Fotiy O. ${ }^{1}$, Ostrovskil M. ${ }^{2}$, Popov M. ${ }^{3,4}$

ISOMORPHIC SPECTRUM AND ISOMORPHIC LENGTH OF A BANACH SPACE

We prove that, given any ordinal $\delta<\omega_{2}$, there exists a transfinite δ-sequence of separable Banach spaces $\left(X_{\alpha}\right)_{\alpha<\delta}$ such that X_{α} embeds isomorphically into X_{β} and contains no subspace isomorphic to X_{β} for all $\alpha<\beta<\delta$. All these spaces are subspaces of the Banach space $E_{p}=\left(\oplus_{n=1}^{\infty} \ell_{p}\right)_{2}$, where $1 \leq p<2$. Moreover, assuming Martin's axiom, we prove the same for all ordinals δ of continuum cardinality.

Key words and phrases: Banach space, isomorphic embedding, Martin axiom.

[^0]
INTRODUCTION

We use the standard terminology of Banach spaces theory, see [1]. Let X and Y be Banach spaces. We write $X \hookrightarrow Y$ if X embeds isomorphically into Y, and $X \simeq Y$ if X and Y are isomorphic.

Isomorphic spectrum

By the isomorphic spectrum of an infinite dimensional Banach space X we mean the set $\mathrm{sp}(X)$ of all isomorphic types of infinite dimensional subspaces of X.

Consider the following equivalence relation on the set \mathcal{B} of separable infinite dimensional Banach spaces. We say that Banach spaces $X, Y \in \mathcal{B}$ are equispectral and write $X \stackrel{\text { sp }}{\sim} Y$ provided that $X \hookrightarrow Y$ and $X \hookrightarrow Y$ (notice that Banach [2, p. 193] used a different terminology for equispectral Banach spaces X and Y, he said that X and Y have equal linear dimension and used the notation $\operatorname{dim}_{l} X=\operatorname{dim}_{l} Y$). It is immediate that $X \stackrel{\text { sp }}{\sim} Y$ if and only if $\operatorname{sp}(X)=\operatorname{sp}(Y)$. It is a well known fact that $X \stackrel{\text { sp }}{\sim} Y$ does not imply that $X \simeq Y$, however $X \simeq Y$ easily implies that $X \stackrel{\mathrm{sp}}{\sim} Y$. For instance, $L_{1} \oplus \ell_{2} \stackrel{\mathrm{sp}}{\sim} L_{1}$, however $L_{1} \oplus \ell_{2} \nsucceq L_{1}$.

Observe that if $X \in\left\{c_{0}, \ell_{p}: 1 \leq p<\infty\right\}$ and Y is any infinite dimensional subspace of X then $X \stackrel{\text { sp }}{\sim} Y$.

Denote by $\widetilde{\mathcal{B}}$ the set of all equivalence classes in \mathcal{B} modulo the relation $\stackrel{\text { sp }}{\sim}$, and for every $X \in \mathcal{B}$ by \widetilde{X} we denote the equivalence class containing X.

[^1]Given Banach spaces X and Y, we write $X \prec Y$ to express that $X \hookrightarrow Y$, while $Y \nrightarrow X$. It is easy to see that, for every $X_{i}, Y_{i} \in \mathcal{B}, i=1,2$ with $X_{1} \stackrel{\text { sp }}{\sim} X_{2}$ and $Y_{1} \stackrel{\text { sp }}{\sim} Y_{2}$ the relation $X_{1} \prec Y_{1}$ is equivalent to $X_{2} \prec Y_{2}$. So, the same relation \prec is well defined on $\widetilde{\mathcal{B}}$ by setting $\mathcal{X} \prec \mathcal{Y}$ provided $X \prec Y$ for some (or, equivalently, any) representatives $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$.

Observe that \prec is a strict partial relation on $\widetilde{\mathcal{B}}$, and that $X \prec Y$ is equivalent to the strict inclusion $\mathrm{sp}(X) \subset \operatorname{sp}(Y)$.

By the solution of the homogeneous Banach space problem obtained by a combination of results of Gowers [5,6] and Komorowski-Tomczak-Jaegermann [9,10], ℓ_{2} is the unique element X of \mathcal{B} with $\operatorname{sp}(X)=\{X\}$. Although the spaces c_{0} and ℓ_{p} with $1 \leq p<\infty, p \neq 2$ have more than one-element isomorphic spectrum, all of them are equispectral, as mentioned above. So, $\widetilde{\mathcal{c}_{0}}$ and $\widetilde{\ell_{p}}$ with $1 \leq p<\infty$ are minimal elements of $\widetilde{\mathcal{B}}$. On the other hand, it is easy to see that $\widetilde{C[0,1]}$ is the unique maximal element of $\widetilde{\mathcal{B}}$, which is, moreover, the greatest element of $\widetilde{\mathcal{B}}$.

