ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2020, **12** (1), 107–110 doi:10.15330/cmp.12.1.107-110

MYTROFANOV M.A., RAVSKY A.V.

A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED SPACES

Let *X* be a real separable normed space *X* admitting a separating polynomial. We prove that each continuous function from a subset *A* of *X* to a real Banach space can be uniformly approximated by restrictions to *A* of functions, which are analytic on open subsets of *X*. Also we prove that each continuous function to a complex Banach space from a complex separable normed space, admitting a separating *-polynomial, can be uniformly approximated by *-analytic functions.

Key words and phrases: normed space, continuous function, analytic function, *-analytic function, uniform approximation, separating polynomial.

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, 3b Naukova str., 79060, Lviv, Ukraine

E-mail: mishmit@rambler.ru(Mytrofanov M.A.), alexander.ravsky@uni-wuerzburg.de(Ravsky A.V.)

The first known result on uniform approximation of continuous functions was obtained by Weierstrass in 1885. Namely, he showed that any continuous real-valued function on a compact subset *K* of a finitely dimensional real Euclidean space *X* can be uniformly approximated by restrictions on *K* of polynomials on *X*. For a compact subset *K* of a finitely dimensional complex Euclidean space *X* holds a counterpart of Stone-Weierstrass' theorem, according to which any continuous complex-valued function on *K* can be approximated by elements of any algebra, containing restrictions on *K* of polynomials on *X* and their conjugated functions. A general direction of investigations is to try to extend these results to topological linear spaces. Most of the obtained results concern separable Banach spaces, although in the paper [4] the authors obtained partial positive results for separable Fréchet spaces. A negative result belongs to Nemirovskii and Semenov, who in [7] built a continuous real-valued function on the unit ball *K* of the real space ℓ_2 , which cannot be uniformly approximated by restrictions onto *K* of polynomials on ℓ_2 . This result showed that in order to uniformly approximate continuous functions on Banach spaces we need a bigger class of functions than polynomials. The following fundamental result was obtained by Kurzweil [3].

Theorem 1. Let *X* be any separable real Banach space that admits a separating polynomial, *G* be any open subset of *X*, and *F* be any continuous map from *G* to any real Banach space *Y*. Then for any $\varepsilon > 0$ there exists an analytic map *H* from *G* to *Y* such that $||F(x) - H(x)|| < \varepsilon$ for all $x \in G$.

Separating polynomials were introduced in [3] and are considered in reviews [2] and [6]. In order to define them and to obtain a counterpart of Kurzweil's Theorem for a complex Banach space *X*, in paper [5] were introduced notions, which we adapt below for complex normed spaces *X* and *Y*.

УДК 517.98 2010 Mathematics Subject Classification: 46G20, 46T20. A map B_{km} from X^{k+m} to Y is a map of type (k,m) if $B_{km}(x_1, \ldots, x_k, x_{k+1}, \ldots, x_{k+m})$ is a nonzero map, which is k-linear with respect to x_i , $1 \le i \le k$, and m-antilinear with respect to x_{k+j} , $1 \le j \le m$.

Definition 1. A map $B_n : X^n \to Y$ is *-*n*-linear if

$$B_n(x_1,\ldots,x_k,x_{k+1},\ldots,x_{k+m}) = \sum_{k+m=n} c_{km} B_{km}(x_1,\ldots,x_k,x_{k+1},\ldots,x_{k+m}),$$

where for each k and m such that k + m = n, B_{km} is a map of type (k, m) and c_{km} is either 0 or 1, and at least one of c_{km} is non-zero.

Definition 2. A map $F_n : X \to Y$ is called an *n*-homogeneous *-polynomial if there exists a *-*n*-linear map $B_n : X^n \to Y$ such that $F_n(x) = B_n(x, ..., x)$ for all $x \in X$. Remark that F_0 is a constant map.

Definition 3. A map $F : X \to Y$ is a *-polynomial of degree *j*, if

$$F=\sum_{n=0}^{j}F_{n},$$

where F_n is an *n*-homogeneous continuous *-polynomial for each *n* and $F_i \neq 0$.

Definition 4. A map $H : X \to Y$ is *-analytic if every point $x \in X$ has a neighborhood V such that

$$H(x)=\sum_{n=0}^{\infty}F_n(x),$$

where for each *n* we have that F_n is an *n*-homogeneous continuous *-polynomial and the series $\sum_{n=0}^{\infty} F_n(x)$ converges in *V* uniformly with respect to the norm of the space *Y*.

Definition 5. Let X be a complex (resp. real) normed space. A *-polynomial (resp. polynomial) $P : X \to \mathbb{C}$ (resp. to \mathbb{R}) is called a separating *-polynomial (resp. polynomial) if P(0) = 0 and $\inf_{\|x\|=1} P(x) > 0$.

