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LOCAL NEARRINGS ON FINITE NON-ABELIAN 2-GENERATED p-GROUPS

It is proved that for p > 2 every finite non-metacyclic 2-generated p-group of nilpotency class

2 with cyclic commutator subgroup is the additive group of a local nearring and in particular of

a nearring with identity. It is also shown that the subgroup of all non-invertible elements of this

nearring is of index p in its additive group.
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INTRODUCTION

Nearrings are generalizations of associative rings in the sense that with respect to the ad-

dition they need not be commutative and only one distributive law is assumed. In this paper

the concept “nearring” means a left distributive nearring with a multiplicative identity. The

reader is referred to the books by Meldrum [6] or Pilz [8] for terminology, definitions and basic

facts concerning nearrings.

Following [3], the nearring with identity will be called local, if the set of all non-invertible

elements forms a subgroup of its additive group. The main results concerning local nearrings

are summarized in [11].

In [4] it is shown that every non-cyclic abelian p-group of order pn
> 4 is the additive

group of a zero-symmetric local nearring which is not a ring. As it was noted in [5], neither a

generalized quaternion group nor a non-abelian group of order 8 can be the additive group of

a local nearring.

Therefore the structure of the non-abelian finite p-groups which are the additive groups of

local nearrings is an open problem [2].

It was proved that every non-metacyclic Miller–Moreno p-group of order pn
> 8 is the

additive group of a local nearring and the multiplicative group of such a nearring is the group

of order pn−1(p − 1) [9]. In this paper finite non-abelian non-metacyclic 2-generated p-groups

(p > 2) of nilpotency class 2 with cyclic commutator subgroup are studied.
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1 PRELIMINARIES

Let G be a finite non-abelian non-metacyclic 2-generated p-group (p > 2) of nilpotency

class 2 with cyclic commutator subgroup.

Denote by G′ and Z(G) the commutator subgroup and the centre of G, respectively.

Let a and b be generators for G such that G/G′ = 〈aG′〉 × 〈bG′〉, aG′ has order pm and

bG′ has order pn. Then c = [a, b] generates G′, c has order pd with 1 ≤ d ≤ n ≤ m, and

c ∈ Z(G) = 〈apm
, bpn

, c〉.

Suppose that 〈a〉 ∩ G′ = 〈b〉 ∩ G′ = 1. Then

G = 〈a, b, c|apm
= bpn

= cpd
= 1, ab = ac, ca = cb = c〉

and each element of G can be uniquely written in the form ax1 bx2 cx3 , x1 ∈ Cpm , x2 ∈ Cpn ,

x3 ∈ Cpd . Therefore the group G with p > 2 will be denoted by G(pm, pn, pd).

Lemma 1. For any natural numbers k and l the equality [ak, bl] = ckl holds.

Proof. Since b−1ab = ac, it follows that b−labl = acl . Therefore, b−lakbl = (acl)k = akckl, thus

a−kb−lakbl = ckl .

Corollary 1. Let the group G(pm, pn, pd) be additively written. Then for any natural numbers

k and l the equalities −ak − bl + ak + bl = c(kl) and bl + ak = −c(kl) + ak + bl hold.

Lemma 2. For any natural numbers k, l and r the equality

(akbl)r = akrblrc−kl(r
2) (1)

holds.

Proof. For r = 1, there is nothing to prove. By induction on r, we derive

(akbl)r = akrblrc−kl(r
2).

Replacing r by r + 1 in equality (1), we have

(akbl)(r+1) = akrblrakblc−kl(r
2) = ak(r+1)bl(r+1)c−klrc−kl(r

2)

= ak(r+1)bl(r+1)c−kl(r+(r
2)) = ak(r+1)bl(r+1)ckl(r+1

2 ).

Thus, equality (1) holds for an arbitrary r.

Corollary 2. Let the group G(pm, pn, pd) be additively written. Then for any natural numbers

k, l and r the equality (ak + bl)r = akr + blr − ckl(r
2) holds.

Obviously, the exponent of G(pm, pn, pd) is equal to pm for 1 ≤ d ≤ n ≤ m.

Lemma 3. If x is an element of order pm of G(pm, pn, pd), then there exist generators a, b, c of

this group such that a = x and apm
= bpn

= cpd
= 1, ab = ac, ca = cb = c.
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Proof. Indeed, for each x ∈ G(pm, pn, pd) there exist positive integers α, β and γ such that

x = aαbβcγ. Thus, we have

xpm
= (aαbβcγ)pm

= (aαbβ)pm
cγpm

= aαpm
bβpm

cγpm−αβ(pm

2 )

= apm α
bpmβcpm(γ−αβ

(pm−1)
2 ) = 1

by Lemma 2. Since |a| = pm and 1 ≤ d ≤ n ≤ m, where m > 1 and p > 2, it follows that the

exponent of G(pm, pn, pd) equals pm.

