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NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL

CORANK

Let K be a field of characteristic zero, A be an integral domain over K with the field of fractions

R = Frac(A), and DerK A be the Lie algebra of all K-derivations on A. Let W(A) := RDerKA and

L be a nilpotent subalgebra of rank n over R of the Lie algebra W(A). We prove that if the center

Z = Z(L) is of rank ≥ n − 2 over R and F = F(L) is the field of constants for L in R, then the Lie

algebra FL is contained in a locally nilpotent subalgebra of W(A) of rank n over R with a natural

basis over the field R. It is also proved that the Lie algebra FL can be isomorphically embedded

(as an abstract Lie algebra) into the triangular Lie algebra un(F), which was studied early by other

authors.
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INTRODUCTION

Let K be a field of characteristic zero, A be an integral domain over K, and R = Frac(A)

be its field of fractions. Recall that a K-derivation D on A is a K-linear operator on the vector

space A satisfying the Leibniz rule D(ab) = D(a)b + aD(b) for any a, b ∈ A. The set DerK A of

all K-derivations on A is a Lie algebra over K with the Lie bracket [D1, D2] = D1D2 − D2D1.

The Lie algebra DerK A can be isomorphically embedded into the Lie algebra DerK R (any

derivation D on A can be uniquely extended on R by the rule D(a/b) = (D(a)b − aD(b))/b2 ,

a, b ∈ A). We denote by W(A) the subalgebra R DerK A of the Lie algebra DerK R (note that

W(A) and DerK R are Lie algebras over the field K but not over R). Nevertheless, W(A) and

DerK R are vector spaces over the field R, so one can define the rank rkR L for any subalgebra

L of the Lie algebra W(A) by the rule rkR L = dimR RL. Every subalgebra L of the Lie algebra

W(A) determines its field of constants in R by

F = F(L) := {r ∈ R | D(r) = 0 for all D ∈ L} .

The product FL = {∑ αiDi | αi ∈ F, Di ∈ L} is a Lie algebra over the field F, this Lie alge-

bra often has simpler structure than L itself (note that such an extension of the ground field

preserves the main properties of L from the viewpoint of Lie theory).

We study nilpotent subalgebras L ⊆ W(A) of rank n ≥ 3 over R with the center Z = Z(L)

of rank ≥ n − 2 over R, i.e. with the center of corank ≤ 2 over R. We prove that FL is contained
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in a locally nilpotent subalgebra of W(A) with a natural basis over R, similar to the standard

basis of the triangular Lie algebra Un(F) (Theorem 1). As a consequence, we get an isomorphic

embedding (as Lie algebras) of the Lie algebra FL over F into the triangular Lie algebra un(F)

over F (Theorem 2). These results generalize main results of the papers [8] and [9]. Note that

the problem of classifying finite dimensional Lie algebras from Theorem 1 up to isomorphism

is wild (i.e., it contains the hopeless problem of classifying pairs of square matrices up to

similarity, see [3]). Triangular Lie algebras were studied in [1] and [2], they are locally nilpotent

but not nilpotent.

We use standard notations. The ground field K is arbitrary of characteristic zero. If F

is a subfield of a field R and r1, . . . , rk ∈ R, then F 〈r1, . . . , rk〉 is the set of all linear com-

binations of ri with coefficients in F, it is a subspace in the F-space R, for an infinite set

{r1, . . . , rk, . . .} we use the notation F
〈
{ri}

∞
i=1

〉
. The triangular subalgebra un(K) of the Lie

algebra Wn(K) := DerK K[x1, . . . , xn] consists of all the derivations on K[x1, . . . , xn] of the

form

D = f1(x2, . . . , xn)
∂

∂x1
+ · · ·+ fn−1(xn)

∂

∂xn−1
+ fn

∂

∂x1
,

where fi ∈ K[xi+1, . . . , xn], fn ∈ K. If D ∈ W(A), then Ker D denotes the field of constants for

D in R, i.e., Ker D = {r ∈ R | D(r) = 0}.

