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CERTAIN RESULTS FOR A CLASS OF NONLINEAR FUNCTIONAL SPACES

In this article, we study properties of a class of functional spaces, so-called pn-spaces, which
arise from investigation of nonlinear differential equations. We establish some integral inequalities
to analyse the structures of the pn-spaces with the constant and variable exponent. We prove embed-
ding theorems, which indicate the relation of these spaces with the well known classical Lebesgue
and Sobolev spaces with the constant and variable exponents.
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INTRODUCTION

This paper is concerned with some features of a class of functional spaces6 which are emer-
ged from investigation of nonlinear differential equations. Studying boundary value problems
(BVPs) require to examine and understand the functional spaces6 which are directly related
with the considered problem. In other words, it is required to work on the domain of the
operator generated by the addressed boundary value problem. We specify that it is better
to study each BVPs on its own space. Furthermore, detailed analysis of these spaces and
examining their topology, structure etc. cause to gain better results of the possed problem (for
example, regularity of the solution).

The spaces generated by boundary value problems for the linear differential equations are
generally linear spaces such as Sobolev spaces and different generalizations of them. Apart
from boundary value problems for linear differential equations, the spaces generated by non-
linear differential equations (essentially the domain of the corresponding operator) are subsets
of linear spaces and do not have linear structure. The class of spaces of this type were intro-
duced and investigated by Soltanov in the abstract case (see, e.g. [21-26]), and also in the case
of functions spaces (see, e.g. [23-30] and references therein, where various subsets of linear
spaces of this type were searched). In the mentioned articles, topology of these spaces were in-
vestigated and shown that under what circumstances they are metric or pseudo-metric spaces.
Starting from these features of the introduced spaces, they were defined as the class of pseudo-
normed spaces or pn-spaces and the class of quasi-pseudo normed spaces or qn-spaces.

In this work, we focus on the characteristics of certain class of functional pn-spaces. Essen-
tially, we deal with the following class of functional pn-spaces.
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Let O C R" (n > 1) be bounded domain with sufficiently smooth boundary. In this work
the class of functions u : (3 — R of the following type will be investigated

Smap () = {u e LN(Q) s [ulg'F () < oo},

where

B
Dku‘ dx |, D= (Dy,Dy,...,Dy),

sl y= T | [l
(@)

0<|k|<m

- n
D, = %, Dk = D’l(lDlz(z, e, D],i", i=1,n, |k| = ¥ k;. Here, we only address the cases m =1, 2.
’ i=1
It is important to note that the following subset of L¥ (Q)), p > 2,

M := ueLl(Q):i

/|u|P*2|Diu|2dx < 00,1 | 90 = 0
i=1 o)

was arose in the article of Dubinskii earlier ([7, 8, 11]) while studying the following nonlinear

problem

Jdu & p—2
55— LD (JulP > D) =h(x,t), (t,x) € (0,T) xQ,
i=1

u(0,%) =uo(x), u|rxn=0.
Here, compact inclusion of subset M to the space L? ()) and also necessary compactness the-
orems for analysis of the parabolic problem were proved. Later on, different new subsets of
L! (Q) appeared in the articles of Soltanov (see, e.g. [23-25]) while studying the mixed prob-
lem for the following nonlinear equation, which is type of the Prandtl-von-Mises equation

ou o%u
2

-7 p-Z =
5 55

For example, one of the emerged class in the case of (3 = (2,b) C R can be expressed in the
form

=h(t,x),p>0 (t,x)e(0,T)xQ. (1)

uecLll(Q): / |ul|® Dzu’ﬁdx <oo,u(a)=u(b)=0,,

Q
and also as type of subsets in the form S, , 5 ((2). Here, we specify that different problems to
the equation (1) were studied under various additional conditions as well (see, e.g. [12,14,18,
35-37]).

Accordingly, in the papers [24, 25] etc. different classes of sets of this type were examined
and it was shown that these sets are nonlinear topological spaces, moreover they are either
metric or pseudo-metric spaces. Many other properties of the introduced spaces were investi-
gated as well in these works. For instance, relations of these spaces amongst themselves and
with well known functional spaces (e.g. Lebesgue or Sobolev spaces etc).

Consequently, in the mentioned works pn-spaces and qn-spaces were defined with taking
into account the principal attributes of the presented spaces.

These spaces may arise from the research of the existence of smooth solution of the follow-
ing differential equation

—Au+u+ufu=h(x), xe QCR", n>2,
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Ju
—_ H — ! / >
<817+|u| u) ‘an P (x'), v €y, pu>0,

which was studied by Soltanov [32]. We emphasize that equation of this form was considered
by many authors, who tried to answer various questions of different problems for this equa-
tion, (see, e.g. Berestycki ve Nirenberg [3], Brezis [4], etc.). In [15], Pohozaev employed another
approach for this problem that led to gaining distinct results other than [32].

This kind of nonlinear spaces are generated by the differential equations, which ensue from
the mathematical models of some processes in flood mechanics. For example, we may present
the nonlinear equation of type

?)—L; —|uP 2 Au=h(x,t), p>2,

where this equation were studied [24,31] and [33]. Similar equations were handled by Oleynik
[14], Walter [36] only using the approximation way and Tsutsumi, Ishiwata [35] focused on
understanding the behavior of the solution.

In recent years, there have been an increasing interest in the study of equations with vari-
able exponents of nonlinearities. The interest in the study of differential equations that in-
volves variable exponents is motivated by their applications to the theory of elasticity and
hydrodynamics, in particular, the models of electrorheological fluids [17] in which a substan-
tial part of viscous energy, the thermistor problem [38], image processing [5] and modeling of
non-Newtonian fluids with thermo-convective effects [2] etc.