If

xpm−1
= apm−1αbpm−1βcpm−1(γ−αβ

(pm−1−1)
2 ) 6= 1,

then either (α, p) = 1, or (β, p) = 1 for m = n, or (γ, p) = 1 for m = n = d. So, without loss of

generality, we can assume that (α, p) = 1. Then

〈x, b〉 = 〈aαbβcγ, b〉 = 〈aα, b〉 = 〈a, b〉 = G

and

b−1xb = b−1(aαbβcγ)b = (ac)αbβcγ = (aαbβcγ)cα = xcα.

Furthermore, substituting cα instead of c for generators x and b of G(pm, pn, pd), we have simi-

lar expressions as for generators a and b, thus replacing the element a by x.

The following assertion concerning the automorphisms group of G(pm, pn, pd) is a direct

consequence of statement (B1) [7].

Lemma 4. Let G = G(pm, pn, pd) and let Aut(G) be the automorphism group of G. Then the

following statements hold:

1) if m = n, then |Aut(G)| = p2d+4m−5(p2 − 1)(p − 1);

2) if m > n, then |Aut(G)| = p2d+3n+m−2(p − 1)2.

An information about a group of automorphisms of G(pm, pm, pd) is given by the following

lemma.

Lemma 5. Let G = G(pm, pm, pd) and let there exist a subgroup A of Aut(G) of order

p2m+d−2(p2 − 1), where m, d > 1 with odd p. If an element g ∈ G of order pm and A contains

Sylow normal p-subgroup, then G 6= gA ∪ Φ(G).

Proof. Assume that G = gA ∪ Φ(G). Then G = (〈a〉 × 〈c〉)⋊ 〈b〉 with generators a, b of order

pm and a central commutator c = [a, b] of order pd by the definition. Hence

Φ(G) = (〈ap〉 × 〈c〉)⋊ 〈bp〉,

and thus all elements of order pm are contained in gA. Furthermore, a = gu for some u ∈ A,

hence gA = aA, i. e. G = aA ∪ Φ(G). Since |G| = p2m+d and Φ(G) = p2m+d−2, it follows that

|aA| = |G| − |Φ(G)| = p2m+d−2(p2 − 1),

and so the centralizer CA(a) of a in A equals 1. In particular, (a〈cp〉)A = (a〈cp〉)B = a〈cp〉 for

the normal subgroup B = CA(a〈c
p〉) of order pd−1 in A.

Considering the factor-group Ḡ = G/〈cp〉 and Ā = A/B. Taking into consideration, that

|āĀ| = p2m−1(p2 − 1), we have Ḡ = āĀ ∪ Φ(Ḡ). Since |Φ(Ḡ)| = |Z(Ḡ)| and xy = yx for all

x ∈ Φ(Ḡ), y ∈ Ḡ, we have Φ(Ḡ) = Z(Ḡ). Therefore, Ḡ is a Miller–Moreno group. Since

Ḡ = āĀ ∪ Z(Ḡ), the latter equality is impossible by [9, Lemma 7]. This contradiction completes

the proof.
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2 NEARRINGS WITH IDENTITY ON GROUP G(pm, pn, pd)

First recall some basic concepts of the theory of nearrings.

Definition 1. A set R with two binary operations “+” and “·” is called a (left) nearring if the

following statements hold

(1) (R,+) = R+ is a (not necessarily abelian) group with neutral element 0;

(2) (R, ·) is a semigroup;

(3) x(y + z) = xy + xz for all x, y, z ∈ R.

If R is a nearring, then the group R+ is called the additive group of R. If in addition 0 · x = 0,

then the nearring R is called zero-symmetric and if the semigroup (R, ·) is a monoid, i.e. it has

an identity element i, then R is a nearring with identity i. In the latter case the group R∗ of all

invertible elements of the monoid (R, ·) is called the multiplicative group of R.

The following assertion is well-known.

Lemma 6. Let R be a finite nearring with identity i. Then the exponent of R+ is equal to the

additive order of i which coincides with additive order of every element of R∗.

As a direct consequence of Lemmas 3 and 6 we have the following corollary.

Corollary 3. Let R be a nearring with identity i whose group R+ is isomorphic to a group

G(pm, pn, pd). Then R+ = 〈a〉+ 〈b〉+ 〈c〉 with elements a, b and c, satisfying relations apm =

bpn = cpd = 0, −b + a + b = a + c and −a + c + a = −b + c + b = c with 1 ≤ d ≤ n ≤ m,

where a = i.