1 MAIN PROPERTIES OF NILPOTENT SUBALGEBRAS OF W(A)

We often use the next relations for derivations which are well known (see, for example [7]).

Let D1, D2 ∈ W(A) and a, b ∈ R. Then

1) [aD1, bD2] = ab[D1, D2] + aD1(b)D2 − bD2(a)D1;

2) if a, b ∈ Ker D1 ∩ Ker D2, then [aD1, bD2] = ab[D1, D2].

The next two lemmas contain some results about derivations and Lie algebras of deriva-

tions.

Lemma 1 ([6], Lemma 2). Let L be a subalgebra of the Lie algebra DerK R and F the field of

constants for L in R. Then FL is a Lie algebra over F, and if L is abelian, nilpotent or solvable,

then so is FL, respectively.

Lemma 2 ([6], Proposition 1). Let L be a nilpotent subalgebra of the Lie algebra W(A) with

rkR L < ∞ and F = F(L) the field of constants for L in R. Then

1) FL is finite dimensional over F;

2) if rkR L = 1, then L is abelian and dimF FL = 1;

3) if rkR L = 2, then FL is either abelian with dimF FL = 2 or FL is of the form

FL = F

〈
D2, D1, aD1, . . . ,

ak

k!
D1

〉
,

for some D1, D2 ∈ FL and a ∈ R such that [D1, D2] = 0, D2(a) = 1, D1(a) = 0.
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Lemma 3. Let L be a nilpotent subalgebra of the Lie algebra W(A) of rank n over R with the

center Z = Z(L) of rank k over R. Then I := RZ ∩ L is an abelian ideal of L with rkR I = k.

Proof. By Lemma 4 from [6], I is an ideal of the Lie algebra L. Let us show that I is abelian.

Let us choose an arbitrary basis D1, . . . , Dk of the center Z over R ( i.e., a maximal by inclusion

linearly independent over R subset of Z). One can easy to see that D1, . . . , Dk is a basis of the

ideal I as well, so we can write for each element D ∈ I

D = a1D1 + · · ·+ akDk

for some a1, . . . , ak ∈ R. Since Dj ∈ Z, j = 1, . . . , k, it holds

[Dj, D] = [Dj,
k

∑
i=1

aiDi] =
k

∑
i=1

Dj(ai)Di = 0 (1)

for j = 1, . . . , k. The derivations D1, . . . , Dn are linearly independent over the field R, hence

we obtain from (1) that Dj(ai) = 0, i, j = 1, . . . , k. Therefore we have for each element

D = b1D1 + . . . bkDk of the ideal I the next equalities

[D, D] = [
k

∑
i=1

aiDi,
k

∑
j=1

bjDj] =
k

∑
i,j=1

aibj[Di, Dj] = 0,

since Di(bj) = Dj(ai) = 0 as mentioned above. The latter means that I is an abelian ideal.

Besides, obviously rkR I = k.

Lemma 4. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of L,

I := RZ ∩ L and F the field of constants for L in R. If for some D ∈ L it holds [D, FI] ⊆ FI,

[D, FI] 6= 0, then there exist a basis D1, . . . , Dm of the ideal FI of the Lie algebra FL over R and

a ∈ R such that D(a) = 1, Di(a) = 0, i = 1, . . . , m. Besides, each element D ∈ FI is of the

form D = f1(a)D1 + · · · + fm(a)Dm for some polynomials fi ∈ F1[t], where F1 is the field of

constants for the subalgebra L1 = FI + FD in R.

