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CHAPOVSKYI Y.Y.!, MASHCHENKO L.Z.2, PETRAVCHUK A.P.1

NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL
CORANK

Let K be a field of characteristic zero, A be an integral domain over K with the field of fractions
R = Frac(A), and Derg A be the Lie algebra of all K-derivations on A. Let W(A) := RDergA and
L be a nilpotent subalgebra of rank #n over R of the Lie algebra W(A). We prove that if the center
Z =Z(L)is of rank > n — 2 over R and F = F(L) is the field of constants for L in R, then the Lie
algebra FL is contained in a locally nilpotent subalgebra of W(A) of rank n over R with a natural
basis over the field R. It is also proved that the Lie algebra FL can be isomorphically embedded
(as an abstract Lie algebra) into the triangular Lie algebra u, (F), which was studied early by other
authors.
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INTRODUCTION

Let K be a field of characteristic zero, A be an integral domain over K, and R = Frac(A)
be its field of fractions. Recall that a IK-derivation D on A is a KK-linear operator on the vector
space A satisfying the Leibniz rule D(ab) = D(a)b +aD(b) forany a,b € A. The set Derx A of
all K-derivations on A is a Lie algebra over K with the Lie bracket [D1, D;] = D1D; — D, D;.
The Lie algebra Derg A can be isomorphically embedded into the Lie algebra Derk R (any
derivation D on A can be uniquely extended on R by the rule D(a/b) = (D(a)b —aD(b))/b?,
a,b € A). We denote by W(A) the subalgebra R Derg A of the Lie algebra Derk R (note that
W(A) and Derk R are Lie algebras over the field K but not over R). Nevertheless, W(A) and
Derk R are vector spaces over the field R, so one can define the rank rkg L for any subalgebra
L of the Lie algebra W(A) by the rule rkg L = dimg RL. Every subalgebra L of the Lie algebra
W(A) determines its field of constants in R by

F=F(L):={reR|D(r)=0 forall D€ L}.

The product FL = {y «;D; |a; € F, D; € L} is a Lie algebra over the field F, this Lie alge-
bra often has simpler structure than L itself (note that such an extension of the ground field
preserves the main properties of L from the viewpoint of Lie theory).

We study nilpotent subalgebras L C W(A) of rank n > 3 over R with the center Z = Z(L)
of rank > n — 2 over R, i.e. with the center of corank < 2 over R. We prove that FL is contained
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in a locally nilpotent subalgebra of W(A) with a natural basis over R, similar to the standard
basis of the triangular Lie algebra U, (F) (Theorem 1). As a consequence, we get an isomorphic
embedding (as Lie algebras) of the Lie algebra FL over F into the triangular Lie algebra u,,(F)
over F (Theorem 2). These results generalize main results of the papers [8] and [9]. Note that
the problem of classifying finite dimensional Lie algebras from Theorem 1 up to isomorphism
is wild (i.e., it contains the hopeless problem of classifying pairs of square matrices up to
similarity, see [3]). Triangular Lie algebras were studied in [1] and [2], they are locally nilpotent
but not nilpotent.

We use standard notations. The ground field K is arbitrary of characteristic zero. If F
is a subfield of a field R and rq,...,r¢ € R, then F(rq,...,r¢) is the set of all linear com-
binations of r; with coefficients in F, it is a subspace in the F-space R, for an infinite set
{r1,...,7 ...} we use the notation F ({r;};_). The triangular subalgebra u,(KK) of the Lie

algebra W, (K) := Derg K][xy,...,x,] consists of all the derivations on K][xy,...,x,] of the
form
D= fi(xaee o Xn) e 4 fro (K)o o+ frn
— J1 27740 ax1 n—1 n ax”il naxll

where f; € K[x;11,..., %], fu € K. If D € W(A), then Ker D denotes the field of constants for
DinR,ie,KerD = {r € R| D(r) = 0}.

