖u‖ p(β−α)
2β−p

in (15) by (14)

we obtain

‖Diu‖p
p ≤ C̃ [u]

β−α
β

S̊2,α,β
[u]

α+β
β

S̊2,α,β
‖Diu‖p−2

p = C̃ [u]2S̊2,α,β
‖Diu‖p−2

p . (16)
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Applying Young’s inequality in (16) we attain

‖Diu‖p
p ≤ C̃ (ε) [u]

p

S̊2,α,β
+ C̃ε ‖Diu‖p

p ,

that yields

‖Diu‖p ≤ C̃ [u]S̊2,α,β
,

so, the proof is complete.

We now turn our attention to some examples and results for one dimensional case.

Definition 6. Let α > β− 1 ≥ 0 we define the following function space

S̃2,α,β(a, b) :=

{

u ∈ L1(a, b) : [u]
α+β

S̃1,α,β(a,b)
=

b
∫

a

|u|α+β dx +

b
∫

a

|u|α−β |Du|2β dx

+

b
∫

a

|u|α
∣

∣

∣
D2u

∣

∣

∣

β
dx < ∞

}

.

The proofs of the following lemmas can be attained readily, thus we skip the proofs for the

sake of brevity.

Lemma 6. Let S̃2,α,β(a, b) be the space given in Definition 6, then the imbedding

S̃2,α,β(a, b) ⊂ S1,α,β(a, b)

holds.

Lemma 7. Let α > β − 1 > 0 and g(t) ≡ |t|
α
β t for any t ∈ R. Then following assertions are

true

1) if u ∈ S̃2,α,β(a, b), then g (u) ∈W2,β(a, b);

2) for a function u ∈ L1 (a, b), if g (u) ≡ v ∈ W2,β(a, b), then u ∈ S̃2,α,β(a, b).

Consequently, we can define the space S̃2,α,β(a, b) in the following way by virtue of the

general definition of the nonlinear spaces.

Definition 7. Let g : R → R, g(t) = |t|
α
β t and α > β− 1 > 0, then S̃2,α,β(a, b) has the following

representation

S̃2,α,β(a, b) =

{

u ∈ L1(a, b) : [u]
α+β
S

gW2,β
≡ ∑

0≤s≤2

‖Dsg(u)‖β
β < ∞

}

≡ SgW2,β(a, b).

Remark 2. The following equivalences are true

S̃2,α,β(a, b) ∩ {u : u | ∂Ω = 0} ≡ S̊2,α,β(a, b)

and

∑
0≤s≤k

‖Dsg(u)‖β
β ≡ ∑

0≤s≤k

∥

∥

∥
g−1 (Dsg(u))

∥

∥

∥

α+β

α+β

for k = 0, 1, but for k = 2
∥

∥

∥g′(u)D2u
∥

∥

∥

β

β
≡
∥

∥

∥g−1
(

g′(u)D2u)
)∥

∥

∥

α+β

α+β

and
∥

∥

∥
g′′(u) (Du)2

∥

∥

∥

β

β
≡
∥

∥

∥
g−1

(

g′′(u) (Du)2)
)∥

∥

∥

α+β

α+β
.
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The following example shows the nonlinear structure of the pn-spaces.

Example 1. Suppose that β > 1. Then S1,1,β(0, 1) is a nonlinear space.

Let τ ∈
(

β−1
β+1 ,

β−1
β

]

and define the functions

u0 (x) := xτ and u1 (x) := θ, x ∈ (0, 1) ,
(

θ ∈ R
+ is a constant

)

.

It is easy to show that u0, u1 ∈ S1,1,β(0, 1) by the definition of S1,1,β(0, 1). Besides

u (x) := u0 (x) + u1 (x) = xτ + θ 6∈ S1,1,β(0, 1).

[u]
β+1
S1,1,β(0,1)

=

1
∫

0

|u|β+1 dx +

1
∫

0

|u| |Du|βdx =

1
∫

0

(xτ + θ)β+1 dx + τβ

1
∫

0

(xτ + θ) xβ(τ−1)dx

=

1
∫

0

(xτ + θ)β+1 dx + τβ

1
∫

0

(

xτ(β+1)−β + θxβ(τ−1)
)

dx.