Set-theoretical preliminaries

We use the standard set-theoretical terminology and notation of [7], where the reader can also find necessary background. By \mathfrak{c} we denote the cardinality of continuum. We say that A meets B provided that $A \cap B \neq \varnothing$.

Let $(M,<)$ be a partially ordered set. Following [11], the length of M is defined to be the supremum of ordinals α which are isomorphic to a subset of M, and is denoted by $L(M)$. For instance, $L(\alpha)=\alpha$ for every ordinal α and $L(\mathbb{R})=\omega_{1}$.

Let ω_{α} be any infinite cardinal. We endow the power-set $\mathcal{P}\left(\omega_{\alpha}\right)$ with the partial order $A<B$ if and only if $|A \backslash B|<\aleph_{\alpha}=|B \backslash A|$.

Let us recall the statement of Martin's axiom (MA). A subset D of a partially ordered set P is said to be dense if for every $p \in P$ there is $d \in D$ such that $d \leq p$. A subset $Q \subseteq P$ is said to be consistent provided for every finite subset $F \subseteq Q$ there exists $p \in P$ such that $p \leq f$ for every $f \in F$. Elements p, q of P are said to be consistent if the two-element subset $\{p, q\}$ is consistent. A subset $Q \subseteq P$ consisting of more than two elements is said to be pairwise inconsistent if every two distinct elements of Q are not consistent. P is said to have the countable chain condition (CCC in short) if every pairwise inconsistent subset of P is at most countable.

Martin's axiom. Let P be a partially ordered set possessing the CCC. Let \mathfrak{M} be a collection of dense subsets of P of cardinality $<\mathfrak{c}$. Then there exists a consistent subset $Q \subseteq P$ which meets every element of \mathfrak{M}.

We remark that MA is independent of the usual axioms ZFC. It follows from the Continuum Hypothesis (CH) and sometimes allows to extend results, previously established under the assumption of CH .

We need the following combinatorial lemma proved in [11].
Lemma 1. (i) For every regular cardinal ω_{δ} one has $L\left(\mathcal{P}\left(\omega_{\delta}\right)\right) \geq \omega_{\delta+2}$.
(ii) Let ω_{c} be the cardinal of cardinality c . Then (MA) $L\left(\mathcal{P}\left(\omega_{0}\right)\right)=\omega_{c+1}$.

Here (MA) in item (ii) means that the proof of (ii) uses Martin's axiom.

Isomorphic length of a Banach space

Let X be a separable infinite dimensional Banach space. By the isomorphic length of X we mean the length of the subset $\widetilde{\mathcal{B}}_{X}$ of the partially ordered set $\widetilde{\mathcal{B}}$ consisting of all equivalence classes containing all infinite dimensional subspaces of $X: I L(X)=L\left(\widetilde{\mathcal{B}}_{X}\right)$. Since by the above $\widetilde{\mathcal{B}}_{\ell_{p}}$ and $\widetilde{\mathcal{B}}_{c_{0}}$ are singletons, we have that $I L\left(\ell_{p}\right)=I L\left(c_{0}\right)=1$ for every $p \in[1,+\infty)$. In the next section, we show that for $E_{p}=\left(\oplus_{n=1}^{\infty} \ell_{p}\right)_{2}$ with $1 \leq p<2$ one has $I L\left(E_{p}\right) \geq \omega_{2}$, and Martin's axiom implies that $I L\left(E_{p}\right)=\omega_{c+1}$. Of course, the same could be said about the universal Banach space $C[0,1]$, which has the maximal possible length.

1 TRANSFINITE $\prec-I N C R E A S I N G ~ S E Q U E N C E S ~ O F ~ S P A C E S$

Theorem 1. Let $1 \leq p<2$ and $E_{p}=\left(\oplus_{n=1}^{\infty} \ell_{p}\right)_{2}$. Then

1) for every ordinal γ of cardinality \aleph_{1} there is a transfinite sequence $\left(X_{\alpha}\right)_{\alpha<\gamma}$ of subspaces of E_{p} such that $X_{\alpha} \prec X_{\beta}$ for all $\alpha<\beta<\gamma$,
2) (MA) for every ordinal γ of cardinality \mathfrak{c} there is a transfinite sequence $\left(X_{\alpha}\right)_{\alpha<\gamma}$ of subspaces of E_{p} such that $X_{\alpha} \prec X_{\beta}$ for all $\alpha<\beta<\gamma$.