1 MAIN PROPERTIES OF NILPOTENT SUBALGEBRAS OF W(A)

We often use the next relations for derivations which are well known (see, for example [7]).
Let D1,D; € W(A) and a,b € R. Then

1) [llDl, sz] = ab[Dl, Dz] +aDy (b)Dz — sz(ll)Dl;
2) ifa,b € Ker D1 NKer Dy, then [aDy,bD;] = ab[Dy, D5).

The next two lemmas contain some results about derivations and Lie algebras of deriva-
tions.

Lemma 1 ([6], Lemma 2). Let L be a subalgebra of the Lie algebra Derk R and F the field of
constants for L in R. Then FL is a Lie algebra over F, and if L is abelian, nilpotent or solvable,
then so is FL, respectively.

Lemma 2 ([6], Proposition 1). Let L be a nilpotent subalgebra of the Lie algebra W(A) with
rkg L < oo and F = F(L) the field of constants for L in R. Then

1) FL is finite dimensional over F;
2) ifrkgr L = 1, then L is abelian and dimp FL = 1;

3) ifrkg L = 2, then FL is either abelian with dimp FL. = 2 or FL is of the form

k
FL—=F <D2,D1,aD1,...,%D1> )

for some D1, D; € FL and a € R such that [D1,D;] =0, Dy(a) =1, Di(a) =0.
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Lemma 3. Let L be a nilpotent subalgebra of the Lie algebra W(A) of rank n over R with the
center Z = Z(L) of rank k over R. Then [ := RZ N L is an abelian ideal of L withrkg I = k.

Proof. By Lemma 4 from [6], I is an ideal of the Lie algebra L. Let us show that I is abelian.
Let us choose an arbitrary basis Dy, ..., Dy of the center Z over R (i.e., a maximal by inclusion
linearly independent over R subset of Z). One can easy to see that Dy, ..., Dy is a basis of the
ideal I as well, so we can write for each element D € |

D =a1Dy+ -+ a Dy

for some ay,...,a; € R. Since D;eZ, j=1,...,k itholds

k k
[Dj, D] = [Dj, ) " a;Di] = Y Dj(a;)D; = 0 (1)
i=1 i=1

forj = 1,...,k. The derivations Dy, ..., D, are linearly independent over the field R, hence
we obtain from (1) that D]-(ai) = 0,1i,j = 1,...,k. Therefore we have for each element
D = b1D; + ... by Dy of the ideal I the next equalities

k

k k
i=1 j=1 ij=1

since D;(b;) = Dj(a;) = 0 as mentioned above. The latter means that I is an abelian ideal.
Besides, obviously rkg I = k. O

Lemma 4. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of L,

:= RZNL and F the field of constants for L in R. If for some D € L it holds [D, FI] C FI,
[D, FI| # 0, then there exist a basis Dy, . .., Dy, of the ideal FI of the Lie algebra FL over R and
a € R such that D(a) = 1, D;j(a) =0, i = 1,...,m. Besides, each element D € FI is of the
form D = fi(a)Dy + - - + fu(a)Dy for some polynomials f; € F[t|, where F; is the field of
constants for the subalgebra Ly = FI 4 FD in R.

Proof. By Lemma 3, the intersection I = RZ N L is an abelian ideal of the Lie algebra L and
therefore FI is an abelian ideal of the Lie algebra FL. Choose a basis Dy, ..., Dy, of FI over the
field R in such a way that Dy, ..., D;, € Z. Then FZ is the center of the Lie algebra FL. Now take
any basis T7, ..., Ts of the F-space FI (note that the Lie algebra FL is finite dimensional over

m

the field F by [6]). Every basis element T; can be written in the form T; = }_ r;;D;,i =1,...,s,
j=1

for some rij € R. Denote by B the subring B = F[ri]-,i =1,...,5,j =1,...,m] of the field R

generated by F and the elements r;;. Since the linear operator ad D is nilpotent on the F-space
FI the derivation D is locally nilpotent on the ring B. Indeed,