Proof. By Lemma 3, the intersection I = RZ ∩ L is an abelian ideal of the Lie algebra L and

therefore FI is an abelian ideal of the Lie algebra FL. Choose a basis D1, . . . , Dm of FI over the

field R in such a way that D1, . . . , Dm ∈ Z. Then FZ is the center of the Lie algebra FL. Now take

any basis T1, . . . , Ts of the F-space FI (note that the Lie algebra FL is finite dimensional over

the field F by [6]). Every basis element Ti can be written in the form Ti =
m

∑
j=1

rijDj, i = 1, . . . , s,

for some rij ∈ R. Denote by B the subring B = F[rij, i = 1, . . . , s, j = 1, . . . , m] of the field R

generated by F and the elements rij. Since the linear operator ad D is nilpotent on the F-space

FI the derivation D is locally nilpotent on the ring B. Indeed,

[D, Ti] = [D,
m

∑
j=1

rijDj] =
m

∑
j=1

D(rij)Dj

and therefore

(ad D)ki(Ti) =
m

∑
j=1

Dki(rij)Dj = 0
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for some natural ki, i = 1, . . . , s. Denoting k = max1≤t≤s kt, we get Dk(rij) = 0 and therefore

D is locally nilpotent on B. One can easily show that there exists an element p ∈ B (a preslice)

such that D(p) ∈ Ker D, D(p) 6= 0. Then denoting a := p/D(p), we have D(a) = 1 (such

an element a is called a slice for D). The ring B is contained in the localization B[c−1], where

c := D(p) and the derivation D is locally nilpotent on B[c−1]. Note that B[c−1] ⊆ F1, where

F1 is the field of constants for L1 = FI + FD in R. Besides, by Principle 11 from [4] it holds

B[c−1] = B0[a], where B0 is the kernel of D in B[c−1]. This completes the proof because B ⊆

B[c−1] and every element D of FI is of the form D = b1D1 + . . . bmDm, bi ∈ B.

Lemma 5. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of

L, F the field of constants of L in R and I = RZ ∩ L. Let rkR Z = n − 2. Then the following

statements for the Lie algebra FL/FI hold

1) if FL/FI is abelian, then dimF FL/FI = 2;

2) if FL/FI is nonabelian, then there exist elements Dn−1, Dn ∈ FL, b ∈ R such that

FL/FI = F

〈
Dn−1 + FI, bDn−1 + FI, . . . ,

bk

k!
Dn−1 + FI, Dn + FI

〉

with k ≥ 1, Dn(b) = 1, Dn−1(b) = 0, D(b) = 0 for all D ∈ FI.

Proof. Let us choose a basis D1, . . . , Dn−2 of the center Z over the field R and any central ideal

FDn−1 + FI of the quotient algebra FL/FI. Denote the intersection R(I + KDn−1) ∩ L by I1.

Then it is easy to see that FI1 is an ideal of the Lie algebra FL of rank n − 1 over R and the

Lie algebra FL/FI1 is of dimension 1 over F (by Lemma 5 from [6]). Let us choose an arbitrary

element Dn ∈ FL \ FI1. Then D1, . . . , Dn is a basis of the Lie algebra FL over the field R.

Case 1. The quotient algebra FL/FI is abelian. Let us show that

FL/FI = F 〈Dn−1 + FI, Dn + FI〉 .

Indeed, let us take any elements S1 + FI, S2 + FI of FL/FI and write

S1 =
n

∑
i=1

riDi, S2 =
n

∑
i=1

siDi, ri, si ∈ R, i, j = 1, . . . , n.

From the equalities [Di, S1] = [Di, S2] = 0, i = 1, . . . , n − 2 (recall that Di ∈ Z(L),

i = 1, . . . , n − 2) it follows that

Di(rj) = Di(sj) = 0, i = 1 . . . , n − 2, j = 1, . . . , n. (2)

Since [FL, FI] ⊆ FI we have [Di, S1], [Di, S2] ∈ FI for i = n − 1, n. Taking into account the

equalities (2) we derive that

Di(sj) = Di(rj) = 0, i = n − 1, n, j = n − 1, n.

Therefore it holds si, ri ∈ F for i = n − 1, n and the elements Dn−1 + FI, Dn + FI form a basis

for the abelian Lie algebra FL/FI over the field F.

