

Chapovskyi Y.Y.¹, Mashchenko L.Z.², Petravchuk A.P.¹

NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL CORANK

Let \mathbb{K} be a field of characteristic zero, A be an integral domain over \mathbb{K} with the field of fractions R = Frac(A), and $Der_{\mathbb{K}}A$ be the Lie algebra of all \mathbb{K} -derivations on A. Let $W(A) := RDer_{\mathbb{K}}A$ and L be a nilpotent subalgebra of rank n over R of the Lie algebra W(A). We prove that if the center Z = Z(L) is of rank $\geq n - 2$ over R and F = F(L) is the field of constants for L in R, then the Lie algebra FL is contained in a locally nilpotent subalgebra of W(A) of rank n over R with a natural basis over the field R. It is also proved that the Lie algebra FL can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie algebra $u_n(F)$, which was studied early by other authors.

Key words and phrases: derivation, vector field, Lie algebra, nilpotent algebra, integral domain.

² Kyiv National University of Trade and Economics, 19 Kioto str., 02156, Kyiv, Ukraine

INTRODUCTION

Let \mathbb{K} be a field of characteristic zero, A be an integral domain over \mathbb{K} , and $R = \operatorname{Frac}(A)$ be its field of fractions. Recall that a \mathbb{K} -derivation D on A is a \mathbb{K} -linear operator on the vector space A satisfying the Leibniz rule D(ab) = D(a)b + aD(b) for any $a, b \in A$. The set $\operatorname{Der}_{\mathbb{K}} A$ of all \mathbb{K} -derivations on A is a Lie algebra over \mathbb{K} with the Lie bracket $[D_1, D_2] = D_1D_2 - D_2D_1$. The Lie algebra $\operatorname{Der}_{\mathbb{K}} A$ can be isomorphically embedded into the Lie algebra $\operatorname{Der}_{\mathbb{K}} R$ (any derivation D on A can be uniquely extended on R by the rule $D(a/b) = (D(a)b - aD(b))/b^2$, $a, b \in A$). We denote by W(A) the subalgebra $R \operatorname{Der}_{\mathbb{K}} A$ of the Lie algebra $\operatorname{Der}_{\mathbb{K}} R$ (note that W(A) and $\operatorname{Der}_{\mathbb{K}} R$ are Lie algebras over the field \mathbb{K} but not over R). Nevertheless, W(A) and $\operatorname{Der}_{\mathbb{K}} R$ are vector spaces over the field R, so one can define the rank $\operatorname{rk}_R L$ for any subalgebra L of the Lie algebra W(A) by the rule $\operatorname{rk}_R L = \dim_R RL$. Every subalgebra L of the Lie algebra W(A) determines its field of constants in R by

$$F = F(L) := \{r \in R \mid D(r) = 0 \text{ for all } D \in L\}.$$

The product $FL = \{\sum \alpha_i D_i \mid \alpha_i \in F, D_i \in L\}$ is a Lie algebra over the field *F*, this Lie algebra often has simpler structure than *L* itself (note that such an extension of the ground field preserves the main properties of *L* from the viewpoint of Lie theory).

We study nilpotent subalgebras $L \subseteq W(A)$ of rank $n \ge 3$ over R with the center Z = Z(L) of rank $\ge n - 2$ over R, i.e. with the center of corank ≤ 2 over R. We prove that FL is contained

 $^{^1}$ Taras Shevchenko National University, 64/13 Volodymyrska str., 01601, Kyiv, Ukraine

E-mail: safemacc@gmail.com(ChapovskyiY.Y.), mashchenkoliudmila@gmail.com(MashchenkoL.Z.), apetrav@gmail.com(Petravchuk A.P.)

УДК 512.5

²⁰¹⁰ Mathematics Subject Classification: Primary 17B66; Secondary 17B05, 13N15.

in a locally nilpotent subalgebra of W(A) with a natural basis over R, similar to the standard basis of the triangular Lie algebra $U_n(F)$ (Theorem 1). As a consequence, we get an isomorphic embedding (as Lie algebras) of the Lie algebra FL over F into the triangular Lie algebra $u_n(F)$ over F (Theorem 2). These results generalize main results of the papers [8] and [9]. Note that the problem of classifying finite dimensional Lie algebras from Theorem 1 up to isomorphism is wild (i.e., it contains the hopeless problem of classifying pairs of square matrices up to similarity, see [3]). Triangular Lie algebras were studied in [1] and [2], they are locally nilpotent but not nilpotent.