D, =D, Y ryDj) = Y. D(ry)D;
= =

and therefore .
(ad D)(T;) = Y D¥i(r;;)D; = 0
j=1



192 CHAPOVSKYI Y.Y., MASHCHENKO L.Z., PETRAVCHUK A.P.

for some natural k;, i = 1,...,s. Denoting k = maxj<;<; ki, we get Dk(ri]-) = 0 and therefore
D is locally nilpotent on B. One can easily show that there exists an element p € B (a preslice)
such that D(p) € KerD,D(p) # 0. Then denoting a := p/D(p), we have D(a) = 1 (such
an element 4 is called a slice for D). The ring B is contained in the localization B[c~!], where
¢ := D(p) and the derivation D is locally nilpotent on B[c~!]. Note that B[c~!] C F;, where
Fy is the field of constants for L1 = FI + FD in R. Besides, by Principle 11 from [4] it holds
Blc~!] = Bo[a], where By is the kernel of D in B[c!]. This completes the proof because B C
Blc~!] and every element D of FI is of the form D = byD; + ... by Dy, b; € B. O

Lemma 5. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of
L, F the field of constants of L in R and I = RZN L. Lettkgr Z = n — 2. Then the following
statements for the Lie algebra FL/FI hold

1) if FL/FI is abelian, then dimp FL/FI = 2;
2) if FL/FI is nonabelian, then there exist elements D,_1,D,, € FL,b € R such that

k

b
_Dn—1+FI; DH+FI>

FL/FI:F<Dn—1+FI, bDn—1+FI,..., Tl

withk > 1, D, (b) =1, D,_1(b) =0, D(b) =0 forall D € FI.

Proof. Let us choose a basis D, ..., D,_ of the center Z over the field R and any central ideal
FD,_1 + FI of the quotient algebra FL/FI. Denote the intersection R(I +KD,,_1) N L by I;.
Then it is easy to see that FI; is an ideal of the Lie algebra FL of rank n — 1 over R and the
Lie algebra FL/F]I; is of dimension 1 over F (by Lemma 5 from [6]). Let us choose an arbitrary
element D, € FL\ FI;. Then Dy, ..., D, is a basis of the Lie algebra FL over the field R.

Case 1. The quotient algebra FL/FI is abelian. Let us show that

FL/FI =F (D, 1+ FI, D, +FI).

Indeed, let us take any elements S; + FI, Sy 4 FI of FL/FI and write

Zrz i, So= Zle, ri, s;i€R, i,j=1,.
i=1

From the equalities [D;, S1] = [D;,S2] = 0,i = 1,...,n — 2 (recall that D; € Z(L),
i=1,...,n—2)it follows that
Di(i’]‘>:DZ‘(S]‘>:O,iIl...,Tl—Z,jIl,...,n. (2)

Since [FL, FI] C FI we have [D;, S1],[D;, S2] € FI fori = n — 1, n. Taking into account the
equalities (2) we derive that

Di(sj) = Di(rj) =0, i=n—1,n, j=n—-1,n

Therefore it holds s;, 7; € F fori = n — 1, n and the elements D,,_1 + FI, D,, + FI form a basis
for the abelian Lie algebra FL/FI over the field F.

Case 2. FL/FI is nonabelian. Then dimp FL/FI > 3 because the Lie algebra FL/FI is
nilpotent. Let us show that the ideal FI;/FI of the Lie algebra FL/FI is abelian (recall that
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I = R(I + KD, _1) NL). Since D,,_1 + FI lies in the center of the quotient algebra FL/FI we
have for any element ¥D,,_1 + FI of the ideal FI; /FI the following equality

[Dy_1+FI,D,_1 + FI] = FI.

Hence D, _1(r)D,_1 + FI = FI. The last equality implies D,,_1(r) = 0. But then for any
elements rD,_1 4 FI, sD,,_1 + FI of FI; /FI we get

[rD,_1+ FI,sD,,_1 + FI| = [rDy,_1,sD,,_1 + FI]
= (Dy_1(s)r —sDy_1(r))Dy,—1 + FI = FI.

The latter means that FI; /FI is an abelian ideal of FL/F1.