In the most of these papers, that concern with equations, which have non standard growth,
authors studied the problems, which involve p(.)-Laplacian type equation or equations, which
fulfill monotonicity conditions, where enable to apply monotonicity methods. Unlike these
works, in the articles [19, 20] investigating some properties of nonlinear spaces with variable
exponent, we developed an approach based on the spaces corresponding to problem under
consideration. It is necessary to note, that the questions mentioned above may arise for the
problems, which have variable exponent nonlinearity. Eventually, here we also study vari-
able exponent nonlinear spaces that are essential for the investigation of the following type of
equations

- [(19072 4w O2) S| = (x,u).

Since we want to establish the regularity of solution of the nonlinear differential equations
related with mentioned pn-spaces, thus our aim is to understand the structure and nature of
these spaces better, that allows to investigate the characteristics of solutions. For this reason,
in this article we prove some embedding results, which indicate the relation of these spaces
between Sobolev and Lebesgue spaces. We show that these spaces are not merely subsets of
Lebesgue spaces also subsets of Sobolev spaces.

This paper is organized as follows. In the next section, we give the definitions of certain
type of pn-spaces with variable and constant exponents ([20, 33] and for general definition
see [34]) as well as recall some basic results for these spaces and variable exponent spaces. In
Section 2, we prove embedding theorems for constant exponent pn-spaces and give certain
results with examples in one dimensional case. In Section 3 firstly, we establish some inte-
gral inequalities with variable exponents, which are required to prove embedding theorems
of variable exponent nonlinear spaces then investigate some attributes of variable exponent
pn-spaces.
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1 PRELIMINARIES

In this section in the beginning we will give the general definition of spaces that are studied
here in the functional case. Let X, Y be locally convex vector topological spaces, B C Y be a
Banach space and g : D (g) C X — Y. Let’s introduce the following subset of X

Mg ={xeX:g(x) €B,ImgNB # T}.

Definition 1. A subset M C X is called a pn-space (i.e. pseudonormed space) it S is a topo-
logical space and there is a function [-] ,, : M — RY. = [0, 00) (which is called p-norm of M)
such that

qn) [x],>0,Vxc Mandx =0= [x],=0;
pn) [x1]y # [x2)py = %1 # xp forxq,xp € M, and [x],, =0 = x = 0.
The following conditions are often fulfilled in the spaces M.

Nj) There exist a convex function v : R — ﬂ and number K € (0, co] such that [Ax],, <

v(A)[x]\, forany x € M and A € R!, [A| < K, moreover, |)\|hi>n)\.v(/\AI) =¢,j =01,
]

where A\g =0,A = Kandcy=c; =1orcg =0,c1 = o, i.e. if K = oo then Ax € M for
any x € M and A € RL.

Let g : D(g) € X — Y be such a mapping that Myp # @ and the following conditions are
fulfilled

G1) §:D(g) «— Imgis a bijection and g (0) = 0;

G,) thereis a function v : Rl — ﬂ satsfying the condition Ny such that

lg (Ax)[l5 < v (A) llg (¥)l5, ¥x € Mgp, VA € R.

If the mapping g satisfies the conditions G; and G; then M,p is a pn-space with p-norm
defined in the following way: there is a one-to-one function ¢ : RL, — RY, ¢ (0) = 0,
¥, =1 € CY such that [x]MgB = ¢ 1 (|lg (x)[|p)- In this case M,p is a metric space with a
metric: d g (x1;%2) = [|g (x1) — & (x2)|| 5. Further, we consider just such type of pn-spaces.

Definition 2. The pn-space Mgp is called weakly complete if g (M,p) is weakly closed in
B. The pn-space Mg is “reflexive” if each bounded weakly closed subset of Mp is weakly
compact in M.

It is clear that if B is a reflexive Banach space and Mp is a weakly complete pn-space, then
M ¢B 18 “reflexive”. Moreover, if B is a separable Banach space, then M ¢B is separable, also.
For complementary properties see, e.g. [23,33,34].

We now remind certain integral inequalities and facts about the functional pn-spaces with
constant exponent that are concerned in this paper (for general case see [21-25] and for func-
tional case [21,25,27] etc).

Let Q C R" (n > 1) be a bounded domain with Lipschitz boundary Q2. Throughout the
paper, we denote by |()| the Lebesgue measure of Q).
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Lemmal. Leta > 0,8 >1,|Q| < coandi = 1,n, then forallu € C(Q) NC}(Q) the inequality

/\u]‘”ﬁ dx < C / lul|® ]Diuyﬁdx+C2/ |u|* P dx’

Q Q Q)
is satisfied. Here, Cy = C1 (&, B, |Q}]), Co = C (|Q}]) > 0 are constants.
Lemma 2. Assume thatwa,a; > 0,8 >1and > B1 >0, gl > g, a1 + B1 < a + B be satistied.
Then foru € C(Q) N CY(Q)

/|”|{X1 |Dz‘u|l31 dx < C3/ lu|® |D1-u|/5dx+C4/ |u|”‘+ﬁdx’+C5

holds. Here, forr = 3,4,5, C, = C, (a, B, a1, B1, |Q2]) > 0 are constants.
Lemma3. Leta > 0, Bo+ 1 > 2 and B1 > Bo > 0 be fulfilled. Then forallu € C' (Q) NC? (Q)

[l 1Dl d < ¢ [ a0 [ D2ul™ dx

LGy /(‘u’a+ﬁo+ﬁl + ’u’DéJrl ’Diu’ﬁoJr,Blfl)dxl
Q)
holds. Here, forj = 6,7, C; = C; («, B, Bo) > 0 are constants.

n

Definition 3. Leta > 0,8 > 1, k = (ky,...,k,) be multi-index and |k| = Y} k;, m € Z*,
i=1

Q C R"(n > 1) is bounded domain with sufficiently smooth boundary (at least Lipschitz

boundary)

Smap (Q) = {u e L' (Q): [u]g;ffﬁ( (/ |u|®
’ 0<|k\<m
ém,oc,ﬁ (Q) == Spap ()N {Dku laa =0, 0 < k| <mg < m}

and
We state a proposition which can be easily proved by the help of Lemmas 1-3 and Defini-

tion 3.