We use standard notations. The ground field \mathbb{K} is arbitrary of characteristic zero. If F is a subfield of a field R and $r_1, \ldots, r_k \in R$, then $F \langle r_1, \ldots, r_k \rangle$ is the set of all linear combinations of r_i with coefficients in F, it is a subspace in the F-space R, for an infinite set $\{r_1, \ldots, r_k, \ldots\}$ we use the notation $F \langle \{r_i\}_{i=1}^{\infty} \rangle$. The triangular subalgebra $u_n(\mathbb{K})$ of the Lie algebra $W_n(\mathbb{K}) := \text{Der}_{\mathbb{K}} \mathbb{K}[x_1, \ldots, x_n]$ consists of all the derivations on $\mathbb{K}[x_1, \ldots, x_n]$ of the form

$$D = f_1(x_2, \dots, x_n) \frac{\partial}{\partial x_1} + \dots + f_{n-1}(x_n) \frac{\partial}{\partial x_{n-1}} + f_n \frac{\partial}{\partial x_1}$$

where $f_i \in \mathbb{K}[x_{i+1}, ..., x_n]$, $f_n \in \mathbb{K}$. If $D \in W(A)$, then Ker *D* denotes the field of constants for *D* in *R*, i.e., Ker $D = \{r \in R \mid D(r) = 0\}$.

1 MAIN PROPERTIES OF NILPOTENT SUBALGEBRAS OF W(A)

We often use the next relations for derivations which are well known (see, for example [7]). Let $D_1, D_2 \in W(A)$ and $a, b \in R$. Then

1)
$$[aD_1, bD_2] = ab[D_1, D_2] + aD_1(b)D_2 - bD_2(a)D_1;$$

2) if
$$a, b \in \text{Ker} D_1 \cap \text{Ker} D_2$$
, then $[aD_1, bD_2] = ab[D_1, D_2]$.

The next two lemmas contain some results about derivations and Lie algebras of derivations.

Lemma 1 ([6], Lemma 2). Let *L* be a subalgebra of the Lie algebra $\text{Der}_{\mathbb{K}} \mathbb{R}$ and *F* the field of constants for *L* in *R*. Then *FL* is a Lie algebra over *F*, and if *L* is abelian, nilpotent or solvable, then so is *FL*, respectively.

Lemma 2 ([6], Proposition 1). Let *L* be a nilpotent subalgebra of the Lie algebra W(A) with $\operatorname{rk}_R L < \infty$ and F = F(L) the field of constants for *L* in *R*. Then

- 1) FL is finite dimensional over F;
- 2) if $\operatorname{rk}_R L = 1$, then L is abelian and $\dim_F FL = 1$;
- 3) if $\operatorname{rk}_R L = 2$, then FL is either abelian with $\dim_F FL = 2$ or FL is of the form

$$FL = F\left\langle D_2, D_1, aD_1, \ldots, \frac{a^k}{k!}D_1 \right\rangle,$$

for some $D_1, D_2 \in FL$ and $a \in R$ such that $[D_1, D_2] = 0$, $D_2(a) = 1$, $D_1(a) = 0$.

Lemma 3. Let *L* be a nilpotent subalgebra of the Lie algebra W(A) of rank *n* over *R* with the center Z = Z(L) of rank *k* over *R*. Then $I := RZ \cap L$ is an abelian ideal of *L* with $rk_R I = k$.

Proof. By Lemma 4 from [6], *I* is an ideal of the Lie algebra *L*. Let us show that *I* is abelian. Let us choose an arbitrary basis D_1, \ldots, D_k of the center *Z* over *R* (i.e., a maximal by inclusion linearly independent over *R* subset of *Z*). One can easy to see that D_1, \ldots, D_k is a basis of the ideal *I* as well, so we can write for each element $D \in I$

$$D = a_1 D_1 + \dots + a_k D_k$$

for some $a_1, \ldots, a_k \in R$. Since $D_j \in Z$, $j = 1, \ldots, k$, it holds

$$[D_j, D] = [D_j, \sum_{i=1}^k a_i D_i] = \sum_{i=1}^k D_j(a_i) D_i = 0$$
(1)

for j = 1, ..., k. The derivations $D_1, ..., D_n$ are linearly independent over the field R, hence we obtain from (1) that $D_j(a_i) = 0$, i, j = 1, ..., k. Therefore we have for each element $\overline{D} = b_1 D_1 + ... b_k D_k$ of the ideal I the next equalities

$$[D,\overline{D}] = [\sum_{i=1}^{k} a_i D_i, \sum_{j=1}^{k} b_j D_j] = \sum_{i,j=1}^{k} a_i b_j [D_i, D_j] = 0,$$

since $D_i(b_j) = D_j(a_i) = 0$ as mentioned above. The latter means that *I* is an abelian ideal. Besides, obviously $\operatorname{rk}_R I = k$.

Lemma 4. Let *L* be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of *L*, $I := RZ \cap L$ and *F* the field of constants for *L* in *R*. If for some $D \in L$ it holds $[D, FI] \subseteq FI$, $[D, FI] \neq 0$, then there exist a basis D_1, \ldots, D_m of the ideal *FI* of the Lie algebra *FL* over *R* and $a \in R$ such that D(a) = 1, $D_i(a) = 0$, $i = 1, \ldots, m$. Besides, each element $\overline{D} \in FI$ is of the form $\overline{D} = f_1(a)D_1 + \cdots + f_m(a)D_m$ for some polynomials $f_i \in F_1[t]$, where F_1 is the field of constants for the subalgebra $L_1 = FI + FD$ in *R*.