Further, the nilpotent linear operator ad D, acts on the linear space FI;/FI with
Ker(ad D,) = FD,_1 + FI. Indeed, let ad D,(rD,,—1 + FI) = FI. Then [D,,rD,_1] € FI
and therefore D, (r)D,_1 € FI. This relation implies D, (r) = 0 and taking into account the
equalities D;(r) = 0, i = 1,...,n — 1, we get that r € F and Ker(ad D,,) = FD,,_1 + FI. Tt
follows from this relation that the linear operator ad D, on FI/FI; has only one Jordan chain
and the Jordan basis can be chosen with the first element D,,_1 + FI. Since dim FI;/FI > 2
(recall that dimp FL/FI > 3) the chain is of length > 2. Let us take the second element of
the Jordan chain in the form bD,_1 + FI, b € R. Then ad D,,(bD,,_1 + FI) = D,,_1 + FI and
hence Dy, (b) = 1. The inclusion [D,_1,bD,_41] € FI implies the equality D,,_1(b) = 0, and
analogously one can obtain D;(b) =0, i=1,...,n—2.

If dimFI;/FI > 3 and ¢D,,_1 + FI is the third element of the Jordan chain of ad D,,, then
repeating the above considerations we get Dy, (c) = b. Then the elementa = g—? — ¢ € Rsatisfies
the relations D,,_1(a) = Dy(a) = 0and D;(a) =0, i = 1,...,n — 2, since D;(b) = D;(c) = 0.
Therefore, & = g—? —c€Fandc = g—f + a. Since aD,,_1 + FI € Ker(ad D,), we can take the
third element of the Jordan chain in the form g—len,l + FI. Repeating the consideration one
can build the needed basis of the Lie algebra FL/FI. O

Lemma 6. Let L be a nilpotent subalgebra of W(A) with the center Z = Z(L) of
rkgr Z = n — 2, F the field of constants for L in R and I = RZ N L. IfS, T are elements of L such
that [S, T| € I, the rank of the subalgebra L, spanned by I,S, T equals n and Cpy(FI) = FI,
then there exist elements a,b € R such that S(a) = 1, T(a) = 0,S(b) = 0, T(b) = 1 and
D(a) = D(b) = 0 for each D € 1. Besides, every element D € FI can be written in the form
D = f1(a,b)D1 + - - - + fu—2(a,b)D,_, with some polynomials f;(u,v) € F[u,v).

Proof. Let us choose a basis Dy, ..., D,_5 of Z over R. By the lemma conditions, one can easily
see that Dq,...,D,_»,S, T is a basis of L over R. The ideal FI of the Lie algebra FL is abelian
by Lemma 3 and ad S,ad T are commuting linear operators on the vector space FI (over F).
Take a basis 17, ..., Ts of FI over F (recall that dimp FL < co by Theorem 1 from [6]) and write

n—2
T;= ). riD; for some rij € R,i=1,...,5,j=1,...,n—2. Denote by

j=1

B = F[rl-]-,i =1,...5,j=1,...,n=2],

the subring of R generated by F and all the coefficients 7;;. Then B is invariant under the deriva-
tions S and T, these derivations are locally nilpotent on B and linearly independent over R (by
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the condition Cpy (FI) = FI of the lemma). By Lemma 4, there exists an element a € B[cfl]
such that
S(ﬂ):l, Di(a):O, i:l/___’n_zl

(here ¢ = S(p) for a preslice p for S in B). Since ¢ € KerS and [S,T| = 0 one can assume
without loss of generality that T(c) € KerT. But then T is a locally nilpotent derivation on
the subring B[c~!]. Repeating these considerations we can find an element b € Bc~!]|[d ]
with T(b) = 1 (here d is a preslice for the derivation T in B[c~!]). Denote B; = B[c™!,d71],
the subring of R generated by B,c~!,d~!. Then using standard facts about locally nilpotent
derivations (see, for example Principle 11 in [4]) one can show that By = Byla, b], where
By = Ker S NKer T. Therefore every element /1 of By can be written in the form h = f(a,b)
with f(u,v) € F[u,v]. Note that

F=KerTNKerS ﬂf’;lz Ker D;.

