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MERSENNE-HORADAM IDENTITIES USING GENERATING FUNCTIONS

The main object of the present paper is to reveal connections between Mersenne numbers M, =
2" —1 and generalized Fibonacci (i.e., Horadam) numbers w; defined by a second order linear
recurrence W, = pwy_1 + qWy—3, 1 > 2, with wy = a and wy; = b, where a, b, p > 0 and q # 0 are
integers. This is achieved by relating the respective (ordinary and exponential) generating functions
to each other. Several explicit examples involving Fibonacci, Lucas, Pell, Jacobsthal and balancing
numbers are stated to highlight the results.

Key words and phrases: Mersenne numbers, Horadam sequence, Fibonacci sequence, Lucas se-
quence, Pell sequence, generating function, binomial transform.
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INTRODUCTION

A generalized Fibonacci sequence (wy)y>0 = (wn(a,b; p,q))n>0 is defined by a second order
homogeneous linear recurrence

Wy = pwWy-1 + qwy—2, n>2,

with wp = a and w; = b, where 4, b, p and g are integers with p > 0, g # 0. Since these
numbers were first studied by A.F. Horadam (see, e.g., [11,12]), they are often referred to as
Horadam numbers. The Binet formula for w, is given by [11]

wy, = ar] + pry, n>0,

++/ P4 —/p*+4
where r; = VT 5 = VP 5 1

1 and r, denote the distinct roots of the quadratic equation

x> —px—q=0,

S i
2 2/ +4q 2 2/ +4q

1 n—1
it — r T
rn—n rn—n
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The sequence can be extended to negative subscripts according to

1
W—yn = —5(own+1 —W_py2), n > 1.
Further results on Horadam sequences can be found in the survey paper [14]. In what
follows, we will make frequent use of the generating functions of (wy),>0. We know [15] that

the sequence wj, has the ordinary (non-exponential) generating function

a+ (b—ap)z

1—pz—qz2’ (1)

[ee)
w(z) = Y w,2" =
n=0

while for sequences w1 and wy,
a+ (bp —qa —ap?)z
1— (p?+29)z + g?2%’

b+ (apq — bq)z
— (P> +29)z+ g°2*

()

[ee)
wy(z) = Z Wy 112" =
n=0

wa(z) = ) w2 = 7 (3)
n=0
The Horadam sequence generalizes many other number and polynomial sequences, for
instance, the Fibonacci sequence F, = wy,(0,1;1,1), the Lucas sequence L, = w,(2,1;1,1), the
Pell sequence P, = wy(0,1;2,1), the Jacobsthal sequence |, = w,(0,1;1,2), the Mersenne sequence
M, = wy,(0,1;3, —2), the balancing numbers B, = w,(0,1;6, —1), and so on. The first few terms
of each sequence are stated below.

| nJof1][2][3[4 ][5 [6 ] 7 [ 8 [ 9 [ 10 [ 11
F, loJ1[1]2| 3] 5 [ 8 | 13 21 34 55 89
L, [2]1]3] 4] 7 | 11 | 18 | 29 47 76 123 199
P, |0[1]2[5 12| 29 | 70 | 169 | 408 985 2378 5741
Jo [O[1][1[3] 5 [ 11 [21] 43 85 171 341 683
M,|0[1[3]7|15] 31 [ 63 | 127 | 255 511 1023 2047
B, |0]1]6]35|204 1189 | 6930 | 40391 | 235416 | 1372105 | 7997214 | 46611179

The sequences (F,)u>0, (Ln)n>0, (Pn)u>0, (Jn)n>0, (Mn)n>0 and (By),>0 are indexed in
the On-Line Encyclopedia of Integer Sequences [19] (see entries A000045, A000032, A000129,
A001045, A000225 and A001109, respectively).

In the present paper, we derive some connection formulas between Mersenne numbers and
the Horadam sequence.

Recall that Mersenne numbers M,, belong to the Horadam sequence family. They are given
by the explicit form

M,=2"-1, n>0.

Mersenne numbers are popular research objects because of their interesting properties. For
instance, Mersenne numbers are numbers with the following representation in the binary sys-
tem: (1), (11)2, (111),, (1111),, (11111),, .... Also, the Mersenne number sequence contains
primes, the so called Mersenne primes of the form 2" — 1. A simple calculation shows that if
M, is a prime number, then 7 is a prime number, though not all M,, are prime. Mersenne
primes are also connected to perfect numbers. The search for Mersenne primes is an active
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field of research (see [18], among others). More information about Mersenne numbers and its
generalizations can be taken from the papers [1,3-6,9, 10, 13, 16,20] and references contained
therein.