The following statement [10, Lemma 1] establishes a connection between the automorphism

group of the additive group of the nearring with identity and its multiplicative group.

Lemma 7. Let R be a nearring with identity i. Then there exists a subgroup A of the

automorphism group Aut(R+) which is isomorphic to R∗ and satisfying the condition

iA = {ia | a ∈ A} = R∗.

The subgroup A defined in Lemma 7 is called the automorphism group of the group R+

associated with the group R∗.

The following statement [11, Theorem 54] concerns the structure of L which is the subgroup

of all non-invertible elements of finite local nearring R. Let Φ(G) denote the Frattini subgroup

of G.

Theorem 1. Let R be a local nearring of order pn and let G(R) = R+
⋊R∗ be a group associated

with R. Then H = R+
⋊ (i + L) is a Sylow normal p-subgroup of G(R) and L = R+ ∩ Φ(H).

In particular, if L is non-abelian, then its center is non-cyclic.

Considering Φ(R+) ≤ Φ(H), we have the following corollary.

Corollary 4. Φ(R+) ≤ L = Φ(H) ∩ R+.
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Let R be a nearring with identity i whose group R+ is isomorphic to a group G(pm, pn, pd).

It follows from Corollary 3 that R+ = 〈a〉+ 〈b〉+ 〈c〉 with elements a, b and c, satisfying re-

lations apm = bpn = cpd = 0, −b + a + b = a + c and −a + c + a = −b + c + b = c with

1 ≤ d ≤ n ≤ m, where a = i and each element x ∈ R is uniquely written in the form

x = ax1 + bx2 + cx3 with coefficients 0 ≤ x1 < pm, 0 ≤ x2 < pn and 0 ≤ x3 < pd.

Furthermore, we can assume xa = ax = x for each x ∈ R. Then there exist uniquely

defined mappings α : R → Zpm , β : R → Zpn and γ : R → Zpd such that

xb = aα(x) + bβ(x) + cγ(x). (2)

Lemma 8. If x = ax1 + bx2 + cx3 and y = ay1 + by2 + cy3 are arbitrary elements of R, then

xy = a(x1y1 + y2α(x)) + b(x2y1 + y2β(x))

+ c
(

− x1x2

(

y1

2

)

−

(

y2

2

)

α(x)β(x) − x2y1y2α(x)

+ x3y1 + y2γ(x) + x1y3β(x)− x2y3α(x)
)

,

where mappings α : R → Zpm , β : R → Zpn and γ : R → Zpd satisfy the conditions

(0) α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd) if and only if the near-

ring R is zero-symmetric;

(1) α(xy) ≡ x1α(y) + α(x)β(y) (mod pm );

(2) β(xy) ≡ x2α(y) + β(x)β(y) (mod pn );

(3) γ(xy) ≡ −x1x2(
α(y)

2 )− α(x)β(x)(β(y)
2 )− x2α(x)α(y)β(y)

+x3α(y) + γ(x)β(y) + x1β(x)γ(y) − x2α(x)γ(y) (mod pd ).

Proof. If R is a zero-symmetric nearring, then

0 = 0 · b = aα(0) + bβ(0) + cγ(0),

thus α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd). On the other hand, if

the last congruences hold, then 0 · b = a · 0 + b · 0 + c · 0 = 0. Since a is the multiplicative

identity in R, we have 0 · a = a · 0 = 0. Moreover, from the equality c = −a − b + a + b and the

left distributive law it follows that 0 · c = −0 · a − 0 · b + 0 · a + 0 · b = 0, hence

0 · x = 0 · (ax1 + bx2 + cx3) = (0 · a)x1 + (0 · b)x2 + (0 · c)x3 = 0.

This proves statement (0).

Next, using (2) and Corollary 1, we obtain

xc = −xa − xb + xa + xb = −cx3 − bx2 − ax1 − cγ(x)− bβ(x)− aα(x)

+ ax1 + bx2 + cx3 + aα(x) + bβ(x) + cγ(x)

= −bx2 − ax1 − bβ(x)− aα(x) + ax1 + bx2 + aα(x) + bβ(x)

= −bx2 + cx1β(x)− bβ(x)− ax1 − a(α(x) − x1) + bx2 + aα(x) + bβ(x)

= cx1β(x)− b(x2 + β(x)) − aα(x) + bx2 + aα(x) + bβ(x)
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= cx1β(x)− b(x2 + β(x)) − aα(x)− cx2α(x) + aα(x) + bx2 + bβ(x)

= c(x1β(x)− x2α(x))− b(x2 + β(x)) + bx2 + bβ(x) = c(x1β(x)− x2α(x)).