Proof. Let $\left(p_{n}\right)_{n=1}^{\infty}$ be any sequence on numbers with $p<p_{1}<p_{2}<\ldots$ and $\lim _{n \rightarrow \infty} p_{n}=2$.

Lemma 2. For every finite dimensional Banach space X and every $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that for every into isomorphism $T: \ell_{p_{n}}^{m} \rightarrow X \oplus_{2}\left(\oplus_{j>n} \ell_{p_{j}}\right)_{2}$ one has $\|T\|\left\|T^{-1}\right\| \geq n$.

Proof of Lemma 2. Recall the standard definition (see, for example, [12, p. 54]): a Banach space Z is said to have Rademacher type $p, 1 \leq p \leq 2$ (or just type p) if there exists a constant $T_{p}(Z)<\infty$ such that for every $k \in \mathbb{N}$ and for every $x_{1}, \ldots, x_{k} \in Z$,

$$
\begin{equation*}
\left(\int_{0}^{1}\left\|\sum_{i=1}^{k} r_{i}(t) x_{i}\right\|_{Z}^{p} d t\right)^{1 / p} \leq T_{p}(Z)\left(\sum_{i=1}^{k}\left\|x_{i}\right\|_{Z}^{p}\right)^{1 / p} \tag{1}
\end{equation*}
$$

where $\left\{r_{i}\right\}$ are Rademacher functions.
The Khinchin-Kahane inequality (see e.g. [12, p. 57]) implies that we can replace the value $\left(\int_{0}^{1}\left\|\sum_{i=1}^{k} r_{i}(t) x_{i}\right\|_{Z}^{p} d t\right)^{1 / p}$ with $\left(\int_{0}^{1}\left\|\sum_{i=1}^{k} r_{i}(t) x_{i}\right\|_{Z}^{2} d t\right)^{1 / 2}$ in the left-hand side of inequality (1), it will not change the class of spaces of type p, but may change the constant $T_{p}(Z)$, let us denote this new constant $T_{p, 2}(Z)$.

Now we shall check (recall that $p \leq 2$) that the fact that spaces $\left\{Z_{n}\right\}_{n=1}^{\infty}$ have type p with uniformly bounded constants $\left\{T_{p, 2}\left(Z_{n}\right)\right\}_{n=1}^{\infty}$, then $Z:=\left(\oplus_{n=1}^{\infty} Z_{n}\right)_{2}$ also has type p with constant $T_{p, 2}(Z)$ bounded from above by $\mathbf{T}:=\sup _{n} T_{p, 2}\left(Z_{n}\right)$.

So let $z_{i}=\left\{z_{i, n}\right\}_{n=1}^{\infty} \in\left(\bigoplus_{n=1}^{\infty} Z_{n}\right)_{2}$, so $z_{i, n} \in Z_{n}$. We have

$$
\begin{aligned}
\left(\int_{0}^{1}\left\|\sum_{i=1}^{k} r_{i}(t) z_{i}\right\|_{Z}^{2} d t\right)^{1 / 2} & =\left(\int_{0}^{1} \sum_{n=1}^{\infty}\left\|\sum_{i=1}^{k} r_{i}(t) z_{i, n}\right\|_{Z_{n}}^{2} d t\right)^{1 / 2} \\
& \leq \mathbf{T}\left(\sum_{n=1}^{\infty}\left(\sum_{i=1}^{k}\left\|z_{i, n}\right\|_{Z_{n}}^{p}\right)^{2 / p}\right)^{1 / 2} \\
& \leq \mathbf{T}\left(\sum_{i=1}^{k}\left(\sum_{n=1}^{\infty}\left\|z_{i, n}\right\|_{Z_{n}}^{2}\right)^{p / 2}\right)^{1 / p}=\mathbf{T}\left(\sum_{i=1}^{k}\left\|z_{i}\right\|_{Z}^{p}\right)^{1 / p}
\end{aligned}
$$

where in the first line we use the definition of Z as a direct sum; in the second line we use the fact that Z_{n} have type p with constant T; in the third line we use the triangle inequality for the space $\ell_{2 / p}$ (recall that $2 / p \geq 1$), and in the last line we use the definition of Z again.