Proof. By Lemma 3, the intersection $I = RZ \cap L$ is an abelian ideal of the Lie algebra L and therefore FI is an abelian ideal of the Lie algebra FL. Choose a basis D_1, \ldots, D_m of FI over the field R in such a way that $D_1, \ldots, D_m \in Z$. Then FZ is the center of the Lie algebra FL. Now take any basis T_1, \ldots, T_s of the F-space FI (note that the Lie algebra FL is finite dimensional over the field F by [6]). Every basis element T_i can be written in the form $T_i = \sum_{j=1}^m r_{ij}D_j, i = 1, \ldots, s$, for some $r_{ij} \in R$. Denote by B the subring $B = F[r_{ij}, i = 1, \ldots, s, j = 1, \ldots, m]$ of the field R

generated by *F* and the elements r_{ij} . Since the linear operator ad *D* is nilpotent on the *F*-space *FI* the derivation *D* is locally nilpotent on the ring *B*. Indeed,

$$[D, T_i] = [D, \sum_{j=1}^m r_{ij} D_j] = \sum_{j=1}^m D(r_{ij}) D_j$$

and therefore

$$(\text{ad }D)^{k_i}(T_i) = \sum_{j=1}^m D^{k_i}(r_{ij})D_j = 0$$

for some natural k_i , i = 1, ..., s. Denoting $\overline{k} = \max_{1 \le t \le s} k_t$, we get $D^{\overline{k}}(r_{ij}) = 0$ and therefore D is locally nilpotent on B. One can easily show that there exists an element $p \in B$ (a preslice) such that $D(p) \in \text{Ker } D, D(p) \neq 0$. Then denoting a := p/D(p), we have D(a) = 1 (such an element a is called a slice for D). The ring B is contained in the localization $B[c^{-1}]$, where c := D(p) and the derivation D is locally nilpotent on $B[c^{-1}]$. Note that $B[c^{-1}] \subseteq F_1$, where F_1 is the field of constants for $L_1 = FI + FD$ in R. Besides, by Principle 11 from [4] it holds $B[c^{-1}] = B_0[a]$, where B_0 is the kernel of D in $B[c^{-1}]$. This completes the proof because $B \subseteq B[c^{-1}]$ and every element \overline{D} of FI is of the form $\overline{D} = b_1D_1 + \ldots b_mD_m, b_i \in B$.

Lemma 5. Let *L* be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of *L*, *F* the field of constants of *L* in *R* and $I = RZ \cap L$. Let $\operatorname{rk}_R Z = n - 2$. Then the following statements for the Lie algebra FL/FI hold

- 1) if *FL*/*FI* is abelian, then dim_{*F*} *FL*/*FI* = 2;
- 2) if *FL*/*FI* is nonabelian, then there exist elements D_{n-1} , $D_n \in FL$, $b \in R$ such that

$$FL/FI = F\left\langle D_{n-1} + FI, \, bD_{n-1} + FI, \, \dots, \, \frac{b^k}{k!} D_{n-1} + FI, \, D_n + FI \right\rangle$$

with $k \ge 1$, $D_n(b) = 1$, $D_{n-1}(b) = 0$, D(b) = 0 for all $D \in FI$.

Proof. Let us choose a basis D_1, \ldots, D_{n-2} of the center Z over the field R and any central ideal $FD_{n-1} + FI$ of the quotient algebra FL/FI. Denote the intersection $R(I + \mathbb{K}D_{n-1}) \cap L$ by I_1 . Then it is easy to see that FI_1 is an ideal of the Lie algebra FL of rank n - 1 over R and the Lie algebra FL/FI_1 is of dimension 1 over F (by Lemma 5 from [6]). Let us choose an arbitrary element $D_n \in FL \setminus FI_1$. Then D_1, \ldots, D_n is a basis of the Lie algebra FL over the field R.

Case 1. The quotient algebra FL/FI is abelian. Let us show that

$$FL/FI = F \langle D_{n-1} + FI, D_n + FI \rangle.$$

Indeed, let us take any elements $S_1 + FI$, $S_2 + FI$ of FL/FI and write

$$S_1 = \sum_{i=1}^n r_i D_i, \quad S_2 = \sum_{i=1}^n s_i D_i, \quad r_i, \ s_i \in R, \ i, j = 1, \dots, n$$

From the equalities $[D_i, S_1] = [D_i, S_2] = 0$, i = 1, ..., n - 2 (recall that $D_i \in Z(L)$, i = 1, ..., n - 2) it follows that

$$D_i(r_j) = D_i(s_j) = 0, \ i = 1..., n-2, \ j = 1,..., n.$$
 (2)

Since $[FL, FI] \subseteq FI$ we have $[D_i, S_1], [D_i, S_2] \in FI$ for i = n - 1, n. Taking into account the equalities (2) we derive that

$$D_i(s_j) = D_i(r_j) = 0, \ i = n - 1, n, \ j = n - 1, n.$$

Therefore it holds s_i , $r_i \in F$ for i = n - 1, n and the elements $D_{n-1} + FI$, $D_n + FI$ form a basis for the abelian Lie algebra FL/FI over the field F.