It follows from this representation of elements of B that every element of the ideal FI can be
written in the form

D = fi(a,b)D1 + - -+ fy—2(a,b)Dy_»
with some polynomials f;(u,v) € F[u,v]. O

2 THE MAIN RESULTS

Theorem 1. Let L be a nilpotent subalgebra of rank n > 3 over R from the Lie algebra W(A),
Z = Z(L) the center of L withrkg Z > n — 2, F the field of constants of L in R. Then one of the
following statements holds:

1) dimp FL = n and FL is either abelian or is a direct sum of a nonabelian nilpotent Lie
algebra of dimension 3 and an abelian Lie algebra;

2) dimp FL > n + 1 and FL lies in one of the locally nilpotent subalgebras L1, L, of W(A) of
rank n over R, which have a basis Di,...,D, over R satisfying the relations
[D;, D]-] =0, i,j=1,...,n,and are one of the form

i o0 i o0
Ly=F {b.—,Dl} r~~~/{b-_'Dn1} , Dy,
L i=0 L i=0

for someb € R such that D;(b) =0,i=1,...,n—1,and D,(b) =1,

/A a'bl * bl ®
L2:F {"'l Dl} /---/{ N DVLZ} I{-_lDl’l—l} /Di’l
L i,j=0 Ly ij=0 (1 i=0

for some a,b € R such that D,_1(a) = 1, Dy(a) = 0, Dy_1(b) = 0, Dy(b) = 1,
Di(ﬂl) :Di(b) :0, i:1,...,n—2.

Proof. By Lemma 3, I = RZ N L is an abelian ideal of L and therefore FI is an abelian ideal of
the Lie algebra FL (here the Lie algebra FL is considered over the field F). Let dimp FL = n.
It is obvious that dimr M = rkg M for any subalgebra M of the Lie algebra FL, in particular
dimp FZ > n — 2 because of conditions of the theorem. We may restrict ourselves only on
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nonabelian algebras and assume dimp FZ = n — 2 (in case dimp FZ > n — 1 the Lie algebra
FL is abelian). Since FL is nilpotent of nilpotency class 2, one can easily show that FL is a
direct sum of a nonabelian Lie algebra of dimension 3 and an abelian algebra and satisfies the
condition 1) of the theorem. So, we may assume further that dimp FL > n + 1.

Case 1. tkr Z = n — 1. Then FI is of codimension 1 in FL by Lemma 5 from [6]. Therefore
dimp FI > n because of dimp FL > n 41 and dimr FL/FI = 1. We obtain the strong inclusion
FZ g FI because of dimp FZ = n — 1. Take a basis Dq,...,D,_1 of Z over R and an element
D, € FL\ FI. Then Dy, ..., Dy is a basis for FL over R and [Dy, FI| # 0. Using Lemma 4 one
can easily show that FL is contained in a subalgebra of type L; from W(A).

Case2.tkr Z =n—2and dimp FI = n — 2. Then FI = FZ, dimp FL/FI > 3 and therefore
by Lemma 5 the quotient algebra FL/FI is of the form

; k
bl
PL/FI:P<{Z_—'DH1+FI} ,Dn+FI>
: i=0

for some k > 1,b € R such that D,(b) =1, D,,_1(b) = 0and D(b) = 0 foreach D € FI.

The F-space
A b -
= {{ied o fiea). )

is an abelian subalgebra of W(A) and [FL, J] C ]J. Therefore the sum

]+F<{%Dn1} ,Dn>
: i=0

is a subalgebra of the Lie algebra W(A). If [D,,, D,,_1] # 0, then taking into account the relation
[Dy, Dy—1] € FI one can write

[Dn/ Dn—l] =oDy+ - +ay2Dp
for some a; € F (recall that FI = FZ). Consider the element of W(A) of the form
Dy_1 =Dy_1—a1bDy — -+ — ay_2bDy_».