We conclude this section with some generating functions, which will be needed in the
proofs. Using (1)-(3) we easily obtain non-exponential generating functions of the sequences
M, My, +1 and My, as follows

(4)

> z
= M n -,
m(z) EO Yy

> 1+2z
=Y Mypiz' = ————, 5
my(z) P w12 = 54 (5)
i 3z
= n = 0. 6
m2(2) EOMZHZ 1—5z +422 (©)

Finally, the exponential generating functions of the sequences M,,, My, +1 and Mj, can be
derived as

o0 n
u(z) = ’;)Mn% = 2¢% sinh(%) , (7)

> z" 5, 3z > z" 5, 3z
M1 (Z) = X%)Mzn_i_la = 2¢2 Slnh<7> + 642, “l/lz(Z) = HX:OMZHE = 2¢2 Slnh<7> .
n= =

1 MERSENNE-HORADAM IDENTITIES USING ORDINARY GENERATING FUNCTIONS

Our first result provides a relation between Mersenne and Horadam numbers using its
ordinary generating functions. The method of proof is the same as in [7] and [8]. We note that,
n

in what follows, we will used the standard convention that }_ a; = 0 for n < 0.
k=0

Theorem 1. Forn > 0, the following formula holds
n—1
Wy = a+ (b— )My + Y ((p =30k + (9 + 2)w, 1 1) My.
k=1

Proof. By (1) and (4), we get

z . 2 4 . 2 2 oy a+(b—ap)z
m(z)_l 3242z =(1—pz—qz°)+ (pz+ gz 3z—|—22)——w(z
a+(b—ap)z+ (p—3)zw(z) + (g +2)2%w(z)

+(p—3)z+(g+2)2% =

4

w(z)

and thus zw(z) = am(z) + (b — ap)zm(z) + (p — 3)zw(z)m(z) + (g + 2)z2%w(z)m(z).
Expanding both sides of the last equation as a power series in z yields

z Z wpz" =a Z M,z" + (b —ap) Z M,z 1
n=0 n=0 n=0

+(p—3)z Y wpz" Y Muz"+ (q+2)2% Y wuz" Y My2".
n=0 n=0 n=0 n=0
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Using the formula for multiplication of two power series

Z ayz" Z byz" = Z Z agb,_z", (8)
n=0 n=0

n=0k=

we then obtain

i w,z" =4 i M,z" + (b —ap) i M, _1z"
n=0

n=0 n=1
(e 9] n (o] n
3) Y. Y wukMZ T+ (g 4+2) Y Y wy Mz,
n=0k=0 n=0k=0
az+ Y wy_1z" =az+a ) My2" + (b—ap) Z M, _1Z"
n=2 n=2 n=2
oo n—1 00 1—
3) ). ) wp k- 1Miz" + (g +2) Z Z Wy k-2 Myz".
Comparing the coefficients on both sides, we obtain
n n—1
Wy = aMy1 + (b—ap)My+ (p —3) Y wy M+ (9 +2) Y wy_ 1My
k=0 k=0

n—1 n—1
=a(2M,, + 1)+ (b—ap)M, + (p —3) Z Wy Mg+ (p —3)aM,, + (9 +2) Z Wy j—1 My

k=0 k=0
n—1
=a+ (b - a>MH + Z ((P - 3)wnfk + (q + 2)wnfk71)Mk/
k=1
as desired. 0

Example 1. By choosing suitable values ona, b, p and g, one can obtain the following identities
valid forn > 0:

n-1 n—1
Fo=My— Y (2F—3F 1) My, Lyp=2—M;— Y (2L, —3Ly——1) My,
k=1 k=1
n—1 n—1
Py=M;— Y (Puk—3Pui-1)Mi, Ju=My—=2) (Jnk — 2Jn—k-1) Mg,
k=1 k=1
n—1
B, = M, + (3ank + ankfl) M.
k=1

In a similar manner, we can use the generating functions (2), (5) and (3), (6), respectively,
to prove two other relations between odd (even) indexed Horadam and Mersenne numbers.
These relations are contained in the next two theorems, those proofs we leave to the reader.

Theorem 2. Forn > 1, the following formula hold

Won+1 + 2wan—1 = 3b + (bp* + apq + bq — b)Mpy

n—1 (9)
+ Y (P +29 = 5)pwy(n_i) + (47 + qp* — 59 + 4)way_)—1) Mok 1.
k=1
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Example 2. Formula (9) yields

n—1

Fong1+2F—1 =3+ Mpy—1 — ) <2F2(n,k) - FZ(nfk)fl> Mak—1,
k=1
n—1
Lopt1+2Lop—1 =3+3Mp1— ) <2L2(nfk) - Lz(nfk)fl) Mpy1,
k=1
n—1
Pyyy1+2Ppy—1 =3+4Mp,_1+2) (Pz(nfk) + 2P2(n7k)71> M1,
k=1
Jons1+2J2n-1 =2+ My,
n—1
Bont1+2Boy—1=3+34My, 1 +2 ) <87B2(n7k) — 13BZ(nfk)71) Mpy1.
k=1

Theorem 3. Forn > 0, the following formulas hold

b+qga—
wyy =a+ BT v, 4 2 Z 2429 — 5wty + (4 — 47) Wy (n_k—1)) Mok

3

Example 3. It follows from (10) that

1 n—1
Ban = 5May = 5 ¥ (2Bui) = 3Fagu—k1) ) Mot
3 3 &
1 1=
Lon = 2+ Moy — 3 y (2Lt = BLagu—i—1) ) Maks
=1
2 11
Pow = 3Mon + 3 ; ( (n—k) T 3Pa(—k— 1)) Moy,
1
]211 - Man
1 n—1
Ban = 2Moy + 3 Y <2932(n—k) + 3Bz(n—k—1)> M.
k=1

Note that formula (11) is known (see [4]).