<u>Case 2.</u> *FL/FI* is nonabelian. Then dim_{*F*} *FL/FI* \geq 3 because the Lie algebra *FL/FI* is nilpotent. Let us show that the ideal *FI*₁/*FI* of the Lie algebra *FL/FI* is abelian (recall that

 $I_1 = R(I + \mathbb{K}D_{n-1}) \cap L)$. Since $D_{n-1} + FI$ lies in the center of the quotient algebra FL/FI we have for any element $rD_{n-1} + FI$ of the ideal FI_1/FI the following equality

$$[D_{n-1} + FI, rD_{n-1} + FI] = FI.$$

Hence $D_{n-1}(r)D_{n-1} + FI = FI$. The last equality implies $D_{n-1}(r) = 0$. But then for any elements $rD_{n-1} + FI$, $sD_{n-1} + FI$ of FI_1/FI we get

$$[rD_{n-1} + FI, sD_{n-1} + FI] = [rD_{n-1}, sD_{n-1} + FI]$$

= $(D_{n-1}(s)r - sD_{n-1}(r))D_{n-1} + FI = FI.$

The latter means that FI_1/FI is an abelian ideal of FL/FI.

Further, the nilpotent linear operator ad D_n acts on the linear space FI_1/FI with $\text{Ker}(\text{ad } D_n) = FD_{n-1} + FI$. Indeed, let $\text{ad } D_n(rD_{n-1} + FI) = FI$. Then $[D_n, rD_{n-1}] \in FI$ and therefore $D_n(r)D_{n-1} \in FI$. This relation implies $D_n(r) = 0$ and taking into account the equalities $D_i(r) = 0$, i = 1, ..., n-1, we get that $r \in F$ and $\text{Ker}(\text{ad } D_n) = FD_{n-1} + FI$. It follows from this relation that the linear operator $\text{ad } D_n$ on FI/FI_1 has only one Jordan chain and the Jordan basis can be chosen with the first element $D_{n-1} + FI$. Since $\dim FI_1/FI \ge 2$ (recall that $\dim_F FL/FI \ge 3$) the chain is of length ≥ 2 . Let us take the second element of the Jordan chain in the form $bD_{n-1} + FI$, $b \in R$. Then $\text{ad } D_n(bD_{n-1} + FI) = D_{n-1} + FI$ and hence $D_n(b) = 1$. The inclusion $[D_{n-1}, bD_{n-1}] \in FI$ implies the equality $D_{n-1}(b) = 0$, and analogously one can obtain $D_i(b) = 0$, i = 1, ..., n-2.

If dim $FI_1/FI \ge 3$ and $cD_{n-1} + FI$ is the third element of the Jordan chain of ad D_n , then repeating the above considerations we get $D_n(c) = b$. Then the element $\alpha = \frac{b^2}{2!} - c \in R$ satisfies the relations $D_{n-1}(\alpha) = D_n(\alpha) = 0$ and $D_i(\alpha) = 0$, i = 1, ..., n-2, since $D_i(b) = D_i(c) = 0$. Therefore, $\alpha = \frac{b^2}{2!} - c \in F$ and $c = \frac{b^2}{2!} + \alpha$. Since $\alpha D_{n-1} + FI \in \text{Ker}(\text{ad } D_n)$, we can take the third element of the Jordan chain in the form $\frac{b^2}{2!}D_{n-1} + FI$. Repeating the consideration one can build the needed basis of the Lie algebra FL/FI.

Lemma 6. Let *L* be a nilpotent subalgebra of W(A) with the center Z = Z(L) of $\operatorname{rk}_R Z = n - 2$, *F* the field of constants for *L* in *R* and $I = RZ \cap L$. If *S*, *T* are elements of *L* such that $[S,T] \in I$, the rank of the subalgebra L_1 spanned by I,S,T equals *n* and $C_{FL}(FI) = FI$, then there exist elements $a, b \in R$ such that S(a) = 1, T(a) = 0, S(b) = 0, T(b) = 1 and D(a) = D(b) = 0 for each $D \in I$. Besides, every element $D \in FI$ can be written in the form $D = f_1(a, b)D_1 + \cdots + f_{n-2}(a, b)D_{n-2}$ with some polynomials $f_i(u, v) \in F[u, v]$.

