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ANTONOVA T.M.

ON CONVERGENCE CRITERIA FOR BRANCHED CONTINUED FRACTION

The starting point of the present paper is a result by E.A. Boltarovych (1989) on convergence

regions, dealing with branched continued fraction
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where |ai(2n−1)| ≤ α/N, ip = 1, N, p = 1, 2n − 1, n ≥ 1, and for each multiindex i(2n − 1) there

is a single index j2n, 1 ≤ j2n ≤ N, such that |ai(2n−1),j2n
| ≥ R, ip = 1, N, p = 1, 2n − 1, n ≥ 1,

and |ai(2n)| ≤ r/(N − 1), i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1, where N > 1 and α, r, R are real

numbers that satisfying certain conditions. In the present paper, conditions for these regions are

replaced by ∑
N
i1=1 |ai(1)| ≤ α(1 − ε), ∑

N
i2n+1=1 |ai(2n+1)| ≤ α(1 − ε), ip = 1, N, p = 1, 2n, n ≥ 1, and

for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that |ai(2n−1),j2n
| ≥ R and

∑i2n∈{1,2,...,N}\{j2n}
|ai(2n)| ≤ r, ip = 1, N, p = 1, 2n − 1, n ≥ 1, where ε, α, r and R are real numbers

that satisfying certain conditions, and better convergence speed estimates are obtained.
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1 INTRODUCTION

All known general methods of proof of convergence criteria of continued fractions are

based on value-region considerations. The interplay between element regions and value re-

gions leads to convergence region criteria, that is, results of the form: if the elements of con-

tinued fraction lie in some regions then the continued fraction converges. In addition, the

relationship between element regions and value regions provides one with knowledge of the

location of approximants of continued fraction whose elements lie in some convergence re-

gions. Both of these phenomena (i.e., the convergence regions and the information about the

location of approximants) are not to be found for most common infinite processes, such as

series and products [15, pp. 63–78].

It is well know (see, for example, [7]) that branched continued fractions (BCF) are multi-

dimensional generalization of continued fractions. Let N be a fixed natural number. For BCF

with the complex elements
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E.A. Boltarovych [9] proved the following theorem.
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Theorem 1. Let N > 1 and let there exist real numbers α, r and R such that 0 ≤ α ≤ 1/4,

0 ≤ r < ∞, R(1 − α) ≥ (1 + α)(r + 2 − 2α),

Q =
α(R + r)(1 + α)2

(R(1 − α)− r(1 + α)− 1 + α2)2
< 1, (2)

and such that BCF (1) with elements ai(n) satisfying

|ai(2n−1)| ≤ α/N, ip = 1, N, p = 1, 2n − 1, n ≥ 1, (3)

and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that

|ai(2n−1),j2n
| ≥ R, ip = 1, N, p = 1, 2n − 1, n ≥ 1, (4)

|ai(2n)| ≤ r/(N − 1), i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1. (5)

Then the BCF (1) converges.

This is analog of result by Leighton–Wall [13] on twin convergence regions, dealing with

continued fractions. In the present paper, we shall study what happens to conditions on num-

bers α, r and R, and convergence speed estimates, when the conditions (3)–(5) are replaced

by
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where 0 < ε < 1, and
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| ≥ R, ∑

i2n∈{1,2,...,N}\{j2n}

|ai(2n)| ≤ r, ip = 1, N, p = 1, 2n − 1, n ≥ 1. (7)

The same type of problem of convergence regions for BCF is discussed in [2–6,14]. Application

of the value regions to the study of the convergence of functional BCF may be found in [5,8,10].

Expansions of certain analytic functions in some classes of BCF are given in [1, 8, 11, 12].