Since β(τ − 1) ≤ −1 so, the right and side of the above equation is divergent which implies

u 6∈ S1,1,β(0, 1).

3 VARIABLE EXPONENT NONLINEAR SPACES AND EMBEDDING THEOREMS

In this section, we present certain new results with detailed proofs for variable exponent

pn-spaces mentioned in Section 1. First, we derive integral inequalities (see, also [20]) to un-

derstand the structure of these spaces. Afterwards, we prove some lemmas and theorems on

continuous embeddings of these spaces and on topology of them. Throughout this section, we

assume that Ω ⊂ R
n (n ≥ 2) is a bounded domain with Lipschitz boundary.

Lemma 8. Let α, β ∈ M0(Ω) and α (x) ≥ β (x) a.e. x ∈ Ω. Then the inequality
∫

Ω

|u|β(x) dx ≤
∫

Ω

|u|α(x) dx + |Ω| , ∀u ∈ Lα(x) (Ω) (17)

holds.

Proof. Let Ω1 := {x ∈ Ω : α (x) = β (x)} and Ω2 := Ω \Ω1. Hence
∫

Ω

|u|β(x) dx =
∫

Ω1

|u|α(x) dx +
∫

Ω2

|u|β(x) dx.

Estimating the second integral on the right member of the above equation by utilizing Young

inequality (α (x) > β (x) on Ω2), we achieve that
∫

Ω

|u|β(x) dx ≤
∫

Ω1

|u|α(x) dx +
∫

Ω2

(

β (x)

α (x)

)

|u|α(x) dx +
∫

Ω2

(

α (x)− β (x)

α (x)

)

dx,

since
β(x)
α(x)

< 1 and
α(x)−β(x)

α(x)
< 1, for x ∈ Ω2 we deduce from the last inequality that

∫

Ω

|u|β(x) dx ≤
∫

Ω1

|u|α(x) dx +
∫

Ω2

|u|α(x) dx + |Ω| =
∫

Ω

|u|α(x) dx + |Ω| .

On the other side if α (x) = β (x) a.e. x ∈ Ω, then (17) is clear.
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Lemma 9. Assume that ζ ∈ M0(Ω) and β ≥ 1, ε > 0. Then for every u ∈ Lζ(x)+ε (Ω)
∫

Ω

|u|ζ(x) |ln |u||β dx ≤ N1

∫

Ω

|u|ζ(x)+ε dx + N2

is satisfied. Here N1 ≡ N1 (ε, β) > 0 and N2 ≡ N2 (ε, β, |Ω|) > 0 are constants.

Proof. Let us consider the function f (t) = |t|ε − ln |t| for t ∈ R − {0}. Since f is an even

function it is sufficient to investigate only f (t) = tε − ln t, t > 0. It can be readily shown that

this function is decreasing on
(

0, 1
ε
√

ε

]

and increasing on the interval
[

1
ε
√

ε
, ∞
)

. Also f ր ∞

when x ց 0 and x ր ∞ and f
(

1
ε
√

ε

)

= 1
ε (1 + ln ε). Here we have two situations: (i) if

ε ∈
(

1
e , ∞

)

, then f
(

1
ε
√

ε

)

> 0; (ii) if ε ∈
(

0, 1
e

]

, then f
(

1
ε
√

ε

)

≤ 0. For the first case (i)

∀t ∈ (0, ∞) , f (t) > 0 or equivalently ln t < tε. For the case (ii), the function f has two zeros,

say m1 > 0 and m2 > 0, and for t ∈ R
+ − (m1, m2) it is obvious that ln t < tε. For t ∈ [m1, m2] ,