Proof. Let us choose a basis D_1, \ldots, D_{n-2} of Z over R. By the lemma conditions, one can easily see that $D_1, \ldots, D_{n-2}, S, T$ is a basis of L over R. The ideal FI of the Lie algebra FL is abelian by Lemma 3 and ad S, ad T are commuting linear operators on the vector space FI (over F). Take a basis T_1, \ldots, T_s of FI over F (recall that dim_F $FL < \infty$ by Theorem 1 from [6]) and write $T_i = \sum_{j=1}^{n-2} r_{ij}D_j$ for some $r_{ij} \in R, i = 1, \ldots, s, j = 1, \ldots, n-2$. Denote by

$$B = F[r_{ij}, i = 1, ..., s, j = 1, ..., n - 2],$$

the subring of *R* generated by *F* and all the coefficients r_{ij} . Then *B* is invariant under the derivations *S* and *T*, these derivations are locally nilpotent on *B* and linearly independent over *R* (by

the condition $C_{FL}(FI) = FI$ of the lemma). By Lemma 4, there exists an element $a \in B[c^{-1}]$ such that

$$S(a) = 1$$
, $D_i(a) = 0$, $i = 1, ..., n - 2$,

(here c = S(p) for a preslice p for S in B). Since $c \in \text{Ker } S$ and [S, T] = 0 one can assume without loss of generality that $T(c) \in \text{Ker } T$. But then T is a locally nilpotent derivation on the subring $B[c^{-1}]$. Repeating these considerations we can find an element $b \in B[c^{-1}][d^{-1}]$ with T(b) = 1 (here d is a preslice for the derivation T in $B[c^{-1}]$). Denote $B_1 = B[c^{-1}, d^{-1}]$, the subring of R generated by B, c^{-1}, d^{-1} . Then using standard facts about locally nilpotent derivations (see, for example Principle 11 in [4]) one can show that $B_1 = B_0[a, b]$, where $B_0 = \text{Ker } S \cap \text{Ker } T$. Therefore every element h of B_1 can be written in the form h = f(a, b)with $f(u, v) \in F[u, v]$. Note that

$$F = \operatorname{Ker} T \cap \operatorname{Ker} S \cap_{i=1}^{n-2} \operatorname{Ker} D_i.$$

It follows from this representation of elements of B_1 that every element of the ideal FI can be written in the form

$$D = f_1(a, b)D_1 + \dots + f_{n-2}(a, b)D_{n-2}$$

with some polynomials $f_i(u, v) \in F[u, v]$.

2 The main results

Theorem 1. Let *L* be a nilpotent subalgebra of rank $n \ge 3$ over *R* from the Lie algebra W(A), Z = Z(L) the center of *L* with $\operatorname{rk}_R Z \ge n - 2$, *F* the field of constants of *L* in *R*. Then one of the following statements holds:

- 1) $\dim_F FL = n$ and FL is either abelian or is a direct sum of a nonabelian nilpotent Lie algebra of dimension 3 and an abelian Lie algebra;
- 2) dim_F FL ≥ n + 1 and FL lies in one of the locally nilpotent subalgebras L₁, L₂ of W(A) of rank n over R, which have a basis D₁,..., D_n over R satisfying the relations [D_i, D_j] = 0, i, j = 1,...,n, and are one of the form

$$L_1 = F\left\langle \left\{ \frac{b^i}{i!} D_1 \right\}_{i=0}^{\infty}, \dots, \left\{ \frac{b^i}{i!} D_{n-1} \right\}_{i=0}^{\infty}, D_n \right\rangle$$

for some $b \in R$ such that $D_i(b) = 0$, i = 1, ..., n - 1, and $D_n(b) = 1$,

$$L_{2} = F\left\langle \left\{ \frac{a^{i}b^{j}}{i!j!} D_{1} \right\}_{i,j=0}^{\infty}, \dots, \left\{ \frac{a^{i}b^{j}}{i!j!} D_{n-2} \right\}_{i,j=0}^{\infty}, \left\{ \frac{b^{i}}{i!} D_{n-1} \right\}_{i=0}^{\infty}, D_{n} \right\rangle$$

for some $a, b \in R$ such that $D_{n-1}(a) = 1$, $D_n(a) = 0$, $D_{n-1}(b) = 0$, $D_n(b) = 1$, $D_i(a) = D_i(b) = 0$, i = 1, ..., n-2.

Proof. By Lemma 3, $I = RZ \cap L$ is an abelian ideal of L and therefore FI is an abelian ideal of the Lie algebra FL (here the Lie algebra FL is considered over the field F). Let dim_F FL = n. It is obvious that dim_F $M = \operatorname{rk}_R M$ for any subalgebra M of the Lie algebra FL, in particular dim_F $FZ \ge n - 2$ because of conditions of the theorem. We may restrict ourselves only on

nonabelian algebras and assume dim_{*F*} FZ = n - 2 (in case dim_{*F*} $FZ \ge n - 1$ the Lie algebra *FL* is abelian). Since *FL* is nilpotent of nilpotency class 2, one can easily show that *FL* is a direct sum of a nonabelian Lie algebra of dimension 3 and an abelian algebra and satisfies the condition 1) of the theorem. So, we may assume further that dim_{*F*} $FL \ge n + 1$.