Case 2. FL/FI is nonabelian. Then dimF FL/FI ≥ 3 because the Lie algebra FL/FI is

nilpotent. Let us show that the ideal FI1/FI of the Lie algebra FL/FI is abelian (recall that
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I1 = R(I + KDn−1) ∩ L). Since Dn−1 + FI lies in the center of the quotient algebra FL/FI we

have for any element rDn−1 + FI of the ideal FI1/FI the following equality

[Dn−1 + FI, rDn−1 + FI] = FI.

Hence Dn−1(r)Dn−1 + FI = FI. The last equality implies Dn−1(r) = 0. But then for any

elements rDn−1 + FI, sDn−1 + FI of FI1/FI we get

[rDn−1 + FI, sDn−1 + FI] = [rDn−1, sDn−1 + FI]

= (Dn−1(s)r − sDn−1(r))Dn−1 + FI = FI.

The latter means that FI1/FI is an abelian ideal of FL/FI.

Further, the nilpotent linear operator ad Dn acts on the linear space FI1/FI with

Ker(ad Dn) = FDn−1 + FI. Indeed, let ad Dn(rDn−1 + FI) = FI. Then [Dn, rDn−1] ∈ FI

and therefore Dn(r)Dn−1 ∈ FI. This relation implies Dn(r) = 0 and taking into account the

equalities Di(r) = 0, i = 1, . . . , n − 1, we get that r ∈ F and Ker(ad Dn) = FDn−1 + FI. It

follows from this relation that the linear operator ad Dn on FI/FI1 has only one Jordan chain

and the Jordan basis can be chosen with the first element Dn−1 + FI. Since dim FI1/FI ≥ 2

(recall that dimF FL/FI ≥ 3) the chain is of length ≥ 2. Let us take the second element of

the Jordan chain in the form bDn−1 + FI, b ∈ R. Then ad Dn(bDn−1 + FI) = Dn−1 + FI and

hence Dn(b) = 1. The inclusion [Dn−1, bDn−1] ∈ FI implies the equality Dn−1(b) = 0, and

analogously one can obtain Di(b) = 0, i = 1, . . . , n − 2.

If dim FI1/FI ≥ 3 and cDn−1 + FI is the third element of the Jordan chain of ad Dn, then

repeating the above considerations we get Dn(c) = b. Then the element α = b2

2! − c ∈ R satisfies

the relations Dn−1(α) = Dn(α) = 0 and Di(α) = 0, i = 1, . . . , n − 2, since Di(b) = Di(c) = 0.

Therefore, α = b2

2! − c ∈ F and c = b2

2! + α. Since αDn−1 + FI ∈ Ker(ad Dn), we can take the

third element of the Jordan chain in the form b2

2! Dn−1 + FI. Repeating the consideration one

can build the needed basis of the Lie algebra FL/FI.

Lemma 6. Let L be a nilpotent subalgebra of W(A) with the center Z = Z(L) of

rkR Z = n − 2, F the field of constants for L in R and I = RZ ∩ L. If S, T are elements of L such

that [S, T] ∈ I, the rank of the subalgebra L1 spanned by I, S, T equals n and CFL(FI) = FI,

then there exist elements a, b ∈ R such that S(a) = 1, T(a) = 0, S(b) = 0, T(b) = 1 and

D(a) = D(b) = 0 for each D ∈ I. Besides, every element D ∈ FI can be written in the form

D = f1(a, b)D1 + · · ·+ fn−2(a, b)Dn−2 with some polynomials fi(u, v) ∈ F[u, v].

Proof. Let us choose a basis D1, . . . , Dn−2 of Z over R. By the lemma conditions, one can easily

see that D1, . . . , Dn−2, S, T is a basis of L over R. The ideal FI of the Lie algebra FL is abelian

by Lemma 3 and ad S, ad T are commuting linear operators on the vector space FI (over F).