Since [D,, 57,,1] =0, 1'5”,1(17) = 0, one can replace the element D,,_; with the element D, 1
and assume without loss of generality that [D,,, D,,_1] = 0. As a result we get the Lie algebra
of the type L; from the statement of the theorem.

Case 3.rkg Z = n —2 and dimp FI > n — 2. First, suppose Cr1(FI) = FI. Then by Lemma 6
there are a basis Dy, ..., D, _» of the ideal FI over R and elements a,b € R such that

D,_1(a) =1, Dy(a) =0, Dy_1(b) =0, Dy(b) =1

and
Di(ﬂl) = Di(b) :O, i= 1,...,n—2,

and each element D € FI can be written in the form

D= fl(ﬂl, b)Dl + - +fn_2(ﬂl, b)Dn_z
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for some polynomials f;(u,v) € Flu,v].
Consider the F-subspace

J = Fla,b]Dy + -+ - + Fla,b]Dy,_»

of the Lie algebra W(A). It is easy to see that | is an abelian subalgebra of W(A) and [FL, J] C J.
If [Dy, Dy,—1] = 0, then it is obvious that the subalgebra FL + ] is of type L of the theorem and
FL C Ly. Let [Dy, Dyy_1] # 0. Since [Dy, Dyy_1] € FI, it follows

[Dy, Dy—1] = h1(a,b)D1 + -+ + hy—2Dn—
for some polynomials %;(u,v) € F[u,v]. Then the subalgebra | has such an element
T = ul(a, b)Dl +... un_z(ll, b)Dn_z

that Dy, (u;(a, b)) = hi(a,b),i =1,...,n— 2 (recall that D,(a) = 0, D,(b) = 1), and hence the
element D,,_1 = D,,_1 — T satisfies the equality [D,, T| = 0. Replacing D,,_1 with D,,_1 we get
the needed basis of the Lie algebra FL + | and see that FL can be embedded into the Lie L, of
W(A). So in case of Cpp (FI) = FI the Lie algebra FL can be isomorphically embedded into the
Lie algebra of type L, from the statement of the theorem.

Further, suppose Cpp(FI) # FI. Since Cpr(FI) 2 FI one can easily show that
D,—1 € Cpr(FI)\ FI (note that FL/FI has the unique minimal ideal FD,,_1 + FI). Then
[Dy,—1, FI] = 0, and therefore [D,, FI| # 0. Therefore by Lemma 4 there is an element ¢ € R

such that
Du(c) =1, Dy_1(c) =0, Dij(c) =0,i=1,...,n—2.

Moreover, each element of F1 is of the form g1 (c)Dy + - - - + gn—2(¢) Dy, for some polynomials
gi(u) € Flu]. By Lemma 5, the quotient algebra FL/FI is of the form

bi k
FL/FI=F {i—'Dnl 4 FI}

for some b € R,k > 1such that D,(b) =1, D,_1(b) = 0. But then
D, 1(b—c¢c)=0, Dy(b—c)=0, Di(b—c) =0,

,Dy+FI
i=0

and hence b — ¢ = « for some & € F. Without loss of generality we can assume b = c. The
locally nilpotent subalgebra

[ee]

a'b/ a'b/ * b ®
Li=F {ﬁDl} ,---/{ﬁDnz} ,{.—an—l} , Dy
1.]. i,j=0 1] i,j=0 L i=0

of the Lie algebra W(A) contains FL and satisfies the conditions for the Lie algebra of type L,
from the statement of the theorem, possibly except the condition [Dy,, D,_1] = 0. If
[Dy, D,,—1] # 0, then from the inclusion [D,,, D,,_1] € FI it follows that

[Dn, Dy—1] = f1(b)D1+ -+ + fu—2(b)Dn—2
for some polynomials f;(u) € F[u].
One can easily show that there is such an element

D =hy(b)D1+ -+ hy_2(b)Dy— € Ly,

that [Dy, D] = [Dy, D;,—1] (one can take antiderivations #; for polynomials f;, i = 1,...,n — 2).
Replacing D,,_1 with D,,_1 — D we get the needed basis over R of the Lie algebra L;. O
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Remark 1. Any Lie algebra of dimension n over F can be realized as a Lie algebra of rank n
over R by Theorem 2 from [5]. So the Lie algebra of type 1) from Theorem 1 can be chosen in
any way possible.