<u>Case 1.</u> $\operatorname{rk}_R Z = n - 1$. Then *FI* is of codimension 1 in *FL* by Lemma 5 from [6]. Therefore $\dim_F FI \ge n$ because of $\dim_F FL \ge n + 1$ and $\dim_F FL/FI = 1$. We obtain the strong inclusion $FZ \subsetneq FI$ because of $\dim_F FZ = n - 1$. Take a basis D_1, \ldots, D_{n-1} of *Z* over *R* and an element $D_n \in FL \setminus FI$. Then D_1, \ldots, D_n is a basis for *FL* over *R* and $[D_n, FI] \ne 0$. Using Lemma 4 one can easily show that *FL* is contained in a subalgebra of type L_1 from W(A).

<u>Case 2.</u> $\operatorname{rk}_R Z = n - 2$ and $\dim_F FI = n - 2$. Then FI = FZ, $\dim_F FL/FI \ge 3$ and therefore by Lemma 5 the quotient algebra FL/FI is of the form

$$FL/FI = F\left\langle \left\{ \frac{b^i}{i!} D_{n-1} + FI \right\}_{i=0}^k, D_n + FI \right\rangle$$

for some $k \ge 1$, $b \in R$ such that $D_n(b) = 1$, $D_{n-1}(b) = 0$ and D(b) = 0 for each $D \in FI$.

The *F*-space

$$J = F\left\langle \left\{ \frac{b^{i}}{i!} D_{1} \right\}_{i=0}^{\infty}, \dots, \left\{ \frac{b^{i}}{i!} D_{n-1} \right\}_{i=0}^{\infty} \right\rangle$$

is an abelian subalgebra of W(A) and $[FL, J] \subseteq J$. Therefore the sum

$$J+F\left\langle \left\{\frac{b^{i}}{i!}D_{n-1}\right\}_{i=0}^{\infty},D_{n}\right\rangle$$

is a subalgebra of the Lie algebra W(A). If $[D_n, D_{n-1}] \neq 0$, then taking into account the relation $[D_n, D_{n-1}] \in FI$ one can write

$$[D_n, D_{n-1}] = \alpha_1 D_1 + \cdots + \alpha_{n-2} D_{n-2}$$

for some $\alpha_i \in F$ (recall that FI = FZ). Consider the element of W(A) of the form

$$\widetilde{D}_{n-1}=D_{n-1}-\alpha_1bD_1-\cdots-\alpha_{n-2}bD_{n-2}.$$

Since $[D_n, \tilde{D}_{n-1}] = 0$, $\tilde{D}_{n-1}(b) = 0$, one can replace the element D_{n-1} with the element \tilde{D}_{n-1} and assume without loss of generality that $[D_n, D_{n-1}] = 0$. As a result we get the Lie algebra of the type L_1 from the statement of the theorem.

<u>Case 3.</u> $\operatorname{rk}_R Z = n - 2$ and $\dim_F FI > n - 2$. First, suppose $C_{FL}(FI) = FI$. Then by Lemma 6 there are a basis D_1, \ldots, D_{n-2} of the ideal *FI* over *R* and elements $a, b \in R$ such that

$$D_{n-1}(a) = 1$$
, $D_n(a) = 0$, $D_{n-1}(b) = 0$, $D_n(b) = 1$

and

$$D_i(a) = D_i(b) = 0, \ i = 1, \dots, n-2$$

and each element $D \in FI$ can be written in the form

$$D = f_1(a, b)D_1 + \dots + f_{n-2}(a, b)D_{n-2}$$

for some polynomials $f_i(u, v) \in F[u, v]$.

Consider the *F*-subspace

$$J = F[a,b]D_1 + \dots + F[a,b]D_{n-2}$$

of the Lie algebra W(A). It is easy to see that J is an abelian subalgebra of W(A) and $[FL, J] \subseteq J$. If $[D_n, D_{n-1}] = 0$, then it is obvious that the subalgebra FL + J is of type L_2 of the theorem and $FL \subset L_1$. Let $[D_n, D_{n-1}] \neq 0$. Since $[D_n, D_{n-1}] \in FI$, it follows

$$[D_n, D_{n-1}] = h_1(a, b)D_1 + \dots + h_{n-2}D_{n-2}$$

for some polynomials $h_i(u, v) \in F[u, v]$. Then the subalgebra *J* has such an element

 $T = u_1(a,b)D_1 + \dots + u_{n-2}(a,b)D_{n-2}$

that $D_n(u_i(a, b)) = h_i(a, b), i = 1, ..., n - 2$ (recall that $D_n(a) = 0$, $D_n(b) = 1$), and hence the element $\tilde{D}_{n-1} = D_{n-1} - T$ satisfies the equality $[D_n, T] = 0$. Replacing D_{n-1} with \tilde{D}_{n-1} we get the needed basis of the Lie algebra FL + J and see that FL can be embedded into the Lie L_2 of W(A). So in case of $C_{FL}(FI) = FI$ the Lie algebra FL can be isomorphically embedded into the Lie algebra of type L_2 from the statement of the theorem.