Take a basis T1, . . . , Ts of FI over F (recall that dimF FL < ∞ by Theorem 1 from [6]) and write

Ti =
n−2

∑
j=1

rijDj for some rij ∈ R, i = 1, . . . , s, j = 1, . . . , n − 2. Denote by

B = F[rij, i = 1, . . . , s, j = 1, . . . , n − 2],

the subring of R generated by F and all the coefficients rij. Then B is invariant under the deriva-

tions S and T, these derivations are locally nilpotent on B and linearly independent over R (by
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the condition CFL(FI) = FI of the lemma). By Lemma 4, there exists an element a ∈ B[c−1]

such that

S(a) = 1, Di(a) = 0, i = 1, . . . , n − 2,

(here c = S(p) for a preslice p for S in B). Since c ∈ Ker S and [S, T] = 0 one can assume

without loss of generality that T(c) ∈ Ker T. But then T is a locally nilpotent derivation on

the subring B[c−1]. Repeating these considerations we can find an element b ∈ B[c−1][d−1]

with T(b) = 1 (here d is a preslice for the derivation T in B[c−1]). Denote B1 = B[c−1, d−1],

the subring of R generated by B, c−1, d−1. Then using standard facts about locally nilpotent

derivations (see, for example Principle 11 in [4]) one can show that B1 = B0[a, b], where

B0 = Ker S ∩ Ker T. Therefore every element h of B1 can be written in the form h = f (a, b)

with f (u, v) ∈ F[u, v]. Note that

F = Ker T ∩ Ker S ∩n−2
i=1 Ker Di.

It follows from this representation of elements of B1 that every element of the ideal FI can be

written in the form

D = f1(a, b)D1 + · · ·+ fn−2(a, b)Dn−2

with some polynomials fi(u, v) ∈ F[u, v].

2 THE MAIN RESULTS

Theorem 1. Let L be a nilpotent subalgebra of rank n ≥ 3 over R from the Lie algebra W(A),

Z = Z(L) the center of L with rkR Z ≥ n − 2, F the field of constants of L in R. Then one of the

following statements holds:

1) dimF FL = n and FL is either abelian or is a direct sum of a nonabelian nilpotent Lie

algebra of dimension 3 and an abelian Lie algebra;

2) dimF FL ≥ n + 1 and FL lies in one of the locally nilpotent subalgebras L1, L2 of W(A) of

rank n over R, which have a basis D1, . . . , Dn over R satisfying the relations

[Di, Dj] = 0, i, j = 1, . . . , n, and are one of the form

L1 = F

〈{
bi

i!
D1

}∞

i=0

, . . . ,

{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

for some b ∈ R such that Di(b) = 0, i = 1, . . . , n − 1, and Dn(b) = 1,

L2 = F

〈{
aibj

i!j!
D1

}∞

i,j=0

, . . . ,

{
aibj

i!j!
Dn−2

}∞

i,j=0

,

{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

for some a, b ∈ R such that Dn−1(a) = 1, Dn(a) = 0, Dn−1(b) = 0, Dn(b) = 1,

Di(a) = Di(b) = 0, i = 1, . . . , n − 2.

Proof. By Lemma 3, I = RZ ∩ L is an abelian ideal of L and therefore FI is an abelian ideal of

the Lie algebra FL (here the Lie algebra FL is considered over the field F). Let dimF FL = n.

It is obvious that dimF M = rkR M for any subalgebra M of the Lie algebra FL, in particular

dimF FZ ≥ n − 2 because of conditions of the theorem. We may restrict ourselves only on
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nonabelian algebras and assume dimF FZ = n − 2 (in case dimF FZ ≥ n − 1 the Lie algebra

FL is abelian). Since FL is nilpotent of nilpotency class 2, one can easily show that FL is a

direct sum of a nonabelian Lie algebra of dimension 3 and an abelian algebra and satisfies the

condition 1) of the theorem. So, we may assume further that dimF FL ≥ n + 1.