Now we return to the proof of Lemma 2. Since X is finite-dimensional, it has type p_{n+1} with sufficiently large constant. We need the well-known fact that ℓ_{p} has type p if $p \in[1,2]$ (see e.g. [12, p. 63]) and an easy-to-see fact (consider the unit vectors) that ℓ_{p} does not have a larger type.

We conclude that $X \oplus_{2}\left(\bigoplus_{j>n} \ell_{p_{j}}\right)_{2}$ has type p_{n+1} with some constant C, but $\ell_{p_{n}}$ does not have type p_{n+1}. Therefore the type constant of $\ell_{p_{n}}^{m}$ for type p_{n+1} and sufficiently large m is $>C n$. It is easy to see that this implies that for every into isomorphism $T: \ell_{p_{n}}^{m} \rightarrow X \oplus_{2}$ $\left(\bigoplus_{j>n} \ell_{p_{j}}\right)_{2}$ one has $\|T\|\left\|T^{-1}\right\| \geq n$.

We continue the proof of Theorem 1. Using Lemma 2, construct recurrently a sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of positive integers so that

$$
\begin{align*}
& \text { for every } n \in \mathbb{N} \text { and every into isomorphism } \\
& \qquad U: \ell_{p_{n}}^{m_{n}} \rightarrow\left(\bigoplus_{i=1}^{n-1} \ell_{p_{i}}^{m_{i}}\right)_{2} \oplus_{2}\left(\bigoplus_{j>n} \ell_{p_{j}}\right)_{2} \tag{2}\\
& \text { one has }\|U\|\left\|U^{-1}\right\| \geq n
\end{align*}
$$

It is known that for every $\varepsilon>0$, every $m \in \mathbb{N}$ and every $q \in(p, 2]$ there exists a subspace F of ℓ_{p} which is $(1+\varepsilon)$-isomorphic to ℓ_{q}^{m} (see [8] for tight estimates of the parameters involved, the result itself follows from [4]). Using this fact for $\varepsilon=1, m=m_{n}$ and $q=p_{n}$, for every $n \in \mathbb{N}$ we choose a subspace F_{n} of n-th summand of E_{p} (which is isometric to ℓ_{p}) which is 2-isomorphic to $\ell_{p_{n}}^{m_{n}}$, say, by means of an isomorphism $J_{n}: F_{n} \rightarrow \ell_{p_{n}}^{m_{n}}$ with $\left\|J_{n}\right\|\left\|J_{n}^{-1}\right\| \leq 2$.

Fix any ordinal γ of cardinality \aleph_{1} (or \mathfrak{c}, respectively). Using items (i) and (ii) of Lemma 1, respectively, choose a transfinite sequence $\left(N_{\alpha}\right)_{\alpha<\gamma}$ of subsets of \mathbb{N} so that $\left|N_{\alpha} \backslash N_{\beta}\right|<\aleph_{0}=$ $\left|N_{\beta} \backslash N_{\alpha}\right|$ for all $\alpha<\beta<\gamma$. For each $\alpha<\gamma$ set

$$
X_{\alpha}=\left(\bigoplus_{n \in N_{\alpha}} F_{n}\right)_{2}
$$

We consider each X_{α} as a subspace of E_{p}. Let us show that $\left(X_{\alpha}\right)_{\alpha<\gamma}$ has the desired properties. Fix any $\alpha<\beta<\gamma$. Set $N^{\prime}=N_{\alpha} \backslash N_{\beta}, N^{\prime \prime}=N_{\alpha} \cap N_{\beta}, N^{\prime \prime \prime}=N_{\beta} \backslash N_{\alpha}$. Then $N_{\alpha}=N^{\prime} \sqcup N^{\prime \prime}$, $N_{\beta}=N^{\prime \prime} \sqcup N^{\prime \prime \prime},\left|N^{\prime}\right|<\aleph_{0}=\left|N^{\prime \prime \prime}\right|$. Hence,

$$
X_{\alpha}=\left(\bigoplus_{n \in N^{\prime}} F_{n}\right)_{2} \oplus_{2}\left(\bigoplus_{n \in N^{\prime \prime}} F_{n}\right)_{2^{\prime}} X_{\beta}=\left(\bigoplus_{n \in N^{\prime \prime}} F_{n}\right)_{2} \oplus_{2}\left(\bigoplus_{n \in N^{\prime \prime \prime}} F_{n}\right)_{2} .
$$