Further, suppose $C_{FL}(FI) \neq FI$. Since $C_{FL}(FI) \supseteq FI$ one can easily show that $D_{n-1} \in C_{FL}(FI) \setminus FI$ (note that FL/FI has the unique minimal ideal $FD_{n-1} + FI$). Then $[D_{n-1}, FI] = 0$, and therefore $[D_n, FI] \neq 0$. Therefore by Lemma 4 there is an element $c \in R$ such that

$$D_n(c) = 1, \ D_{n-1}(c) = 0, \ D_i(c) = 0, \ i = 1, \dots, n-2.$$

Moreover, each element of *FI* is of the form $g_1(c)D_1 + \cdots + g_{n-2}(c)D_{n-2}$ for some polynomials $g_i(u) \in F[u]$. By Lemma 5, the quotient algebra *FL*/*FI* is of the form

$$FL/FI = F\left\langle \left\{ \frac{b^i}{i!} D_{n-1} + FI \right\}_{i=0}^k, D_n + FI \right\rangle$$

for some $b \in R, k \ge 1$ such that $D_n(b) = 1$, $D_{n-1}(b) = 0$. But then

$$D_{n-1}(b-c) = 0, \ D_n(b-c) = 0, \ D_i(b-c) = 0$$

and hence $b - c = \alpha$ for some $\alpha \in F$. Without loss of generality we can assume b = c. The locally nilpotent subalgebra

$$L_{1} = F\left\langle \left\{ \frac{a^{i}b^{j}}{i!j!} D_{1} \right\}_{i,j=0}^{\infty}, \dots, \left\{ \frac{a^{i}b^{j}}{i!j!} D_{n-2} \right\}_{i,j=0}^{\infty}, \left\{ \frac{b^{i}}{i!} D_{n-1} \right\}_{i=0}^{\infty}, D_{n} \right\rangle$$

of the Lie algebra W(A) contains FL and satisfies the conditions for the Lie algebra of type L_2 from the statement of the theorem, possibly except the condition $[D_n, D_{n-1}] = 0$. If $[D_n, D_{n-1}] \neq 0$, then from the inclusion $[D_n, D_{n-1}] \in FI$ it follows that

$$[D_n, D_{n-1}] = f_1(b)D_1 + \dots + f_{n-2}(b)D_{n-2}$$

for some polynomials $f_i(u) \in F[u]$.

One can easily show that there is such an element

$$D = h_1(b)D_1 + \dots + h_{n-2}(b)D_{n-2} \in L_1,$$

that $[D_n, \overline{D}] = [D_n, D_{n-1}]$ (one can take antiderivations h_i for polynomials f_i , i = 1, ..., n-2). Replacing D_{n-1} with $D_{n-1} - \overline{D}$ we get the needed basis over R of the Lie algebra L_2 . **Remark 1.** Any Lie algebra of dimension *n* over *F* can be realized as a Lie algebra of rank *n* over *R* by Theorem 2 from [5]. So the Lie algebra of type 1) from Theorem 1 can be chosen in any way possible.

As a corollary we get the next statement about embedding of Lie algebras of derivations.

Theorem 2. Let *L* be a nilpotent subalgebra of rank *n* over *R* of the Lie algebra W(A), Z = Z(L) be the center of *L* and *F* be the field of constants of *L* in *R*. If $\operatorname{rk}_R Z \ge n - 2$, then the Lie algebra *FL* can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie algebra $u_n(F)$.

Proof. First, suppose dim_{*F*} *FL* = *n*. If *FL* is abelian, then *FL* is isomorphically embeddable into the Lie algebra $u_n(F)$ because the subalgebra $F\left\langle \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \right\rangle$ of $u_n(F)$ is abelian of dimension *n* over *F*. So one can assume that *FL* is nonabelian. Then by Theorem 1, *FL* = $M_1 \oplus M_2$, where M_1 is an abelian Lie algebra of dimension n - 3 over *F* and M_2 is nilpotent nonabelian with dim_{*F*} $M_2 = 3$. The subalgebra $H_2 = F\left\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} + x_3 \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_3} \right\rangle$ of the Lie algebra $u_n(F)$ is obviously isomorphic to M_2 . The abelian subalgebra $H_1 = F\left\langle \frac{\partial}{\partial x_4}, \ldots, \frac{\partial}{\partial x_n} \right\rangle$, $n \ge 4$, is isomorphic to the Lie algebra M_1 . So $FL \simeq H_1 \oplus H_2$ is isomorphic to a subalgebra of $u_n(F)$. Note that $H_1 \oplus H_2$ is of rank *n* over the field $\mathbb{K}(x_1, \ldots, x_n)$ of rational functions in *n* variables.