Proposition 1. Assume that« > 0, B > 1, then we have the following equivalence

n
51,4, (Q) = {u eL! (Q): g;ﬁﬁ = Z (/ |u|® Diuﬁdx) < oo}

Sozl,xlﬁ (Q) := {u cL'(Q): [u]g;i = i (/ ﬁdx) < oo} :
T\

1 S1,, (Q) is a complete metric space with the following metric

and!

sy, (1,0) = |[Jul? u— o] o]

WiB(Q) , Yu,v € Sl,a,ﬁ (Q) .
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Theorem 1. Leta > 0,6 > 1, theng: R — R, g(t) := M% t is an one to one correspondence
from Sy ,,5(Q2) onto WP (Q)).

Now, we recall some basic definitions and results about variable exponent Lebesgue and
Sobolev spaces [1,6,9,10,13].

Let Q) be a Lebesgue measurable subset of R"” such that || > 0. The function set M ()
denotes the family of all measurable functions p : 3 — [1, 0] and the set M (Q}) is defined

by
My(Q):={peM(Q): 1<p <p(x)<p" <o, ae xeQ},
where p~ = e(s)sinf|p(x)| ,pt = ess sup lp (x)]-

Forp € M (Q), O = Qo = {x € Q| p(x) = }. On the set of all functions on €}, define
the functional 0 and ||. ||, by

0, (1) = / ") dx + ess sup |1 (x)|
0\ O ”

and
Il pora) = inf{A >0: 0, (%) < 1} .

If p e L*(Q), thenp € My(Q), 0 (u) = [ u|P™) dx and the variable exponent Lebesgue
o

space is defined as follows
LPX) (Q) := {u : u is a measurable real-valued function such that o, (1) < oo} .

If p~ > 1, then the space LP(*) (Q) becomes a reflexive and separable Banach space with the
norm ||. |, p() (- Which is so-called Luxemburg norm.

If0 < |Q| < oo, and py, po € M(Q), then the continuous embedding L") (Q)
L2 (Q) exists <= po (x) < py (x) fora.e. x € Q.

Foru € LP®™ (Q) and v € L1 (Q)), where p, g € My (Q) and ﬁ + ﬁ = 1, the following
inequalities be satisfied

[ vl < 2 ull o g o000

and

min { ||}, b <0 () < max {ull] ) / lull}

LP x) || HLp x) Ly x) Lp(x( )}

Lemma 4. Letu, u; € LPx) (), k=1,2,.... Then the following statements are equivalent to
each other:

L kh—>nolo [ — ”HLP(X)(Q) =0;
2. limo, (up —u) =0;
P p (e — 1)

3. uy converges to u in () in measure and 1}51300’7 (ug) = op (u).
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Let OO C R" be a bounded domain and p € L* (Q)), then variable exponent Sobolev space
is defined by

W () == {u e L' (Q) |Vl € L'O) () }

and this space is a separable Banach space with the norm
HuHWLP(X)(Q) = ”uHLP(X)(Q) + Hvu”LP(X)(Q)

In the following discussion, we give the definition of generalized nonlinear spaces (func-
tional pn-spaces with variable exponent) and features of them that indicate their relation
with known spaces. These classes are nonlinear spaces, which are generalization of nonlin-
ear spaces with constant exponent studied in [24] (see also references therein). We also specify
that some of the results and its proofs can be found in [19,20].

Definition 4. Let O C R" (n > 2) be a bounded domain with Lipschitz boundary and vy, f8
€ My (Q)) . We introduce Sy () g(x) ((2) , the class of functions u : (3 — R, and the functional
[-]s,5 * St1y(x),p(x) () — Ry as follows

Sl,’y(x),ﬁ(x) (Q) = {u € Ll /|u|’Y )+B(x dx+ Z/|u|7 |D u|l3 dx < Oo}

i= 1Q
- (x) B(x)
x B
[t]s , :=inf A>0:/‘E‘7 dx—{—z /M dx <1
7.8 A )41

‘s efines a pseudo-norm ON 51 ~(y) A(x , actually 1t can be readily veritied that
VB defi pseud S (%), B(x) Q lly i b dily ified th
- |s.. . fulfills all axioms of pseudo-norm (see [33, ,le (uls. , 20,u=0= |us , =0,
. fulfills all axi f pseud (see [33,34]), i s >0 0 s =0
[uls,; # [vls,;, = u#vand [ulsg , =0=u=0.