Therefore

xy = (ax1 + bx2 + cx3)y1 + (aα(x) + bβ(x) + cγ(x))y2 + (cx1β(x)− x2α(x))y3.

Corollary 2 implies that

(ax1 + bx2)y1 = ax1y1 + bx2y1 − cx1x2

(

y1

2

)

,

(aα(x) + bβ(x))y2 = ay2α(x) + by2β(x)− c

(

y2

2

)

α(x)β(x)

and

bx2y1 + ay2α(x) = ay2α(x) + bx2y1 − cx2y1y2α(x).

By the left distributive law, we have

xy = a(x1y1 + y2α(x)) + b(x2y1 + y2β(x)) + c
(

− x1x2

(

y1

2

)

−

(

y2

2

)

α(x)β(x) − x2y1y2α(x) + x3y1 + y2γ(x) + x1y3β(x)− x2y3α(x)
)

.

Finally, the associativity of multiplication for all x, y ∈ R implies that

1) (xy)b = x(yb).

Thus

2) (xy)b = aα(xy) + bβ(xy) + cγ(xy)

and yb = aα(y) + bβ(y) + cγ(y) by formula (2). Substituting the last expression in the right

part of equality 1), we get

3) x(yb) = a(x1α(y) + α(x)β(y)) + b(x2α(y) + β(x)β(y))

+ c(−x1x2(
α(y)

2 )− α(x)β(x)(β(y)
2 )− x2α(x)α(y)β(y)

+ x3α(y) + γ(x)β(y) + x1β(x)γ(y) − x2α(x)γ(y)).

Comparing the coefficients a, b and c in 2) and 3) by equality 1), we derive statements (1)–(3)

of the lemma.

3 LOCAL NEARRINGS ON GROUP G(pm, pn, pd)

Let R be a local nearring with identity i, whose group R+ is isomorphic to the group

G(pm, pn, pd). Then R+ = 〈a〉+ 〈b〉+ 〈c〉 with elements a, b and c, satisfying relations

apm = bpn = cpd = 0, −b+ a+ b = a+ c and −a+ c+ a = −b+ c+ b = c with 1 ≤ d ≤ n ≤ m,

where a = i and each element x ∈ R is uniquely written in the form x = ax1 + bx2 + cx3 with

coefficients 0 ≤ x1 < pm, 0 ≤ x2 < pn and 0 ≤ x3 < pd.

We show that the set L of all non-invertible elements of R is a subgroup of index p in R+.
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Theorem 2. The following statements hold

1) L = 〈a · p〉+ 〈b〉+ 〈c〉 and, in particular, the subgroup L is of index p in R+ and

|R∗| = pm+n+d−1(p − 1);

2) x = ax1 + bx2 + cx3 is an invertible element if and only if x1 6≡ 0 (mod p).

Proof. Assume that |R+ : L| = pt, t > 1. Since R = R∗ ∪ L, it follows that

|R∗| = |R| − |L| = pm+n+d − pm+n+d−t = pm+n+d−t(pt − 1).

According to Lemma 7, the group R∗ is isomorphic to the subgroup A of the automorphism

group of R+ and so |R∗| divides |Aut(R+)|. According to statement 1) of Lemma 4 it is possible

only if t = 2 and m = n.

Assume that |R+ : L| = p2 and m = n. If d = 1, then it is impossible because of [9, Theorem

2]. Now let d > 1. Since |R+ : Φ(R+)| = p2 and Corollary 4, we have L = Φ(R+). Hence

by Lemma 7, we get R+ = aA ∪ Φ(R+), which is impossible by Lemma 5. This contradiction

shows that our assumption is false and so |R+ : L| = p.

It is clear that R/L is a nearfield and so the factor-group R+/L+ is an elementary abelian

p-group. Thus for a /∈ L we have ap ∈ L and so L = 〈a · p〉+ 〈b〉+ 〈c〉. Therefore R∗ = R \ L

and hence

R∗ = {ax1 + bx2 + cx3 | x1 6≡ 0 ( mod p )}.

Applying statement (1) of Theorem 2 to Lemma 8, we get the following formula for multi-

plying elements x = ax1 + bx2 + cx3 and y = ay1 + by2 + cy3 in the local nearring R.