We give here a few facts (see [7]) that are used. Let Q
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where ip = 1, N, p = 1, k, k = 1, n − 1, n ≥ 2. It is clear that the following recurrence relations

hold
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N
i1=1(ai(1)/Q

(n)
i(1)

), n ≥ 1, and if all

Q
(n)
i(k)

6= 0, then

fm − fn = (−1)n
N

∑
i1=1

N

∑
i2=1

. . .
N

∑
in+1=1

∏
n+1
k=1 ai(k)

∏
n+1
k=1 Q

(m)
i(k) ∏

n
k=1 Q

(n)
i(k)

, m > n ≥ 1. (8)



ON CONVERGENCE CRITERIA FOR BRANCHED CONTINUED FRACTION 159

2 CONVERGENCE CRITERIA

We shall prove the auxiliary lemma.

Lemma. Let there exist real numbers α, r and R such that

0 ≤ α < 1, 0 ≤ r < ∞, R(1 − α) ≥ (1 + α)(r + 2 − 2α), (9)

and such that BCF (1) with elements ai(n) satisfying
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and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that the

inequalities (7) hold. If Q
(n)
i(k)

denotes the “tails” of BCF (1), the following inequalities hold

1 − α ≤ |Q
(n)
i(2k)

| ≤ 1 + α, ip = 1, N, 1 ≤ p ≤ 2k ≤ n, n ≥ 2, (11)
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r
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− 1 ≥ 1, ip = 1, N, 1 ≤ p ≤ 2k − 1 ≤ n − 1, n ≥ 2. (12)

Proof. Let n be an arbitrary natural number. By induction on k for each i(k) we show that the

inequalities (11) and (12) are valid.

If n is even number and k = n/2, then for each i(n) relations (11) are obvious. If n is odd

number and k = (n − 1)/2, then for arbitrary i(n − 1) use of relation (10) leads to
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By induction hypothesis that (11) hold for k = r and for each i(2r), where 2r ≤ n, we prove the

inequalities (12) for k = r and for each i(2r − 1) and the inequalities (11) for 2k = 2r − 2 for

each i(2r − 2). Indeed, use of relations (7), (9), (10) for arbitrary i(2r − 1) leads to
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This completes the proof of the lemma.

Our main result is the following theorem.

Theorem 2. Let there exist real numbers α, ε, r and R such that 0 ≤ α < 1, 0 < ε < 1,

0 < r < ∞, R(1− α) ≥ (1+ α)(r + 2− 2α) and such that BCF (1) with elements ai(n) satisfying

the inequalities (6) and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N,

such that the inequalities (7) hold. Then the following statements hold.
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• (A) The BCF (1) converges to a value f .

• (B) If fn denotes the n-th approximant of the BCF (1) and

q =
α(1 + α)(R(1 − α) + r(1 + α))

(R(1 − α)− r(1 + α)− 1 + α2)2
≤ 1, (13)

then

| f − f2n| ≤
α(1 − ε)n+1qn

R/(1 + α)− r/(1 − α)− 1
, n ≥ 1. (14)

• (C) The values of the BCF (1) and of its approximants are in the region |z| ≤ α(1 − ε).

Proof. At first, we prove (B). Let m > 2n + 1 and n ≥ 1. From the formula (8) one obtains
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Obviously, the conditions of lemma hold. Let k be an arbitrary natural number. Applying

(11) and (12) we have for arbitrary i(2k − 1)
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and
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Q
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α(1 − ε)(R/(1 + α) + r/(1 − α))

(1 − α)(R/(1 + α)− r/(1 − α)− 1)2
.

Thus, for m > 2n + 1 and n ≥ 1

| fm − f2n| ≤
αn+1(1 − ε)n+1(R/(1 + α) + r/(1 − α))n

(1 − α)n(R/(1 + α)− r/(1 − α)− 1)2n+1
=

α(1 − ε)n+1qn

R/(1 + α)− r/(1 − α)− 1
, (15)

where q is defined by (13). If in (15) we pass to the limit as n → ∞, then from (13) it follows

that BCF (1) converges. On the other hand, if in (15) we pass to the limit as m → ∞, we obtain

the estimate (14). This proves (B).