Let 51 ,(x),p(x) ((?) be the space given in the Definition 4 and 0 (x) € My (Q2), we denote
S1,4(x),8(x)0(x) () , the class of functions u : O — R, by the following intersection
S1(3)p(0)6(x) (Q) = Stp),pi) () N L7 ()

with the pseudo-norm

[u]s, 50 = [Uls, ; + [l o) VU € St5(),p(x) 0(x) () -
Proposition 2. If vy, B, 0 € My (Q)) and 6 (x) > v (x) + B (x) + &9 a.e. x € Q) for some gy > 0,

then we have the following equivalence

Sl,’y(x),ﬁ(x),é‘(x) (Q) = {u el (Q) : R1PO (u) < OO} ,

where RYPP () := f u|?) dx + 1 1f u|"™) |D;u|P¥) dx, and the pseudo-norm on this

space is

v_ IS(X)

ﬁ
dx <1

’Y_

A Bk

_ u|0(x) i
[uls, ;, = inf )\>0:/)X) dx+§ /
O =1\a
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Lemma 5. Assume that conditions of Proposition 2 are fulfilled. Let u € Sy, (y)(x)0(x) ((2)

and A, := [u]s_ ,,, then the following inequality

max {)\Zﬂfﬁi,)\ff} > R7PP (1) > min {)\Zﬂfﬁi,)\ff}
holds.

Theorem 2. Suppose that conditions of Proposition 2 are satisfied and letp € My (Q)), p (x) >
6 (x) a.e. x € Q. Then, the embedding

WEPEI(Q) C 810 p)000) (Q)
holds.
Definition 5. Lety € M (Q), we introduce L") (Q) the class® of functions u : Q — R
Llrﬂ(x) (Q) = {u el (Q) : Dju € Lq(x) (Q) , 1= 1,—7’1} .

Theorem 3. Lety, B € My (Q)NC'(Q) and L P (Q) be the space given in Definition 5.

7(x)
Then the function ¢ : O xR — R, ¢(x,t) = ]t\g(@ t is a bijective mapping between
S1(0),px)0(x) () and LY (Q) N LX) (Q), where  (x) := 180

Theorem 4. Suppose that conditions of Theorem 3 are satistied. Let p € My (Q)), additionally
1< B~ <B(x) <n x € Qholds and for e > 0, the inequality

p(x) +e< MOHIEN), v e,

is satisfied. Then the following compact embedding

Sl,v(x),ﬁ(x),e(x) Q) — LP(x) (Q)

exists.

2 SOME RELATIONS BETWEEN CONSTANT EXPONENT PN-SPACES AND SOBOLEV SPACES

In this section, we give some embedding results for constant exponent pn-spaces with
proofs.

Theorem 5. Let« > 0, B > 1. Then for all p satisfying the following conditions
(i) if B =n, thenp > B,
(ii) if B > n, thenp > B,

(iii) if B < n, then p > "&tb)

a+n 7

the embedding
Wyt (Q) C $1,45(Q) )

holds.

2 This space is not Banach one unlike to the space W' () (Q) [6].
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Proof. The cases (i) and (ii) are evident as by virtue of the Sobolev imbedding theorems occurs
the inclusion
W7 (Q) € C(Q).

For the last case (iii), if B < n and p > n, then the proof is same with the proofs of the cases
(i) and (ii).
On the other side, let p < nand p € {"('Xﬂs ) n) , by Sobolev imbedding theorems we have

atn 7
Wy (Q) C LI(Q) (3)

forall § [1, . p] Hence, for u € Wol’p (Q)) we have the following estimate by Young’s in-
equality

/|u|”‘|Diu|5dx < <H> /|u|?“f’7% dx + <%> /|Diu|pdx. @)

Q P74 Q

: +B)—p(at +
We deduce from the equation :Tpﬁ . % = p[n((v;_/;))(np_(v;) ") and pE {ﬂ&ﬂ;nﬁ), n) that
ap_ o _"P_
p—p " n-—

Thus, by (3) and (4) we arrive at

D‘+ﬁ _ B < P ~ p
3, = 10t 1D e < CLulf €l

a+p < p
Sl,zx,ﬁ C2 Hu|| 170 + Cs.

To complete the proof if p = n > B, by employing the embedding Wé’p (Q) C L'(O),
1 <r < o0, one can obtain the desired result by the help of above approach. O

which implies [u]

Remark 1. Under the conditions of Theorem 5, if p > « + p is satisfied, then we have the
imbedding (2) independently from dimension of Q).

Actually for u € Wé’p (Q)), we deduce from Lemma 2 that

/}mﬂmedxgc/HDmvdx+ch

which yields [u ]:ifﬁ < Cllu Hp (o) +Cy.

Theorem 6. Suppose that B > « > 0, B > 2. Then for all p satistying the following conditions
(i) ifa + B =n,thenl < p < 2B,
(ii) ifa + B > n, then1 < p <2,
i) i 2np(a+p)
(iii) ifa + B < mn, then1 < p < B (atB) (P—a)

the embedding
S2a8 (Q2) € Wy P (QQ) (5)

holds.
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Proof. Considering these conditions, by Lemma 3 when 1 < p < a + f following inequality

u)ﬁdaﬁ— Cy

/|Diu|pdx < C/|u|”‘
@) @)

holds independently of the dimension #, that yields the imbedding (5). So, if 1 < p < 2, then

1 < p < a+ B, which concludes the proof.

First, we prove (5) in line with conditions of (i). Let « + f = n and p > 2 (from now on we

assume p > 2).
Foru € Soz,,x,ﬁ (Q)),, by Lemma 3 we have the following estimate

Ja

Q

u‘ﬁdx.