∃N0 > 1
(

N0 ≡ N0

(

1
ε
√

ε

))

such that ln t < N0tε. Hence, the inequality ln t ≤ N0tε will be

satisfied on (0, ∞) . As a result, from the cases (i) and (ii) for arbitrary ε > 0 and t ∈ R− {0},
we have the inequality

ln |t| ≤ N0 (ε) |t|ε ,

that implies on the set {x ∈ Ω : |u (x)| ≥ 1 } the inequality |u|ζ(x) |ln |u||β ≤ N0 (ε, β) |u|ζ(x)+ε

be fulfilled. Moreover, from lim
t→0+

tε |ln t|β = 0 and for every fixed x0 ∈ Ω, lim
t→0+

|t|ζ(x0)|ln|t||β

tζ(x0)+ε+1
= 0,

we arrive at the inequality |u|ζ(x)−1 |u| |ln |u||β ≤ Ñ0

(

|u|ζ(x)+ε + 1
)

is fulfilled on the set

{x ∈ Ω : |u (x)| < 1 } for some Ñ0 = Ñ0 (ε, β) > 0. So, the proof is complete by the combi-

nation of these inequalities.

Lemma 10. Let ε̃ > 0 and β1 : Ω → [ε̃, ∞) be a measurable function, which satisfies

ε̃ ≤ β−1 ≤ β1 (x) ≤ β+
1 < ∞ and ξ, β ∈ M0(Ω), then the inequality

∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤ C1

∫

Ω

|u|ξ(x)+β1(x) dx + C2, ∀u ∈ Lξ(x)+β1(x) (Ω) (18)

holds. Here C1 ≡ C1 (ε̃, β+) > 0 and C2 ≡ C2 (ε̃, β+, |Ω|) > 0 are constants.

Proof. For arbitrary γ ∈ (0, 1) , β++γ
β(x)

> 1, by utilizing the Young’s inequality with this expo-

nent to |ln |u||β(x) we obtain the following inequality|ln |u||β(x) ≤ |ln |u||β++γ + 1, by multi-

plying each side of this inequality with |u|ξ(x) , we get

|u|ξ(x) |ln |u||β(x) ≤ |u|ξ(x) |ln |u||β++γ + |u|ξ(x) , x ∈ Ω.

Thus, integrating both sides over Ω,
∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤
∫

Ω

|u|ξ(x) |ln |u||β++γ dx +
∫

Ω

|u|ξ(x) dx

is established. For ε < ε̃, estimating the first integral on the right side of the last inequality by

Lemma 9, we acquire
∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤ C3

∫

Ω

|u|ξ(x)+ε dx + C4 +
∫

Ω

|u|ξ(x) dx.
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As
ξ(x)+ε

ξ(x)
> 1, applying Lemma 8 to estimate the second integral on the right member of the

last inequality, we gain
∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤ C1

∫

Ω

|u|ξ(x)+ε dx + C2 ,

here C1 ≡ C1 (ε, β+) > 0 and C2 ≡ C2 (ε, β+, |Ω|) > 0 are constants.

Since ξ (x) + ε < ξ (x) + β1 (x) , a.e. x ∈ Ω, estimating the integral on the right side of the

above equation by using Lemma 8, we attain (18).

In the following discussions, we examine elaborate properties of the pn-spaces

S1,γ(x),β(x),θ(x) (Ω), presented in Section 1 (for other results, see [19, 20]).

Lemma 11. Let S1,γ(x),β(x),θ(x) (Ω) and S1,ξ(x),α(x),θ1(x) (Ω) be the spaces given in Definition 4.

Assume that one of the conditions given below are satisfied

(i) θ1 (x) ≤ θ (x) , β (x) ≥ α (x) and ξ (x) β (x) = γ (x) α (x) , a.e. x ∈ Ω,

(ii) θ1 (x) ≤ θ (x) , ξ (x) β (x) > γ (x) α (x) , γ (x) + β (x) ≥ ξ (x) + α (x) and β (x) ≥ α (x) +

ε for some ε > 0.

Under these conditions the embedding

S1,γ(x),β(x),θ(x) (Ω) ⊂ S1,ξ(x),α(x),θ1(x) (Ω) (19)

holds.