Corollary 5. If x, y ∈ R with 1 ≤ d ≤ n ≤ m and xb = aα(x) + bβ(x) + cγ(x), then

xy = a(x1y1 + y2α(x)) + b(x2y1 + y2β(x)) + c
(

− x1x2

(

y1

2

)

−

(

y2

2

)

α(x)β(x) − x2y1y2α(x) + x3y1 + y2γ(x) + x1y3β(x)− x2y3α(x)
)

,

where mappings α : R → Zpm , β : R → Zpn and γ : R → Zpd and the following statements

hold

(0) α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd) if and only if the

nearring R is zero-symmetric;

(1) α(x) ≡ 0 (mod p);

(2) if β(x) ≡ 0 (mod p), then x1 ≡ 0 (mod p);

(3) α(xy) ≡ x1α(y) + α(x)β(y) (mod pm );

(4) β(xy) ≡ x2α(y) + β(x)β(y) (mod pn );

(5) γ(xy) ≡ −x1x2(
α(y)

2 )− α(x)β(x)(β(y)
2 )− x2α(x)α(y)β(y) +x3α(y) + γ(x)β(y)

+x1β(x)γ(y) − x2α(x)γ(y) (mod pd ).
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Proof. Indeed, statements (0), (3)–(5) repeat statements (0)–(4) of Lemma 8. Since L = 〈a · p〉+

〈b〉 + 〈c〉 by Theorem 2 and L is an (R, R)-subgroup in R by statement 2) [1, Lemma 3.2], it

follows that xb ∈ L and hence α(x) ≡ 0 (mod p), proving statement (1). Taking y = c, we

have xc = c(x1β(x)− x2α(x)). Thus, if β(x) ≡ 0 (mod p), then xc = 0 (mod p), and so x ∈ L.

Thus x1 ≡ 0 (mod p) by Theorem 2, proving statement (2).

The following theorem shows the conditions given in Theorem 2 are sufficient for existing

of finite local nearrings on G(pm, pn, pd). Moreover, each group G(pm, pn, pd) is the additive

group of a nearring with identity.

Theorem 3. For each prime p and positive integers m, n and d with 1 ≤ d ≤ n ≤ m there exists

a local nearring R whose additive group R+ is isomorphic to the group G(pm, pn, pd).

Proof. Let R be an additively written group G(pm, pn, pd) with generators a, b and c satisfy-

ing the relations |a| = pm, |b| = pn, |c| = pd, b−1ab = ac and a−1ca = b−1cb = c. Then

G = 〈a〉+ 〈b〉+ 〈c〉 and each element x ∈ R is uniquely written in the form x = ax1 + bx2 + cx3

with coefficients 0 ≤ x1 < pm, 0 ≤ x2 < pn and 0 ≤ x3 < pd. In order to define a multiplication

“·” on R in such a manner that (R,+, ·) is a local nearring.

Assume that 1 ≤ d ≤ n ≤ m and let the mappings from Corollary 5 be defined by the

congruences α(x) ≡ 0 (mod pm), β(x) ≡ x1 (mod pn) and γ(x) ≡ 0 (mod pd) for each

x ∈ G. Then

x · y = ax1y1 + b(x2y1 + x1y2) + c
(

− x1x2

(

y1

2

)

+ x3y1 + x2
1y3

)

.

It suffices to show that the mappings α : G → Zpm , β : G → Zpn and γ : G → Zpd with

respect to the multiplication “·” satisfy statements (0)–(5) of Corollary 5.

Indeed, α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd) by the de-

finition. Since 0 · y = a · 0 + b · 0 + c · 0 = 0 for each y ∈ G, this implies that a multiplica-

tion “·” is zero-symmetric and so, proving statement (0) of Corollary 5. Indeed, we have

α(x) ≡ 0 (mod p) and x1 ≡ 0 (mod p), if β(x) ≡ 0 (mod p), so that statements (1) and (2) of

Corollary 5 hold. Clearly, we derive statements (3)–(5) of Corollary 5.

As corollary we have the following assertion.

Corollary 6. Each group G(pm, pn, pd) is the additive group of a nearring with identity.
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Раєвська I.Ю., Раєвська М.Ю. Локальнi майже-кiльця на скiнченних неабелевих неметациклiчних

2-породжених p-групах // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 199–207.

Доведено, що для p > 2 кожна скiнченна неметациклiчна 2-породжена p-група зi ступенем

нiльпотентностi рiвним 2 з циклiчним комутантом є адитивною групою деякого локального

майже-кiльця, зокрема, майже-кiльця з одиницею. Показано, що пiдгрупа всiх необоротних

елементiв цього локального майже-кiльця має iндекс p в його адитивнiй групi.

Ключовi слова i фрази: скiнченна p-группа, локальне майже-кiльце.