Next, let dim_{*F*} *FL* > *n*. By Theorem 1, the Lie algebra *FL* lies in one of the subalgebras of types L_1 or L_2 . Therefore it is sufficient to show that the subalgebras L_1, L_2 of W(A) from Theorem 1 can be isomorphically embedded into the Lie algebra $u_n(F)$. In case L_1 , we define a mapping φ on the basis D_1, \ldots, D_n , $\left\{\frac{b^i}{i!}D_i\right\}_{i=1}^{\infty}$ of L_1 over *R* by the rule $\varphi(D_i) = \frac{\partial}{\partial x_i}, i = 1, \ldots, n$, $\varphi(\frac{b^i}{i!}D_i) = \frac{x_n^i}{i!}\frac{\partial}{\partial x_i}, i = 1, \ldots, n-1$, and then extend it on L_1 by linearity. One can easily see that the mapping φ is an isomorphic embedding of the Lie algebra L_1 into $u_n(F)$. Analogously, on L_2 we define a mapping $\psi: L_2 \to u_n(F)$ by the rule

$$\psi(D_i) = \frac{\partial}{\partial x_i}, \quad i = 1, \dots, n, \qquad \psi(\frac{a^i b^j}{i! j!} D_k) = \frac{x_{n-1}^i x_n^j}{i! j!} \frac{\partial}{\partial x_k}, \quad k = 1, \dots, n-2$$
$$\psi(\frac{b^i}{i!} D_{n-1}) = \frac{x_n^i}{i!} \frac{\partial}{\partial x_{n-1}}, \quad i \ge 1, j \ge 1,$$

and further by linearity. Then ψ is an isomorphic embedding of the Lie algebra L_2 into the Lie algebra $u_n(F)$.

REFERENCES

- [1] Bavula V.V. *Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras*. Izv. Math. 2013, 77 (6), 3–44. doi:10.1070/IM2013v077n06ABEH002670
- Bavula V.V. Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism. C. R. Math. Acad. Sci. Paris 2012, 350 (11–12), 553–556. doi:10.1016/j.crma.2012.06.001
- [3] Bondarenko V.M., Petravchuk A.P. Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four variables. Linear Algebra Appl. 2019, **568**, 165–172. doi:10.1016/j.laa.2018.07.031
- [4] Freudenburg G. Algebraic theory of locally nilpotent derivations. Encyclopaedia of Math. Sciences, Berlin, 2006.

- [5] Makedonskyi Ie. On noncommutative bases of the free module $W_n(K)$. Comm. Algebra 2016, 44 (1), 11–25. doi:10.1080/00927872.2013.865035
- [6] Makedonskyi Ie.O., Petravchuk A.P. On nilpotent and solvable Lie algebras of derivations. J. Algebra 2014, 401, 245–257. doi:10.1016/j.jalgebra.2013.11.021
- [7] Nowicki A. Polynomial Derivations and their Rings of Constants. Uniwersytet Mikolaja Kopernika, Torun. 1994.
- [8] Petravchuk A.P. On nilpotent Lie algebras of derivations of fraction fields. Algebra Discrete Math. 2016, 22 (1), 118–131.
- [9] Sysak K.Ya. On nilpotent Lie algebras of derivations with large center. Algebra Discrete Math. 2016, 21 (1), 153–162.

Received 01.03.2020

Чаповський Є.Ю., Мащенко Л.З., Петравчук А.П. *Нільпотентні алгебри Лі диференціювань з* центром малого корангу // Карпатські матем. публ. — 2020. — Т.12, №1. — С. 189–198.

Нехай К — поле характеристики нуль, A — область цілісності над К з полем часток R = Frac(A), і $Der_{\mathbb{K}}A$ — алгебра Λ і К-диференціювань A. Нехай $W(A) := RDer_{\mathbb{K}}A$ і L — нільпотентна підалгебра рангу n над R Λ і алгебри W(A). Ми показуємо, що якщо центр Z = Z(L) має ранг $\geq n - 2$ над R і F = F(L) — поле констант алгебри Λ і L в R, то алгебра Λ і FL міститься в локально нільпотентній підалгебрі рангу n над R з природнім базисом над полем R. Також доводиться, що Λ і алгебра FL може бути ізоморфно вкладена (як абстрактна Λ і алгебра) в трикутну алгебру Λ і $u_n(F)$, що була досліджена раніше іншими авторами.

Ключові слова і фрази: диференціювання, векторне поле, алгебра Лі, нільпотентна алгебра, область цілісності.