Case 1. rkR Z = n − 1. Then FI is of codimension 1 in FL by Lemma 5 from [6]. Therefore

dimF FI ≥ n because of dimF FL ≥ n + 1 and dimF FL/FI = 1. We obtain the strong inclusion

FZ & FI because of dimF FZ = n − 1. Take a basis D1, . . . , Dn−1 of Z over R and an element

Dn ∈ FL \ FI. Then D1, . . . , Dn is a basis for FL over R and [Dn, FI] 6= 0. Using Lemma 4 one

can easily show that FL is contained in a subalgebra of type L1 from W(A).

Case 2. rkR Z = n − 2 and dimF FI = n − 2. Then FI = FZ, dimF FL/FI ≥ 3 and therefore

by Lemma 5 the quotient algebra FL/FI is of the form

FL/FI = F

〈{
bi

i!
Dn−1 + FI

}k

i=0

, Dn + FI

〉

for some k ≥ 1, b ∈ R such that Dn(b) = 1, Dn−1(b) = 0 and D(b) = 0 for each D ∈ FI.

The F-space

J = F

〈{
bi

i!
D1

}∞

i=0

, . . . ,

{
bi

i!
Dn−1

}∞

i=0

〉

is an abelian subalgebra of W(A) and [FL, J] ⊆ J. Therefore the sum

J + F

〈{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

is a subalgebra of the Lie algebra W(A). If [Dn, Dn−1] 6= 0, then taking into account the relation

[Dn, Dn−1] ∈ FI one can write

[Dn, Dn−1] = α1D1 + · · ·+ αn−2Dn−2

for some αi ∈ F (recall that FI = FZ). Consider the element of W(A) of the form

D̃n−1 = Dn−1 − α1bD1 − · · · − αn−2bDn−2.

Since [Dn, D̃n−1] = 0, D̃n−1(b) = 0, one can replace the element Dn−1 with the element D̃n−1

and assume without loss of generality that [Dn, Dn−1] = 0. As a result we get the Lie algebra

of the type L1 from the statement of the theorem.

Case 3. rkR Z = n− 2 and dimF FI > n− 2. First, suppose CFL(FI) = FI. Then by Lemma 6

there are a basis D1, . . . , Dn−2 of the ideal FI over R and elements a, b ∈ R such that

Dn−1(a) = 1, Dn(a) = 0, Dn−1(b) = 0, Dn(b) = 1

and

Di(a) = Di(b) = 0, i = 1, . . . , n − 2,

and each element D ∈ FI can be written in the form

D = f1(a, b)D1 + · · ·+ fn−2(a, b)Dn−2
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for some polynomials fi(u, v) ∈ F[u, v].

Consider the F-subspace

J = F[a, b]D1 + · · ·+ F[a, b]Dn−2

of the Lie algebra W(A). It is easy to see that J is an abelian subalgebra of W(A) and [FL, J] ⊆ J.

If [Dn, Dn−1] = 0, then it is obvious that the subalgebra FL + J is of type L2 of the theorem and

FL ⊂ L1. Let [Dn, Dn−1] 6= 0. Since [Dn, Dn−1] ∈ FI, it follows

[Dn, Dn−1] = h1(a, b)D1 + · · ·+ hn−2Dn−2

for some polynomials hi(u, v) ∈ F[u, v]. Then the subalgebra J has such an element

T = u1(a, b)D1 + . . . un−2(a, b)Dn−2

that Dn(ui(a, b)) = hi(a, b), i = 1, . . . , n − 2 (recall that Dn(a) = 0, Dn(b) = 1), and hence the

element D̃n−1 = Dn−1 − T satisfies the equality [Dn, T] = 0. Replacing Dn−1 with D̃n−1 we get

the needed basis of the Lie algebra FL + J and see that FL can be embedded into the Lie L2 of

W(A). So in case of CFL(FI) = FI the Lie algebra FL can be isomorphically embedded into the

Lie algebra of type L2 from the statement of the theorem.