On the other hand, from Sobolev imbedding theorems
Wy P (Q) c L7(Q) Vg, g € [1,00).
Hence, from (6) and (7) for all g satisfying 1 < g < oo we get

1
[ n wtp a+p _ n a o [P o ~
lully < C (L IDmlsth) < Co| X | [ Iul D3| x| | =Colulg,, -
i=1 1 Q

i=1

Therefore, for all u € Sozl,xlﬁ (Q)andi=1,n

/\Diu]pdx = / <Diu \Diu\p_2> Djudx = (p—1) /uDZ-Zu |Dju|P 2 dx
Q Q Q

p-a a
< p_1)/yu\ * |uf | D?u| |Du 2 dx.

Employing Holder’s inequality in (9) with exponents </3—ﬁ B, Lz) we obtain

rp=2
P
(B—a)
/|Diu|de <cC (/u"zw dx) (/u D2 ) (/D updx)
(@)

o 1wl
= Cllull oy llgy WDl
26
Estimating (10) by using (8) we get
p TN =2 _ & p—2
/|Du| dr<Cluld Wl IDul} > = Culi,,, Dl

By using Young’s inequality in (11), we arrive at

Dl < € (&) -+ Ce D]},

(6)

()

(8)

)

(10)

(11)
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choosing ¢ such that Ce < 1, then we acquire

IDiu]], < Culs

I
5248 <

which completes the proof for the case (i).
Assume that (ii) holds,i.e. « + > nand 2 < p < 28. Then

WAtk Q) c C(Q),

by (6) and (8), we obtain

lullcay < Cluls (12)

Forall u € 502,,,(,5 (Q) from (9) one concludes

B—u o _
IDull} < <p—1>/|u| # |ul# | DPu D2 dx

< (p-1)C ()/w Jul* | D2 dx + (p - e [ D) T ax

Q Q
B IS(P 2)
< (p=1)C (&) Iulld [ 1 [DFul”dx-+ (p = Dl
BT
Q

ﬁ(r’ 2)
By using (12) and % —p= pﬁ 26 with p < 2f to estimate Hu||’3 * and || Djul ,° s(p_2) T€Spec-
BT 1

tively, we arrive at

Dy < C &) (p=1) [l " ()3 " + (p = 1)eCC | Dt} + (p = 1)eCy

= C (e) [u]?:w +eCC | Djul|’ + £y,

which implies
%12
IDully < Clulf +Cr,

that ends the proof.
For the last case (iii), leta + p < nand 1 < p < % From Sobolev imbedding
theorems &+ )
WP (Q) C L1(Q) Vi, §e [1, L] . 13
() CLY(Q) V4, q Py (13)
By (6) and (13), we attain
lully < Clulg,,., (14)
3 ; ; 2np(at+p)
Forall u € 53,5 (Q2), we deduce from the inequality p < B (et B) (=) < 2 that
Dl < C el o Ll I (15)
If we take the inequality £ 2(5:;‘) < n"_('zjf 23) into account and estimate ||u|| s Zﬁ Z) in (15) by (14)
we obtain
b 2 _ A 2
1Dl < € [u]s" [u]sefw D[y~ = Clulg,  IIDwll}™ (16)

S 52,0,
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Applying Young’s inequality in (16) we attain

Dl < € (&) -+ Ce D]},

that yields

1Dl < Cluls, .
so, the proof is complete. O

We now turn our attention to some examples and results for one dimensional case.

Definition 6. Leta > f — 1 > 0 we define the following function space

Soplab) = {u e L'(a,b) : [u)""P /\uy“+ﬁdx+/\uy“ B |Du|? dx

Slrxﬁ ab
p
u‘ dx < oo}.

The proofs of the following lemmas can be attained readily, thus we skip the proofs for the
sake of brevity.

Lemma 6. Let S5, 5(a,b) be the space given in Definition 6, then the imbedding
52,“,5(11, b) C Sll,,(,/;(a, b)
holds.

Lemma 7. Leta > f—1 > 0and g(t) = |t|% t for any t € R. Then following assertions are
true

1) ifu € S5,8(a,b), then g (u) € WP (a,b);
2) fora functionu € L' (a,b), if g (u) = v € W>F(a,b), thenu € Sy, p(a,b).

Consequently, we can define the space S5, 4(a,b) in the following way by virtue of the
general definition of the nonlinear spaces.

Definition 7. Letg: R — R, g(t) = |t|% tanda > B—1> 0, then Sy, 4(a,b) has the following
representation

Souplab) = {u €LY ab): [y’ = ¥ D)) < oo} = Sw2s(a,b).

2
S g 5 0<s<2

Remark 2. The following equivalences are true

S~2,,x,ﬁ(a,b) N{u:u|yn=0}= Soz,,x,ﬁ(a,b)

and eip
Df¢(u ﬁz (D?
L 10501 Wng ),
fork =0,1, but fork =2
/ 2 |IP _ 2 atp
D], = s (o) |
and
a+pB

() (D2 = ¢ (5 ) (Du)?)

a+pB ’
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The following example shows the nonlinear structure of the pn-spaces.

Example 1. Suppose that B > 1. Then S11,4(0, 1) is a nonlinear space.

LetT € <%, %] and define the functions

up (x) :==x"and u; (x) :=6,x € (0,1), (6 € R" isa constant) .