Since $\left|N^{\prime}\right|<\aleph_{0}=\left|N^{\prime \prime \prime}\right|$, we have that

$$
\operatorname{dim}\left(\bigoplus_{n \in N^{\prime}} F_{n}\right)_{2}<\infty=\operatorname{dim}\left(\bigoplus_{n \in N^{\prime \prime \prime}} F_{n}\right)_{2}
$$

and hence, X_{α} embeds isomorphically into X_{β}.
Prove that X_{β} does not embed isomorphically into X_{α}. Assume, on the contrary, that there is an into isomorphism $T: X_{\beta} \rightarrow X_{\alpha}$. Take any $n_{0} \in N^{\prime \prime \prime}$ and consider the restriction $T_{n_{0}}=\left.T\right|_{F_{n_{0}}}$ of T to $F_{n_{0}}$.

Observe that

$$
X_{\alpha} \subseteq\left(\bigoplus_{i=1}^{n_{0}-1} F_{i}\right)_{2} \oplus_{2}\left(\bigoplus_{j>n_{0}} \ell_{p_{j}}\right)_{2}
$$

Let

$$
S:\left(\bigoplus_{i=1}^{n-1} F_{i}\right)_{2} \oplus_{2}\left(\bigoplus_{j>n} \ell_{p_{j}}\right)_{2} \rightarrow\left(\bigoplus_{i=1}^{n-1} \ell_{p_{i}}^{m_{i}}\right)_{2} \oplus_{2}\left(\bigoplus_{j>n} \ell_{p_{j}}\right)_{2}
$$

be an operator which sends $\left(\left(f_{i}\right)_{i=1}^{n_{0}-1}, g\right)$ to $\left(\left(J_{i} f_{i}\right)_{i=1}^{n_{0}-1}, g\right)$. Since J_{i} are isomorphisms with $\left\|J_{i}\right\|\left\|J_{i}^{-1}\right\| \leq 2$, so is S with $\|S\|\left\|S^{-1}\right\| \leq 2$. Hence,

$$
\|T\|\left\|T^{-1}\right\| \geq\left\|T_{0}\right\|\left\|T_{0}^{-1}\right\| \geq \frac{1}{2}\left\|S \circ T_{0}\right\|\left\|\left(S \circ T_{0}\right)^{-1}\right\| \stackrel{\text { by }(2)}{\geq} \frac{1}{2} n_{0} .
$$

This is impossible for large enough $n_{0} \in N^{\prime \prime \prime}$.
The next corollary follows from Theorem 1 and the observation that a separable infinite dimensional Banach space X has only continuum many closed subspaces, and hence, $\operatorname{IL}(X) \leq \omega_{c+1}$.

Corollary 1. (MA) $I L\left(E_{p}\right)=I L(C[0,1])=\omega_{c+1}$.

2 REMARKS AND AN OPEN PROBLEM

It would be interesting to find the isomorphic length of the classical spaces $L_{p}=L_{p}[0,1]$.
Problem 1. Evaluate $I L\left(L_{p}\right)$ for $1 \leq p<\infty, p \neq 2$.
The embeddability of L_{r} into L_{p} for $1 \leq p<r \leq 2$ [4] together with impossibility of the embedding L_{p} into L_{r} for the same values of $p, r[2, \mathrm{p} .206]$ imply the inequality $I L\left(L_{p}\right) \geq \omega_{1}$ for $1 \leq p<2$, because every countable ordinal $\alpha<\omega_{1}$ is isomorphic to a subset of any interval (a, b) in the reverse order. The same inequality $I L\left(L_{p}\right) \geq \omega_{1}$ for all values $1 \leq p<\infty, p \neq 2$ is a corollary of the following result.

Theorem 2 (Bourgain, Rosenthal, Schechtman, [3]). Let $1<p<\infty, p \neq 2$. There exists a family $\left(X_{\alpha}^{p}\right)_{\alpha<\omega_{1}}$ of complemented subspaces of L_{p} so that for all $\alpha<\beta<\omega_{1}$ one has $X_{\alpha}^{p} \prec X_{\beta}^{p}$. Moreover, if B is a separable Banach space such that $X_{\alpha}^{p} \hookrightarrow B$ for all $\alpha<\omega_{1}$ then $L_{p} \hookrightarrow B$.