Further, suppose CFL(FI) 6= FI. Since CFL(FI) ⊇ FI one can easily show that

Dn−1 ∈ CFL(FI) \ FI (note that FL/FI has the unique minimal ideal FDn−1 + FI). Then

[Dn−1, FI] = 0, and therefore [Dn, FI] 6= 0. Therefore by Lemma 4 there is an element c ∈ R

such that

Dn(c) = 1, Dn−1(c) = 0, Di(c) = 0, i = 1, . . . , n − 2.

Moreover, each element of FI is of the form g1(c)D1 + · · ·+ gn−2(c)Dn−2 for some polynomials

gi(u) ∈ F[u]. By Lemma 5, the quotient algebra FL/FI is of the form

FL/FI = F

〈{
bi

i!
Dn−1 + FI

}k

i=0

, Dn + FI

〉

for some b ∈ R, k ≥ 1 such that Dn(b) = 1, Dn−1(b) = 0. But then

Dn−1(b − c) = 0, Dn(b − c) = 0, Di(b − c) = 0,

and hence b − c = α for some α ∈ F. Without loss of generality we can assume b = c. The

locally nilpotent subalgebra

L1 = F

〈{
aibj

i!j!
D1

}∞

i,j=0

, . . . ,

{
aibj

i!j!
Dn−2

}∞

i,j=0

,

{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

of the Lie algebra W(A) contains FL and satisfies the conditions for the Lie algebra of type L2

from the statement of the theorem, possibly except the condition [Dn, Dn−1] = 0. If

[Dn, Dn−1] 6= 0, then from the inclusion [Dn, Dn−1] ∈ FI it follows that

[Dn, Dn−1] = f1(b)D1 + · · ·+ fn−2(b)Dn−2

for some polynomials fi(u) ∈ F[u].

One can easily show that there is such an element

D = h1(b)D1 + · · ·+ hn−2(b)Dn−2 ∈ L1,

that [Dn, D] = [Dn, Dn−1] (one can take antiderivations hi for polynomials fi, i = 1, . . . , n − 2).

Replacing Dn−1 with Dn−1 − D we get the needed basis over R of the Lie algebra L2.
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Remark 1. Any Lie algebra of dimension n over F can be realized as a Lie algebra of rank n

over R by Theorem 2 from [5]. So the Lie algebra of type 1) from Theorem 1 can be chosen in

any way possible.

As a corollary we get the next statement about embedding of Lie algebras of derivations.

Theorem 2. Let L be a nilpotent subalgebra of rank n over R of the Lie algebra W(A), Z = Z(L)

be the center of L and F be the field of constants of L in R. If rkR Z ≥ n − 2, then the Lie

algebra FL can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie

algebra un(F).

Proof. First, suppose dimF FL = n. If FL is abelian, then FL is isomorphically embeddable into

the Lie algebra un(F) because the subalgebra F
〈

∂
∂x1

, . . . , ∂
∂xn

〉
of un(F) is abelian of dimension

n over F. So one can assume that FL is nonabelian. Then by Theorem 1, FL = M1 ⊕ M2, where

M1 is an abelian Lie algebra of dimension n − 3 over F and M2 is nilpotent nonabelian with

dimF M2 = 3. The subalgebra H2 = F
〈

∂
∂x1

, ∂
∂x2

+ x3
∂

∂x1
, ∂

∂x3

〉
of the Lie algebra un(F) is obvi-

ously isomorphic to M2. The abelian subalgebra H1 = F
〈

∂
∂x4

, . . . , ∂
∂xn

〉
, n ≥ 4, is isomorphic to

the Lie algebra M1. So FL ≃ H1 ⊕ H2 is isomorphic to a subalgebra of un(F). Note that H1 ⊕ H2

is of rank n over the field K(x1, . . . , xn) of rational functions in n variables.