To prove (A) we consider the following equation

F1(x) = F2(x), (16)

where

F1(x) =
x

1 − x

(

R

1 + x
+

r

1 − x

)

, F2(x) =

(

R

1 + x
−

r

1 − x
− 1

)2

.

It is clear that F1(0) < F2(0), and F1(x) > 0 and F2(x) ≥ 0 for all x ∈ (0; 1). It follows from

F′
1(x) = R(1 + x2)/(1 − x2)2 + r(1 + x)/(1 − x)3 that F′

1(x) > 0 for all x ∈ (0; 1). Let us write

the function F2(x) in the form F2(x) = (x2 − (R + r)x + R − r − 1)2/(1 − x2)2 and consider

the following equation

x2 − (R + r)x + R − r − 1 = 0. (17)

If r > 0, then x∗ = (R + r −
√

(R + r)2 − 4(R − r − 1))/2 is the only root of equation (17) on

(0; 1) and, if r = 0, then x∗ = 1 is the only root of (17). Now from

F′
2(x) = −2

x2 − (R + r)x + R − r − 1

1 − x2

(

R

(1 + x)2
+

r

(1 − x)2

)

we have F′
2(x) < 0 for all x ∈ (0; x∗). It follows that there exists the only root α∗ of equation

(16) on (0; x∗). If 0 < α ≤ α∗, then F1(α) ≤ F2(α), that is, the condition (13) holds. In the case

when α∗ < α < 1 we consider the following BCF

N
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N
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. . .
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1 +
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1 +
. . . , (18)
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where z ∈ C. It is clear that the elements of BCF (18) satisfy the conditions of lemma in domain

Dε = {z ∈ C : |z| < 1/(1 − ε)}. It follows from (11) and (12) that, if fn(z) denotes the n-th

approximant of the BCF (18), for all z ∈ Dε

| fn(z)| ≤
N

∑
i1=1

|ai(1)z| ≤ α(1 − ε)|z| < α,

i.e. the sequence { fn(z)} is uniformly bounded in the domain Dε. If z ∈ Dα∗ , where Dα∗ =

{z ∈ C : |z| < α∗/α}, then according to the above BCF (18) converges. Obviously, Dα∗ ⊂ Dε.

Hence, by [16, Theorem 24.2, p. 108] BCF (18) converges uniformly on each compact subset of

the domain Dε, in particular, for z = 1. It follows that BCF (1) converges.

Finally, from

| fn | ≤
N

∑
i1=1

|ai(1)|

|Q
(n)
i(1)

|
≤

N

∑
i1=1

|ai(1)| ≤ α(1 − ε)

follows proof of (C).

Remark. If the conditions (3)–(5) are replaced by the conditions (6) and (7), then the condition

(2) is replaced by the condition (13) and the 0 ≤ α ≤ 1/4 is replaced by the 0 ≤ α < 1. It is

clear that Q > q, and, thus, the estimates (14) are better than similar estimates obtained in the

proof of Theorem 1. In addition, if q < 1, then ε can be zero.

Corollary. Let there exist real numbers β and ε such that 0 ≤ β < 1/N, 0 < ε < 1, and such

that BCF (1) with elements ai(n) satisfying |ai(2n−1)| ≤ β(1 − ε), where ip = 1, N, p = 1, 2n − 1,

n ≥ 1, and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that

|ai(2n−1),j2n
| ≥ (1 + Nβ)(2 − (1 + N)β)/(1 − Nβ), ip = 1, N, p = 1, 2n − 1, n ≥ 1,

|ai(2n)| ≤ β, i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1.

Then BCF (1) converges, and its values and its approximants are in the region |z| ≤ Nβ(1 − ε).