Observe that Theorem 2 gives a strictly \prec-increasing ω_{1}-sequence of subspaces of L_{p} for $1<p<2$ directly. The same holds also for $p=1$ due to the fact ([4]) that $L_{r}(1<r<2)$ embeds isometrically into L_{1}. On the other hand, the argument based on embeddability/nonembeddability of L_{r} into L_{p} does not provide an uncountable sequence. However, both arguments provide the same estimate for $\operatorname{IL}\left(L_{p}\right)$ if $1<p<2$.

Acknowledgements

The authors are grateful to Piotr Koszmider for valuable remarks.

References

[1] Albiac F., Kalton N.J. Topics in Banach Space Theory. Graduate Texts in Math. Springer, New York, 2006.
[2] Banach S. Théorie des opérations linéaires. Monografje Matematyczne, 1, Druk Garasiński M., Warszawa, 1932.
[3] Bourgain J., Rosenthal H.P, Schechtman G. An ordinal L ${ }^{p}$-index for Banach spaces, with applications to complemented subspaces of L^{p}. Ann. of Math. (2) 1981114 (2), 193-228. doi:10.2307/1971293
[4] Bretagnolle J., Dacunha-Castelle D., Krivine J.-L. Lois stables et espaces Lp. Ann. Inst. Henri Poincaré, Sec. B. 1966, 2 (3), 231-259.
[5] Gowers W.T. A new dichotomy for Banach spaces. Geom. Funct. Anal. 1996, 6 (6), 1083-1093. doi:10.1007/BF02246998
[6] Gowers W.T. An infinite Ramsey theorem and some Banach-space dichotomies. Ann. of Math. (2) 2002, 156 (3), 797-833. doi:10.2307/3597282
[7] Jech Th. Set Theory. Springer, Berlin, 2003.
[8] Johnson W.B., Schechtman G. Very tight embeddings of subspaces of $L_{p}, 1 \leq p<2$, into ℓ_{p}^{n}. Geom. Funct. Anal. 2003, 13, 845-851.
[9] Komorowski R.A., Tomczak-Jaegermann N. Banach spaces without local unconditional structure. Israel J. Math. 1995, 89, 205-226. doi:10.1007/BF02808201
[10] Komorowski R.A., Tomczak-Jaegermann N. Erratum to: "Banach spaces without local unconditional structure". Israel J. Math. 1998 105, 85-92. doi: 10.1007/BF02780323
[11] Maslyuchenko V.K., Popov M.M. A characteristic of partially ordered sets. Math. Notes 1985, 38 (5-6), 981—984. (translation of Mat. Zametki 198538 (6), 866-871. (in Russian))
[12] Ostrovskii M.I. Metric Embeddings: Bilipschitz and Coarse Embeddings into Banach Spaces. De Gruyter Studies in Mathematics, 49. Walter de Gruyter \& Co., Berlin, 2013.

Received 26.11.2019

Фотій О., Островський М., Попов М. Ізоморфний спектр та ізоморфна довжина банахового простору // Карпатські матем. публ. - 2020. - Т.12, №1. - С. 88-93.

Доведено, що для кожного ординалу $\delta<\omega_{2}$ існує трансфінітна δ-послідовність сепарабельних банахових просторів $\left(X_{\alpha}\right)_{\alpha<\delta}$ така, що X_{α} вкладається ізоморфно в X_{β} і не містить підпросторів, ізоморфних до X_{β} для всіх $\alpha<\beta<\delta$. Всі ці простори є підпросторами банахового простору $E_{p}=\left(\bigoplus_{n=1}^{\infty} \ell_{p}\right)_{2}$, де $1 \leq p<2$. Більш того, у припущенні аксіоми Мартіна доведено дане твердження для всіх ординалів δ потужності континуум.

Ключові слова і фрази: банахів простір, ізоморфне вкладення, аксіома Мартіна.

[^0]: ${ }^{1}$ Yuriy Fedkovych Chernivtsi National University, 2 Kotsjubynskyi str., 58012, Chernivtsi, Ukraine
 ${ }^{2}$ St. John's University, 11439, New York, USA
 ${ }^{3}$ Pomeranian University in Słupsk, 76-200, Słupsk, Poland
 ${ }^{4}$ Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
 E-mail: ofotiy@ukr.net (Fotiy O.), ostrovsm@st johns.edu (Ostrovskii M.),
 misham. popov@gmail.com (Popov M.)

[^1]: У $\Delta К 517.984$
 2010 Mathematics Subject Classification: 46B03, 03E50.
 This paper was written while M.O. was on research leave from St. John's University supported by NSF grant DMS-1700176.