Proof. First, suppose that (i) holds. Let u ∈ S1,γ(x),β(x),θ(x) (Ω) , to show the embedding (19) it

is sufficient to verify the finiteness of

Rξ,α,θ1 (u) =
∫

Ω

|u|θ1(x) dx +
n

∑
i=1

∫

Ω

|u|ξ(x) |Diu|α(x) dx,

estimating the first integral on the right member of the above equation with the help of Lem-

ma 8 and second one by employing Young’s inequality, we acquire

Rξ,α,θ1 (u) ≤ (n + 1) |Ω|+
∫

Ω

|u|θ(x) dx +
n

∑
i=1

∫

Ω

|u|
ξ(x)β(x)

α(x) |Diu|β(x) dx.

From the conditions,
ξ(x)β(x)

α(x)
= γ (x) that yields

Rξ,α,θ1 (u) ≤ Rγ,β,θ (u) + (n + 1) |Ω| ,

so (19) is gained. We note that when the case β (x) = α (x) a.e. x ∈ Ω, then ξ (x) = γ (x),

hence (19) can be obtained by similar operations as above.

Now, assume that (ii) fulfills. We need to show that Rξ,α,θ1 (u) is finite. We have

Rξ,α,θ1 (u) =
∫

Ω

|u|θ1(x) dx +
n

∑
i=1

∫

Ω

|u|ξ(x) |Diu|α(x) dx

=
∫

Ω

|u|θ1(x) dx +
n

∑
i=1

∫

Ω

|u|ξ(x)− γ(x)α(x)
β(x) |u|

γ(x)α(x)
β(x) |Diu|α(x) dx.
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If we estimate the first integral on the right member of the above equation with the help of

Lemma 8 and second one by employing Young’s inequality with the exponent
β(x)
α(x)

at every

point, one can acquire that

Rξ,α,θ1 (u) ≤
∫

Ω

|u|θ(x) dx + |Ω|+
n

∑
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx + n
∫

Ω

|u|
ξ(x)β(x)−γ(x)α(x)

β(x)−α(x) dx.

In the light of the condition (ii), the inequality
ξ(x)β(x)−γ(x)α(x)

β(x)−α(x)
< γ (x) + β (x) holds, so esti-

mating the third integral in the right side of the last inequality by Lemma 8, we arrive at

Rξ,α,θ1 (u) ≤ (n + 1)
∫

Ω

|u|θ(x) dx + (n + 1) |Ω|+
n

∑
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx

≤ (n + 1)
(

Rγ,β,θ (u) + |Ω|
)

,

hence from here desired inequality is achieved. Also if θ1 (x) = θ (x) a.e. x ∈ Ω, by employing

the same operations one can show (19).

Lemma 12. Let β, γ and ψ satisfy the conditions of Theorem 3, then S1,γ(x),β(x),θ(x) (Ω) is a

metric space with the metric which is defined below

dS1
(u, v) := ‖ϕ (u)− ϕ (v)‖Lψ(x)(Ω) +

n

∑
i=1

∥

∥ϕ′t (u) Diu− ϕ′t (v) Diu
∥

∥

Lβ(x)(Ω)
,

∀u, v ∈ S1,γ(x),β(x),θ(x) (Ω) , here ϕ (x, t) = |t|
γ(x)
β(x) t and for every fixed x ∈ Ω

ϕ′t (t) =
(

γ (x)

β (x)
+ 1

)

|t|
γ(x)
β(x) .

Proof. It has been shown in Theorem 3 that3 ϕ (u) ∈ Lψ(x) (Ω) and ϕ′t (u) Diu ∈ Lβ(x) (Ω)

whenever u ∈ S1,γ(x),β(x),θ(x) (Ω) , thus one can verify that dS1
( · , · ) : S1,γ(x),β(x),θ(x) (Ω) → R

satisfy the metric axioms, i.e.