It is easy to show that ug, u1 € S1314(0,1) by the definition of Sq74(0,1). Besides
u(x):=ug(x)+up(x) =x"4+0¢S115(0,1).
1
[u ]g:lﬁ 01) /]u]’g+1 dx —{—/]u\ |Du|Pdx —/(x +6)Pt! dx—{—rﬁ/ (x" +60) Py

1
/ xT 4 0)PH! dx+T/5/ (A1) 5+9x5(771)) dx.
0

Since B(T — 1) < —1 so, the right and side of the above equation is divergent which implies
u € Sl,l,ﬁ(oll)'

3  VARIABLE EXPONENT NONLINEAR SPACES AND EMBEDDING THEOREMS

In this section, we present certain new results with detailed proofs for variable exponent
pn-spaces mentioned in Section 1. First, we derive integral inequalities (see, also [20]) to un-
derstand the structure of these spaces. Afterwards, we prove some lemmas and theorems on
continuous embeddings of these spaces and on topology of them. Throughout this section, we
assume that O C R” (n > 2) is a bounded domain with Lipschitz boundary.

Lemma 8. Leta, p € Mp(Q) and a (x) > B (x) a.e. x € Q). Then the inequality

/|u|ﬁ<X> dx < /|u|”‘(x) dx 10|, VueL*® () (17)
Q

holds.
Proof. Let O :={x € Q:a(x) = B (x)} and Oy := QO \ 3. Hence
/|u|/S dx—/|u daH—/|u|/3 dx.
M

Estimating the second integral on the rlght member of the above equation by utilizing Young
inequality (« (x) > B (x) on €)y), we achieve that

Z\u!ﬁ()dxga/\u]()dx—i—({(a(x))" d+/< )d

1

since % < land % < 1, for x € ) we deduce from the last inequality that
/]u]’g(x) dx < /\u]“(x)dx—{—/\u\“(x)dx—l—]Q\ :/\u]“(x)dx—l—\()\.
0 0 0 Q

On the other side if a (x) = B (x) a.e. x € ), then (17) is clear. O



CERTAIN RESULTS FOR A CLASS OF NONLINEAR FUNCTIONAL SPACES 221

Lemma 9. Assume that { € Mo(Q) and B > 1, ¢ > 0. Then for every u € L¢(¥)+¢(Q)

/|u|€<X> In [u] |P dx < N1/|u|€<X>+€dx+N2
0 0
is satisfied. Here N1 = Nj (¢, ) > 0 and N, = N; (¢, B, |Q2|) > 0 are constants.

Proof. Let us consider the function f () = [t| —In|t| for t € R — {0}. Since f is an even
function it is sufficient to investigate only f (t) = t* —Int, t > 0. It can be readily shown that

this function is decreasing on (0, % and increasing on the interval [%, oo) .Also f ' o0

when x N\, 0 and x o and f <%) = L1 (1+1Ine¢). Here we have two situations: (i) if

e € <%,oo), then f <%) > 0; (ii) if e € <O,%], then f <%) < 0. For the first case (i)
Vt € (0,00), f (t) > 0 or equivalently Int < t°. For the case (ii), the function f has two zeros,
say my > 0and my > 0, and for t € Rt — (mq, my) it is obvious that Int < t. For t € [my, my],
dNg > 1 <N0 = NO<%>) such that Int < Npt*. Hence, the inequality Int < Nyt® will be
satisfied on (0, 00) . As a result, from the cases (i) and (ii) for arbitrary ¢ > 0 and t € R — {0},
we have the inequality
In ] < No (&) ¢,
that implies on the set {x € O : [u (x)| > 1} the inequality |u|*® |In|u||f < Ny (¢, B) |u|**)+¢

o(x B
be fulfilled. Moreover, from lim #* [Int|f = 0 and for every fixed xy € Q, lim GO inje P 0,
t—0* -0+ 00t

we arrive at the inequality \u]é(x)_l u| |In |u||P < No <]u]§(x)+€ + 1) is fulfilled on the set
{xe Q:|u(x)| <1} for some Ny = Ny (¢,B) > 0. So, the proof is complete by the combi-
nation of these inequalities. O

Lemma 10. Let € > 0 and B : 3 — [§, o) be a measurable function, which satisfies
E< By <PB1(x) < By <ooand(, B € My(Q), then the inequality

/|u|¢<X> ln Jue]|P®) dx < € / uffETR) gy 4y Wu e LEWHAG) () (18)
Q Q

holds. Here C; = C1 (§,") > 0 and C; = C; (§,81,|Q)|) > 0 are constants.

Proof. For arbitrary v € (0,1), ﬁ;(—;r)y > 1, by utilizing the Young’s inequality with this expo-

nent to |In |u| \Mx) we obtain the following inequality|In |u| ]ﬁ(x) < |In |u| ]’3++’Y + 1, by multi-
plying each side of this inequality with |u| 80 we get

145 I fua| [P <[] |ln|u||’3++7+ u)*®, xeq.
Thus, integrating both sides over (),
/\u]g(x) IIn [u| [P*) dx g/\uy“x) ]ln]u\\ﬁ++7dx—|—/]u\g(x) dx
Q Q Q

is established. For ¢ < g, estimating the first integral on the right side of the last inequality by
Lemma 9, we acquire

/|u|¢<X> In [u]|B®) dx < C3/|u|§(x)+8dx+C4+/|u|§(x) dx.
@) (@) (@)
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As 6;(5835 > 1, applying Lemma 8 to estimate the second integral on the right member of the
last inequality, we gain

/]u\g(x) IIn [u| |P*) dx < Cl/]u\g(x)Jredx—l—Cz,

here C; = Cy (¢,7) > 0and C; = C; (¢, 7, |Q)|) > 0 are constants.
Since ¢ (x) +¢& < ¢ (x) + B1 (x), a.e. x € (), estimating the integral on the right side of the
above equation by using Lemma 8, we attain (18). O

In the following discussions, we examine elaborate properties of the pn-spaces
S1,9(x),6(x),6(x) (€2), presented in Section 1 (for other results, see [19,20]).