Next, let dimF FL > n. By Theorem 1, the Lie algebra FL lies in one of the subalgebras

of types L1 or L2. Therefore it is sufficient to show that the subalgebras L1, L2 of W(A) from

Theorem 1 can be isomorphically embedded into the Lie algebra un(F). In case L1, we define a

mapping ϕ on the basis D1, . . . , Dn,
{

bi

i! Di

}∞

i=1
of L1 over R by the rule ϕ(Di) =

∂
∂xi

, i = 1, . . . , n,

ϕ( bi

i! Di) =
xi

n
i!

∂
∂xi

, i = 1, . . . , n − 1, and then extend it on L1 by linearity. One can easily see that

the mapping ϕ is an isomorphic embedding of the Lie algebra L1 into un(F). Analogously, on

L2 we define a mapping ψ : L2 → un(F) by the rule

ψ(Di) =
∂

∂xi
, i = 1, . . . , n, ψ(

aibj

i!j!
Dk) =

xi
n−1x

j
n

i!j!

∂

∂xk
, k = 1, . . . , n − 2

ψ(
bi

i!
Dn−1) =

xi
n

i!

∂

∂xn−1
, i ≥ 1, j ≥ 1,

and further by linearity. Then ψ is an isomorphic embedding of the Lie algebra L2 into the Lie

algebra un(F).

REFERENCES

[1] Bavula V.V. Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras.

Izv. Math. 2013, 77 (6), 3–44. doi:10.1070/IM2013v077n06ABEH002670

[2] Bavula V.V. Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism. C. R.

Math. Acad. Sci. Paris 2012, 350 (11–12), 553–556. doi:10.1016/j.crma.2012.06.001

[3] Bondarenko V.M., Petravchuk A.P. Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four

variables. Linear Algebra Appl. 2019, 568, 165–172. doi:10.1016/j.laa.2018.07.031

[4] Freudenburg G. Algebraic theory of locally nilpotent derivations. Encyclopaedia of Math. Sciences, Berlin,

2006.



198 CHAPOVSKYI Y.Y., MASHCHENKO L.Z., PETRAVCHUK A.P.

[5] Makedonskyi Ie. On noncommutative bases of the free module Wn(K). Comm. Algebra 2016, 44 (1), 11–25.

doi:10.1080/00927872.2013.865035

[6] Makedonskyi Ie.O., Petravchuk A.P. On nilpotent and solvable Lie algebras of derivations. J. Algebra 2014, 401,

245–257. doi:10.1016/j.jalgebra.2013.11.021

[7] Nowicki A. Polynomial Derivations and their Rings of Constants. Uniwersytet Mikolaja Kopernika, Torun.

1994.

[8] Petravchuk A.P. On nilpotent Lie algebras of derivations of fraction fields. Algebra Discrete Math. 2016, 22 (1),

118–131.

[9] Sysak K.Ya. On nilpotent Lie algebras of derivations with large center. Algebra Discrete Math. 2016, 21 (1), 153–162.

Received 01.03.2020

Чаповський Є.Ю., Мащенко Л.З., Петравчук А.П. Нiльпотентнi алгебри Лi диференцiювань з

центром малого корангу // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 189–198.

Нехай K — поле характеристики нуль, A — область цiлiсностi над K з полем часток R =

Frac(A), i DerK A — алгебра Лi K-диференцiювань A. Нехай W(A) := RDerKA i L — нiльпо-

тентна пiдалгебра рангу n над R Лi алгебри W(A). Ми показуємо, що якщо центр Z = Z(L)

має ранг ≥ n− 2 над R i F = F(L) — поле констант алгебри Лi L в R, то алгебра Лi FL мiститься

в локально нiльпотентнiй пiдалгебрi рангу n над R з природнiм базисом над полем R. Також

доводиться, що Лi алгебра FL може бути iзоморфно вкладена (як абстрактна Лi алгебра) в

трикутну алгебру Лi un(F), що була дослiджена ранiше iншими авторами.

Ключовi слова i фрази: диференцiювання, векторне поле, алгебра Лi, нiльпотентна алгебра,

область цiлiсностi.