Denote by $\widetilde{\mathcal{H}}(X, Y)$ the normed space of *-analytic functions from X to Y.

Theorem 2 ([5]). Let X be any separable complex Banach space that admits a separating *-polynomial, Y be any complex Banach space, and $F : X \to Y$ be any continuous map. Then for any $\varepsilon > 0$ there exists a map $H \in \widetilde{\mathcal{H}}(X, Y)$ such that $||F(x) - H(x)|| < \varepsilon$ for all $x \in X$.

The aim of the present paper is to generalize Theorems 1 and 2 to normed spaces. To this end we need the following technical result.

Lemma 1. If a real normed space X admits a separating polynomial q then its completion \hat{X} admits a separating polynomial too.

Proof. Let $q = \sum_{i \in I} q_i$ be a sum of homogeneous polynomials q_i on the space X. For each $i \in I$ there exists a polylinear form $h_i : X^{n_i} \to \mathbb{R}$ such that $q_i(x) = h_i(x, ..., x)$ for each $x \in X$. Since h_i is a Lipschitz function on X^{n_i} , by [1, Theorem 4.3.17], it admits a continuous extension

 \hat{h}_i on the space \hat{X}^{n_i} , which is polylinear by the polylinearity of h_i . The map $\hat{q}_i : \hat{X} \to \mathbb{R}$ defined as $\hat{q}_i(x) = \hat{h}_i(x, ..., x)$ for each $x \in \hat{X}$ is an extension of the map q_i . Then the map $\hat{q} = \sum_{i \in I} \hat{q}_i$ is a continuous polynomial extension of the map q onto the space X. It is easy to show that the unit sphere *S* of the space *X* is dense in the unit sphere \hat{S} of the space \hat{X} .

Therefore $\inf_{x\in\widehat{S}}\widehat{q}(x) = \inf_{x\in S}q(x) > 0$, so \widehat{q} is a separating polynomial for the space \widehat{X} .

Theorem 3. Let X be a separable real normed space that admits a separating polynomial, Y be a real Banach space, $A \subset X$, $f : A \to Y$ be a continuous function, and $\varepsilon > 0$. Then there are an open set $A_{\varepsilon} \supset A$ of X and an analytic function $f_{\varepsilon} : A_{\varepsilon} \rightarrow Y$ such that $||f(x) - f_{\varepsilon}(x)|| < \varepsilon$ for all $x \in A$.

Proof. Let \hat{X} be a completion of X. We build a cover of the set A by open in \hat{X} sets as follows. For each point $x \in A$ pick its neighborhood O(x) open in \hat{X} such that $||f(x') - f(x)|| < \varepsilon/3$ for all $x' \in O(x) \cap A$.

Put $\widehat{A}_{\varepsilon} = \bigcup O(x)$. The topological space $\widehat{A}_{\varepsilon}$ is metrizable, and therefore paracompact, $x \in A$ [1, 5.1.3]. Therefore, by [1, 5.1.9] there is a locally finite partition $\{\varphi_s : s \in S\}$ of the unity, subordinated to the cover $\{O(x) : x \in A\}$.

Now we construct an auxiliary function f'_{ε} : $\widehat{A}_{\varepsilon} \to Y$. First, for each index $s \in S$ we define a real number a_s as follows. If supp $\varphi_s \cap A \neq \emptyset$, then we pick an arbitrary point $x_s \in \text{supp } \varphi_s \cap A$, and we put $a_s = f(x_s)$. Otherwise, we put $a_s = 0$. Finally, put $f'_{\varepsilon} = \sum_{s \in S} a_s \varphi_s$.

Let $x \in A$. Put $S_x = \{s \in S : x \in \text{supp } \varphi_s\}$. Then $\sum_{s \in S_x} \varphi_s(x) = 1$. Let $s \in S_x$ be any index. Thus there is an element $x_0 \in A$ such that $x \in \text{supp } \varphi_s \subset O(x_0)$. Hence $x_s \in O(x_0)$ and

$$|f(x) - a_s|| = ||f(x) - f(x_s)|| \le ||f(x) - f(x_0)|| + ||f(x_0) - f(x_s)|| < 2\varepsilon/3.$$

Then

$$\begin{split} \left\| f(x) - f_{\varepsilon}'(x) \right\| &= \left\| f(x) - \sum_{s \in S} a_s \varphi_s(x) \right\| = \left\| \sum_{s \in S} f(x) \varphi_s(x) - \sum_{s \in S} a_s \varphi_s(x) \right\| \\ &= \left\| \sum_{s \in S_x} f(x) \varphi_s(x) - \sum_{s \in S_x} a_s \varphi_s(x) \right\| \leq \sum_{s \in S_x} \left\| f(x) \varphi_s(x) - a_s \varphi_s(x) \right\| \\ &= \sum_{s \in S_x} \left\| f(x) - a_s \right\| \varphi_s(x) < \sum_{s \in S_x} (2\varepsilon/3) \varphi_s(x) = 2\varepsilon/3. \end{split}$$

The function f'_{ε} is continuous on $\widehat{A}_{\varepsilon}$ as a sum of a family of continuous functions with a locally finite family of supports.