(i) dS1
(u, v) ≥ 0,

(ii) dS1
(u, v) = dS1

(v, u) ,

(iii) u = v⇒ dS1
(u, v) = 0,

(iv) dS1
(u, v) = 0⇒ ‖ϕ (u)− ϕ (v)‖Lψ(x)(Ω) = 0⇒ ϕ (u) = ϕ (v) since ϕ is 1-1, then u = v,

(v) from the subadditivity of norm, dS1
(u, v) ≤ dS1

(u, w) + dS1
(w, v).

3 From now on, we denote ϕ (x, u) := ϕ (u) = |u|
γ(x)
β(x) u for simplicity.



224 SOLTANOV K., SERT U.

Theorem 7. Under the conditions of Theorem 3, ϕ is a homeomorphism between the spaces

S1,γ(x),β(x),θ(x) (Ω) and L1, β(x) (Ω) ∩ Lψ(x) (Ω) .

Proof. The function ϕ is a bijection between S1,γ(x),β(x),θ(x) (Ω) and L1, β(x) (Ω) ∩ Lψ(x) (Ω) by

Theorem 3. Thus it is ample to prove the continuity of ϕ as well as ϕ−1 in the sense of topology

induced by the metric dS1
( · , · ). For this, we need to show that

(i) dS1
(um, u0) −→

mր∞
0 ⇒ ϕ(um)

L1, β(x)(Ω)∩Lψ(x)(Ω)−→
mր∞

ϕ(u0) for every {um} ∈ S1,γ(x),β(x),θ(x)(Ω)

which converges to u0 and

(ii) vm
L1, β(x)(Ω)∩Lψ(x)(Ω)−→

mր∞
v0 ⇒ dS1

(ϕ−1(vm), ϕ−1(v0)) −→
mր∞

0 for every vm∈ L1, β(x)(Ω)∩ Lψ(x)(Ω)

which converges to v0.

Since for every vm and v0 there exist a unique um and u0 ∈ S1,γ(x),β(x),θ(x) (Ω) such that

ϕ (um) = vm and ϕ (u0) = v0, the implication (ii) can be written equivalently as follows

ϕ (um)
L1, β(x)(Ω)∩Lψ(x)(Ω)−→

mր∞
ϕ (u0) ⇒ dS1

(um, u0) −→
mր∞

0 for every {um} ∈ S1,γ(x),β(x),θ(x) (Ω)

which converges to u0.

Since the proofs of (i) and (ii) are similar, we only prove (ii). Let v0, vm ∈ L1, β(x) (Ω) ∩
Lψ(x) (Ω) and vm

L1, β(x)(Ω)∩Lψ(x)(Ω)−→ v0 ⇔ ϕ (um)
L1, β(x)(Ω)∩Lψ(x)(Ω)−→ ϕ (u0) .

To verify dS1
(um, u0)→ 0, by definition of metric dS1

it is ample to demonstrate that

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
→ 0 and ‖ϕ (um)− ϕ (u0)‖Lψ(x)(Ω) → 0

as mր ∞.

From ϕ (um)
L1, β(x)(Ω)∩Lψ(x)(Ω)−→ ϕ (u0) , we have

‖ϕ (um)− ϕ (u0)‖Lψ(x)(Ω)→0 and ‖Di (ϕ (um)− ϕ (u0))‖Lβ(x)(Ω)→ 0.

Hence, we only need to show that

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
−→ 0 as mր ∞.

From Lemma 4, we have

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
→ 0 ⇔ σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

→ 0. (20)

Based on (20), for i = 1, n

σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

=
∫

Ω

∣

∣ϕ′t (um) Dium − ϕ′t (u0) Diu0

∣

∣

β(x)
dx, (21)

one can show that the following equality holds

ϕ′t (um) Dium − ϕ′t (u0) Diu0 =
(

β(x)
β(x)+γ(x)

)

Di (ϕ (um)− ϕ (u0))

−
(

Diγ.β−γ.Diβ
β(γ+β)

)

(

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

)

.
(22)
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Substituting (22) into (21), we acquire

σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

=
∫

Ω

∣

∣

∣

(

β(x)
γ(x)+β(x)