Proof. We set α = Nβ, r = (N − 1)β, R = (1 + Nβ)(2 − β(1 + N))/(1 − Nβ). Then

R =
1 + Nβ

1 − Nβ
(2 − 2Nβ + (N − 1)β) = (1 + Nβ)

(

2 +
N − 1

1 − Nβ
β

)

= (1 + α)

(

2 +
r

1 − α

)

.

It follows that the conditions of Theorem 2 hold, and, therefore, the corollary is an immediate

consequence of this theorem.

3 EXAMPLE

Let β, r and R be some positive numbers. We consider the periodical BCF

2

∑
i1=1

ai(1)

1 +

2

∑
i2=1

ai(2)

1 +
. . .

+

2

∑
in=1

ai(n)

1 +
. . . , (19)

where ai(1) = β, ai(2n−1) = (−1)i2n−2−1β, ai(2n−1),1 = (−1)i2n−1−1R, ai(2n−1),2 = (−1)i2n−1r,

which form by the following fractional transformation

s(w) =
β

1 +
R

1 + w
−

r

1 − w

+
β

1 −
R

1 + w
+

r

1 − w

.
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It follows that BCF (19) can be converged only to the real root of the following equation

(w − 2β)(1 − w2)2 − w(R − r − w(R + r))2 = 0. (20)

We choose β = α(1 − ε)/2, α = 1/3, ε = 1/4, r = 2/3 and R = 5. Then it is clear that the

conditions of Theorem 2 are satisfied and the inequalities |w| ≤ 2β are valid. Thus, BCF (19)

converges. On the other hand the equation (20) we write in the form

9(4w − 1)(1 − w2)2 − 4w(13 − 17w)2 = 0. (21)

Let F(w) = 9(4w − 1)(1 − w2)2 − 4w(13 − 17w)2. Then F(0) < 0 and F(−1/4) > 0. Thus, on

the interval [−1/4; 0] there is root of the equation (21). The following recurrent formula

fk+2 =
2β(1 − f 2

k )
2

(1 − f 2
k )

2 − (R − r − fk(R + r))2
, k ≥ 1,

with initial conditions f1 = 2β and f2 = 2β/(1 − (R − r)2) can be used to find of the above

mentioned root.
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Основою цiєї роботи є результат Є.А. Болтаровича (1989) про множини збiжностi для гiл-

лястого ланцюгового дробу

N

∑
i1=1

ai(1)

1 +

N

∑
i2=1

ai(2)

1 +
. . .

+

N

∑
in=1

ai(n)

1 +
. . . ,

де |ai(2n−1)| ≤ α/N, ip = 1, N, p = 1, 2n − 1, n ≥ 1, i для кожного мультиiндексу i(2n − 1)

iснує єдиний iндекс j2n, 1 ≤ j2n ≤ N, такий, що |ai(2n−1),j2n
| ≥ R, ip = 1, N, p = 1, 2n − 1,

n ≥ 1, та |ai(2n)| ≤ r/(N − 1), i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1, де N > 1, α, r та R –

дiйснi числа, що задовольняють певнi умови. У цiй роботi умови для цих множин замiнено на

∑
N
i1=1 |ai(1)| ≤ α(1 − ε), ∑

N
i2n+1=1 |ai(2n+1)| ≤ α(1 − ε), ip = 1, N, p = 1, 2n, n ≥ 1, i для кожного

мультиiндексу i(2n − 1) iснує єдиний iндекс j2n, 1 ≤ j2n ≤ N, такий, що |ai(2n−1),j2n
| ≥ R та

∑i2n∈{1,2,...,N}\{j2n} |ai(2n)| ≤ r, ip = 1, N, p = 1, 2n − 1, n ≥ 1, де ε, α, r та R – дiйснi числа, що за-

довольняють певнi умови, i, отримано кращi оцiнки швидкостi збiжностi для цього гiллястого

ланцюгового дробу.

Ключовi слова i фрази: збiжнiсть, множина збiжностi, оцiнка швидкостi збiжностi, гiллястий

ланцюговий дрiб.