As a corollary we get the next statement about embedding of Lie algebras of derivations.

Theorem 2. Let L be a nilpotent subalgebra of rank n over R of the Lie algebraW(A), Z = Z(L)
be the center of L and F be the field of constants of L in R. If tkr Z > n — 2, then the Lie
algebra FL can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie
algebra u, (F).

Proof. First, suppose dimp FL = n. If FL is abelian, then FL is isomorphically embeddable into
) d

a—xl, ooy m
n over F. So one can assume that FL is nonabelian. Then by Theorem 1, FL = M; © M, where
M; is an abelian Lie algebra of dimension n — 3 over F and M is nilpotent nonabelian with
dimp M, = 3. The subalgebra H, = F <3871, % + x3 %, %> of the Lie algebra u,(F) is obvi-

ously isomorphic to My. The abelian subalgebra H; = F <aaT4' ceey %

the Lie algebra M;. So FL ~ H; & H; is isomorphic to a subalgebra of i, (F). Note that H; & Hp
is of rank n over the field K(x1, ..., x,) of rational functions in n variables.

Next, let dimp FL > n. By Theorem 1, the Lie algebra FL lies in one of the subalgebras
of types L or L. Therefore it is sufficient to show that the subalgebras L, L, of W(A) from
Theorem 1 can be isomorphically embedded into the Lie algebra u, (F). In case L1, we define a

the Lie algebra u, (F) because the subalgebra F < > of u, (F) is abelian of dimension

> ,n > 4,is isomorphic to

mapping ¢ on the basis D1, ..., Dy, {IZ’.—:DZ-}?O : of L, over R by the rule ¢(D;) = %,i =1,...,n,
. ’ 1= !

qo(%Di) = %%,i =1,...,n—1, and then extend it on L; by linearity. One can easily see that

the mapping ¢ is an isomorphic embedding of the Lie algebra L; into u,(F). Analogously, on

L, we define a mapping ¢ : Ly — u,(F) by the rule

d a'bl Xy X0 0
Dj)==—, i=1,... — D) =" k=1,...,n—2
$D) =g =l WGEDY = Fpm e et
b xi, 0
—Dypq) ==t >1,j>1
A e T
and further by linearity. Then ¢ is an isomorphic embedding of the Lie algebra L, into the Lie
algebra u, (F). O
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Hexait K — moae xapakTepuctuky HyAb, A — obaacTb miricHocTi Haa K 3 moaeM vacTtok R =
Frac(A), i Derg A — aarebpa Ai K-audpepenuitosans A. Hexait W(A) := RDergA i L — HiabIO-
TeHTHa mipaArebpa panry n Haa R Ai aarebpu W(A). Mu nokasyemo, 1o sikiuo uentp Z = Z(L)
Mae paHr > n — 2Haa RiF = F(L) — noae xoHcTaHT aarebpu Ai L B R, To aarebpa Ai FL micturbest
B AOKAABHO HiABIIOTEHTHIl MiaaArebpi paHry n Haa R 3 mpupoaHiM 6asmcom Hap moaem R. Takox
AOBOAMTBCST, O Ai aarebpa FL mMoxe 6yTi i3oMopdHO BKAaaeHa (K abcTpakTHa Ai aarebpa) B
TpUKyTHY aArebpy Ai u,(F), mo 6yaa AOCAiAXeHa paHillle {HIIVIMY aBTOpaMIL.

Kntouosi cnosa i ppasu: AvdpepeHIIiFOBaHHS, BEKTOPHE TIOAe, aATebpa Ai, HiABIIOTeHTHa aATebpa,
obaacThb 1iAicHOCTI.