)

Di (ϕ (um)− ϕ (u0))

−
(

Diγ.β−γ.Diβ
β(γ+β)

)

(

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

)

∣

∣

∣

β(x)

taking β(x) into the absolute value and applying known inequality, we gain

σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

≤ 2β+−1
∫

Ω

|Di (ϕ (um))− Di (ϕ (u0))|β(x) dx

+ C3

∫

Ω

∣

∣

∣

∣

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

∣

∣

∣

∣

β(x)

dx,

(23)

here C3 = C3

(

β+, ‖γ‖C1(Ω̄) , ‖β‖C1(Ω̄)

)

> 0 is constant.

Since ‖Di (ϕ (um)− ϕ (u0))‖Lβ(x)(Ω)−→0 as m ր ∞, the first integral in the right member

of (23) converges to zero when m tends to infinity (Lemma 4).

From Theorem 3, function ϕ is bijective between the spaces Lθ(x) (Ω) and Lψ(x) (Ω) . Also

since ‖ϕ (um)− ϕ (u0)‖Lψ(x)(Ω)−→ 0, we arrive at

ϕ (um)
a.e−→
Ω

ϕ (u0)⇒ um
a.e−→
Ω

u0 (24)

and

σθ (um) =
∫

Ω

|um|θ(x) dx =
∫

Ω

∣

∣

∣

∣

|um|
γ(x)
β(x) um

∣

∣

∣

∣

ψ(x)

dx =
∫

Ω

|ϕ (um)|ψ(x) dx ≤ M (25)

for some M > 0.

Employing (24), (25) and Vitali’s Theorem4, we attain

∫

Ω

|um|θ(x) dx −→
∫

Ω

|u0|θ(x) dx, mր ∞. (26)

Since um converges to u0 in measure on Ω, using this and (26), we deduce from Lemma 4 that

σθ (um − u0) −→ 0⇒ ‖um − u0‖Lθ(x)(Ω) −→ 0. (27)

4 Theorem (Vitali, [16]). Let (Ω, Σ, µ) be a finite measure space, and fn : Ω → R be a sequence of measurable

functions converging a.e. to a measurable f . Then ‖ fn − f ‖L1(Ω) → 0 as n → ∞ iff { fn : n ≥ 1} is uniformly

integrable. When the condition is satisfied, we have

lim
n→∞

∫

Ω

fndµ =
∫

Ω

f dµ.
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Denote wm := |um|
γ(x)
β(x) um ln |um| and w0 := |u0|

γ(x)
β(x) u0 ln |u0| , then

σβ (wm) =
∫

Ω

|um|γ(x)+β(x) |ln |um||β(x) dx.

Estimating the above integral by using Lemma 10, one can obtain

σβ (wm) ≤ C4

∫

Ω

|um|θ(x) dx + C5 = C4σθ (um) + C5.

From (27), σβ (wm) ≤ M̃ for all m ≥ 1, for some M̃ > 0. Thus as shown above for um similarly

we conclude that as mր ∞

σβ (wm −w0) −→ 0⇒
∫

Ω

∣

∣

∣

∣

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

∣

∣

∣

∣

β(x)

−→ 0,

hence from (23) we attain,

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
−→ 0, mր ∞.

So, the proof is complete.
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У данiй роботi ми вивчаємо властивостi класу функцiональних просторiв, так званих

pn-просторiв, якi з’являються при дослiдженнi нелiнiйних диференцiальних рiвнянь. Ми вста-

новили деякi iнтегральнi нерiвностi для аналiзу структури pn-просторiв зi сталими та змiнни-

ми показниками. Ми довели теореми про вкладення, якi встановлюють спiввiдношення цих

просторiв з добре вiдомими класичними просторами Лебега i Соболєва зi сталими та змiнни-

ми показниками.

Ключовi слова i фрази: pn-простiр, змiнний показник, iнтегральна нерiвнiсть, нелiнiйне ди-

ференцiальне рiвняння, теорема про вкладення.