Lemma 11. Let Sy (x) 8(x),0(x) (©2) and S1g(x) a(x),6,(x) ((2) be the spaces given in Definition 4.
Assume that one of the conditions given below are satistied

(i) 61 (x) <60 (x),B(x) >a(x)and (x)B(x) =7 (x)a(x),ae x €,
(ii) 61 (x) < 0(x), & (x)B(x) >y (x)a(x),v(x)+B(x) =& (x)+a(x)andp(x) = a(x)+

e for some e > 0.
Under these conditions the embedding
S1,(x),8(x)8(x) () C S1a(x),a(x),6(x) () (19)
holds.

Proof. First, suppose that (i) holds. Let u € Sy, (x) g(x),6(x) (€2), to show the embedding (19) it
is sufficient to verify the finiteness of

RO ( /|u|91 dx+2/|u|5 |Dyu|*

11Q

estimating the first integral on the right member of the above equation with the help of Lem-
ma 8 and second one by employing Young’s inequality, we acquire

RE®O1 (1) < n+1|Q|+/|u| dx+z/|u S| Dy )
i=1
(@)

From the conditions, C(z)(i gx) = v (x) that yields

REAP (1) < RV (u) + (n+1) |0,

so (19) is gained. We note that when the case B (x) = a (x) a.e. x € Q, then ¢ (x) = 7 (x),
hence (19) can be obtained by similar operations as above.
Now, assume that (ii) fulfills. We need to show that R&*%1 (1) is finite. We have

REO1 (y /]u]el dx+z/yu\¢ D"

11Q

y(x)a(x)
—/]u]el dx—{—Z/]u\g ]u\ ﬁ(x \Du\

11Q
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If we estimate the first integral on the right member of the above equation with the help of
(x)

Lemma 8 and second one by employing Young’s inequality with the exponent Blx) a(x) At every
point, one can acquire that

S)B(x)—y(x)a(x)
RE&%1 (y /\u] dx—{—]Q\—{—Z/]uW \Du!’s dx+n/\u] O Oa dax.
i=1
Q

In the light of the condition (ii), the inequality g(x)’z((i)):zgim(x) < v (x) + B (x) holds, so esti-

mating the third integral in the right side of the last inequality by Lemma 8, we arrive at

R&™H1 (1) < (n+1)/\uy Vdx + (n+1) yoHZ/W | Dl
0 =16
< (n+1) (R () + | ),

hence from here desired inequality is achieved. Alsoif 6; (x) = 0 (x) a.e. x € (), by employing
the same operations one can show (19). O

Lemma 12. Let B, y and ¢ satisty the conditions of Theorem 3, then Sy (x) s(x)6(x) () is a
metric space with the metric which is defined below

ds, (1,0) := [l (1) = 9 (@) yeo ) + Z |9} () Ditt — @} (0) D[ o

(x)
Vi, v € S 4(x),(x)0(x) (1), here ¢ (x,t) = |[¢] 5 t and for every fixed x € ()

(0= (e +1) 159

Proof. Tt has been shown in Theorem 3 that® ¢ (1) € LY (Q) and ¢, (u) Du € LP®) (Q)
whenever u € Sy (x) g(x)0(x) (€2), thus one can verify that ds (-, - ) : $1,(x),8(x)6(x) (2) = R
satisfy the metric axioms, i.e.

(i) ds, (u,v) >0,
(i) ds, (u,0) =ds, (v,u),
(iii) u = v = dg, (u,v) =0,
(iv) ds, (u,v) = 0= ||¢ (u) — ¢ (v)|\L¢(x>(Q) =0= ¢ (u) = ¢(v)since ¢ is 1-1, then u = v,

(v) from the subadditivity of norm, dg, (u,v) < dg, (u,w) +ds, (w,v).

7(x)
3 From now on, we denote ¢ (x,u) := ¢ (1) = |u|P® u for simplicity.
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Theorem 7. Under the conditions of Theorem 3, ¢ is a homeomorphism between the spaces
Sl,’y(x),ﬁ(x),()(x) (Q) and Ll’ﬁ(x) (Q) N Llp(x) (Q) .

Proof. The function ¢ is a bijection between Sy, (x) g(x)6(x) ((2) and LY A () N L¥Y™) (Q) by
Theorem 3. Thus it is ample to prove the continuity of ¢ as well as ¢! in the sense of topology
induced by the metric dg, (-, - ). For this, we need to show that

LLBX) (Q)NLY®) (O
(@Q)NL#(Q)

(i) ds, (um, o) m—/‘; 0 = ¢(um) ¢(ug) for every {un} € Sllv(x),ﬁ(x),g(x)(())

m /oo
which converges to 1y and
- LVPO)NLY(Q) -1 -1 1, B(x) (x)
(i) vy 7) vo = ds, (@~ (vm), ¢~ (v0)) 7> 0 for every v, € LA (Q) N LY (Q)
m /o0 m /o0

which converges to vy.

Since for every vy, and vy there exist a unique uy, and ug € Sy ,(x) (x),6(x) () such that

¢ (Um) = vy and ¢ (ug) = v, the implication (7i) can be written equivalently as follows
Ll/ﬁ(x)(Q)mL‘/’(x)(Q)
@ (ttm) n;; ¢ (ug) = ds, (um, up) n;; 0 for every {um} € Siq(x)8(x)0(x) ()

which converges to 1.
Since the proofs of (i) and (ii) are similar, we only prove (ii). Let vy, v, € L¥P¥) (Q) N

1, B(x) p() 1, B(x) y()
LY™) (Q) and O (@0 (Q)vo < ¢ (um) Lrang (Q)go (1) .
To verify dg, (um, up) — 0, by definition of metric dg, it is ample to demonstrate that

|9t (1m) Dittw — @t (10) Ditio| g ) = 0 and @ (tm) — @ (10)l| yey ) — O

asm .