By Lemma 1, the space \hat{X} admits a separating polynomial. Therefore the space X satisfies the conditions of Theorem 1, so there exists a function \hat{f}_{ε} analytic on \hat{A}_{ε} such that $\|\widehat{f}_{\varepsilon}(x) - f'_{\varepsilon}(x)\| < \varepsilon/3$ for all $x \in \widehat{A}_{\varepsilon}$. Then for all $x \in A$ we have

$$\|f(x) - \widehat{f_{\varepsilon}}(x)\| \leq \|f(x) - f'_{\varepsilon}(x)\| + \|f'_{\varepsilon}(x) - \widehat{f_{\varepsilon}}(x)\| < \varepsilon.$$

It remains to put $A_{\varepsilon} = \widehat{A}_{\varepsilon} \cap X$ and let f_{ε} be the restriction of the map $\widehat{f}_{\varepsilon}$ to the set A_{ε} .

For a complex normed space X we denote by \tilde{X} itself, considered as a real normed space, and by $\mathcal{H}(X, Y)$ the real normed space of analytic functions from X to a Banach space Y.

Theorem 4. Let X be any separable complex normed space that admits a separating *-polynomial, Y be any complex Banach space, and $F : X \to Y$ be any continuous map. Then for any $\varepsilon > 0$ there exists a map $H \in \widetilde{\mathcal{H}}(X, Y)$ such that $||F(x) - H(x)|| < \varepsilon$ for each $x \in X$.

Proof. The proof is almost identical to the proof of Theorem 4 from [5] with the following modifications. Instead of the application of Kurzweil's Theorem we apply Theorem 3. Instead of [5, Lemma 2] we use the fact (proof of which is similar to that of [5, Lemma 2]) that the identity map from a complex normed space $\tilde{\mathcal{H}}(X, Y)$ to the real normed space $\mathcal{H}(\tilde{X}, Y)$ is an isomorphism of real normed spaces.

REFERENCES

- [1] Engelking R. General topology. Heldermann, Berlin, 1989.
- [2] Gonzalo R., Jaramillo J.A. Separating polynomials on Banach spaces. Extracta Math. 1997, 12 (2) 145–164.
- [3] Kurzweil J. On approximation in real Banach spaces. Studia Math. 1954, 14, 214–231.
- [4] Mytrofanov M.A., Ravsky A.V. Approximation of continuous functions on Frechet spaces. J. Math. Sci. (N.Y.) 2012, 185, 792–799. doi:10.1007/s10958-012-0961-6 (translation of Mat. Metodi Fiz.-Mekh. Polya 2011, 54 (3), 33–40. (in Ukrainian))
- [5] Mitrofanov M.A. Approximation of continuous functions on complex Banach spaces. Math. Notes 2009, 86 (4), 530–541. doi:10.1134/S0001434609090302 (translation of Mat. Zametki 2009, 86 (4), 557–570. doi:10.4213/mzm5161 (in Russian))
- [6] Mytrofanov M.A. Separating polynomials, uniform analytical and separating functions. Carpathian Math. Publ. 2015, 7 (2), 197–208. doi:10.15330/cmp.7.2.197-208 (in Ukrainian)
- [7] Nemirovskii A.S., Semenov S.M. On polynomial approximation of functions on Hilbert space. Math. USSR Sb. 1973, 21 (2), 255–277. doi:10.1070/SM1973v021n02ABEH002016 (translation of Math. Sb. 1973, 92 (134), 2 (10), 257–281. (in Russian))

Received 28.03.2020

Митрофанов М.А., Равський О.В. *Про апроксисмацію неперервних функції в нормованих просторах* // Карпатські матем. публ. — 2020. — Т.12, №1. — С. 107–110.

Нехай X є дійсним сепарабельним нормованим простором, що допускає відокремлювальний поліном. Показано, що непервні функції з підмножини A в X в дійсний банахів простір можуть бути рівномірно наближені аналітичними на відкритих підмножинах X. Також показано, що неперервні функції у комплексний банахів простір з комплексного сепарабельного нормованого простору, що допускає відокремлювальний *-поліном, можуть бути рівномірно наближені *-аналітичними функціями.

Ключові слова і фрази: нормований простір, неперервна функція, аналітична функція, *-аналітична функція, рівномірна апроксимація, відокремлювальний поліном.