L B(x) p(x)
From ¢ (u,) LNy (Q)go (up) , we have

l¢ () — @ (40)[| Ly (o) =0 and  |[Di (@ (um) — ¢ (40)) | s () = O-
Hence, we only need to show that
| @ (tm) Ditim — @ (1) Diuo}‘Lﬁ(x>(Q) —0 asm ' oo.
From Lemma 4, we have

@t (1m) Dittw — @t (10) Ditto| sy ) — O > 0p (@} (m) Dittm — @} (tt0) Diuag) — 0. (20)

Based on (20), fori = 1,n

5 (9} (1n) Dyt = 1 1t0) Dito) = [ ¢} (1) it — ¢} (10) Dyuo|*™ dix,  (21)
Q

one can show that the following equality holds

9} (1) Ditt — 9} (110) Dyt = (55222 ) Di ( (1) — 9 (10))

Djy.B—.D; () 1
B < yﬁég’ﬁ"yﬁ) 5) (‘um’MX) Uy I [t | — [1o] P g In |ug] ) -

(22)
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Substituting (22) into (21), we acquire

Ip ((Pi (um) Djuy, — 902 (lxl()) Diuo)
= [ G&%) Di (9 (1) = 9 (w0))
@)

D;y.p—7.D; (1) () pe)
= (2422 (1wl s ] = 07w )
taking B(x) into the absolute value and applying known inequality, we gain
% (9} (1) Dyt = 9} (1t0) Dito) < 2#' ™1 [/ Di (g (1)) — D (g (10)) P
O
7(x) 7(x) B @3)
+ C3/ [t | ) 1y I |10 | — 10| P 1o I |11 dx,

Q

here C3 = C3 </3+, 17llcr iy - ”ﬁ”cl(())) > 0 is constant.

Since ||D; (¢ (um) — ¢ (19)) ”Lﬁ(x)(ﬂ) —0as m ' oo, the first integral in the right member
of (23) converges to zero when m tends to infinity (Lemma 4).

From Theorem 3, function ¢ is bijective between the spaces L) (Q) and LY™) (Q). Also
since || ¢ (um) — @ (1) ||L¢<x>(0) — 0, we arrive at

@ (ttm) % ¢ (uy) = um% U (24)

and

) P(x)

(%)
/ |um| B Uy

0p (Um) = / ) dx =
Q QO

dx = / 1 (1) |?™) dx < M (25)
Q

for some M > 0.
Employing (24), (25) and Vitali’s Theorem*, we attain

/\um\g(x) dx —>/\u0]9(x) dx, m ~ oo. (26)
(@) (@)

Since u,;, converges to 1 in measure on (), using this and (26), we deduce from Lemma 4 that
09 (thm — 1g) —> 0 = ||um — uOHLg(x)(Q) — 0. (27)
4 Theorem (Vitali, [16]). Let (Q), %, u) be a finite measure space, and f, : ) — R be a sequence of measurable

functions converging a.e. to a measurable f. Then ||fu — fll;1(q) — 0 asn — oo iff {fy : n > 1} is uniformly
integrable. When the condition is satistied, we have

lim [ fudye = | pap.
(@) (@)
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=
N

7(x r(x
Denote wyy, = |ty |P® 1y In |uy,| and wo := |ug|F®) ugIn |up|, then

aﬁ(umg::‘/ﬁuWJV“)+ﬁ&>un|umuﬁ“>dx.
@)

Estimating the above integral by using Lemma 10, one can obtain

%wmgq/mm@m+gzq@ww+@
9]

From (27), o (wm) < M for all m > 1, for some M > 0. Thus as shown above for 1, similarly
we conclude thatas m 7 oo

[th| PO 1y I |1y | — |10] PO g I g | — 0,

Uﬁ(wm—wo)—>02>/
Q

hence from (23) we attain,

H(Pg (um) Diuty — (Pg (u()) DiMOHLﬁ(X)(Q) —0, m J oo.

So, the proof is complete. O
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Y aaHiif poboTi MM BMBUAEMO BAACTMBOCTI KAacy (PYHKIiOHAABHMX IPOCTOPiB, TaK 3BaHMX
PN-TIPOCTOPIB, SIKi 3’ IBASIIOTHCSI IPY AOCAIAXEeHHI HeAiHIHIX AMdpepeHITiaAbHVIX PiBHSIHD. M1 BcTa-
HOBUAM A@sIKi iHTerpaAbHi HEPiBHOCTI AASI aHAAI3y CTPYKTYPU pN-IIPOCTOPIB 3i CTAAVMIUL Ta 3MiHHN-
MM HOKasHuMKaMm. Mu AOBeAM TeOpeMI MPO BKAAAEHHS, SIKi BCTAHOBAIOIOTH CIiBBiAHOLIIEHHS IIIX
IIPOCTOPiB 3 A0bpe BiaoMmMu KaacuaHMMM IpocTopamu Aebera i CoboaeBa 3i crarymu Ta 3MiHEN-
MJ IOKA3HUKAMIL

Kntouosi cnosa i hpasu: pn-pocTip, 3MiHHIIT TOKa3HNK, iHTerpaAbHa HepiBHICTD, HeAiHilHe A-
depeHITiaAbHe PiBHSIHHSI, TeOpeMa PO BKAAAEHHSL.