(10)

(11)

We finally remark, that Theorems 1, 2 and 3 can be generalized to sums of certain products

of w, and M,; see [7] and [8] for details.

2 MERSENNE-HORADAM IDENTITIES VIA EXPONENTIAL GENERATING FUNCTIONS

Let us first consider the fundamental Fibonacci sequence u, = w,(0,b; p, q). In this section,
we derive connection formulas between u, and Mersenne numbers M,, involving binomial

coefficients.

Let u(z), u1(z) and uy(z) be the exponential generating function of the sequences uy, 13,1

and u,,. Then we have
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2 zZ" 2b pz Az

u(Z) = ngounﬁ = Ke"— Slnh<7> P (12)
a " 2b(p?+q) P, . pAz

ul(Z) = r;)uZHJrla = Te Z “ginh T

p2+2 q+pA

b p +2q pb
—277A<(P +29—ph)e T (P +29+pp)e )
n
Z 2nz = %ep 2z smh<p—A2> ,
n! 2
where A = /p? + 4q; see [15].

Theorem 4. Forn > 0, the following identity holds

b (p-3A\"& [ 24 \*
w5 (020) L) ) .

Proof. Using (7) and (12), we have

u <§> Z‘u( ) (LA*%)Z.

From the formula above we now obtain

i z" b & zZ" & (p 3>”z” b & Mk<p 3>”k z"
Upy——=—3Y M;,—- — =) == — | L=—-=
HX::O " Al An;o " ! HX::O 20 2) ! A,;)k; 1\2a 2 (n—k)!
b & n\ (p 3\"F
aLL () (Bs)
n=0k=0
and after simplification we have (13). O

Example 4. Letn > 0. Then formula (13) gives

e () E ) (BB e =S () (D)
(1-3v2)

2)" I (n 12 +24/2 ¢ _ (3-6V2)" & (n 16 + 4+/2 ¢
22 ,g(k)(_ 17 >M"’ T Z<k><_ 21 )M"'

k=0

Pn:

Theorem 4 highlights the following issue. If we define the sequence a, as

2A "
an = (P—3A> M,

A —3A\ "
bn:E<p 2 > Un,

is the binomial transform of a,, where the binomial transform and its inverse transform are

given by [2,17]
by, = Z <Z> ay & ay = Z <Z> (—1)" by

k=0 k=0
The inverse relation immediately gives the next identity.

then the sequence
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Theorem 5. Forn > 0, we have

A" /3N — p\ & 2 \*
M, = . 14
— (20) () () a0

Example 5. Formula (14) yields

no k
M, — /5 (#) y <Z> (#) E, (15)

k=0

s ()L (1)L Mn:f(é f) i()(”i”)

s (22 £ 1) (222

k=0

Note that formula (15) may be rewritten in terms of the golden ratio ¢ = 1+‘/— as follows

We also have the following summation identity.

Theorem 6. Let A and B be arbitrary complex numbers. Then for n > 1 it is true that

i < )AkB” Ky %é(z) (AA)k <Ap+2§—3AA>n—kMk.

Proof. It is known [17] that if a,, is an arbitrary sequence of numbers with exponential generat-
ing function F(z), then

_ - . i _ Bz
S(z) = ’;)Sn(A,B,a)n! = e¢7*F(Az),
where
" /n
Su(A,B;a) = < )AkB”_kak
k=0 k
Hence,
d zZ" b Ap+2B ANz
SM(Z) = Y;JSH(A, B, u)m = KZe 2 ZSlnh<T> ,
> z" 34128 Az
Sm(z) = ’;SH(A,B;M)E =2 2 smh< 5 )
and finally
[e] n & _ n
Z ABws =y, <AA,AP+2B 3AA;M> =
=0 n! A =0 2 n!
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We give some examples of the above summation identity. However, we restrict the list of
examples to the pair (F,, My). If (A, B) = (1,1), then

£ (=L (osra-ver(3) .

k=0 k=0

n
Since Y. (})Fx = Fon, we can restate the identity as (7 = —1/¢)
k=1

_ B & (e—n\*
an—q)_quo ) a ) M
If (A,B) = (—1,1), then

Fo— 20" g e (Z) < ¢ 1 )kMk

»—1n = 20 —1

This identity may be compared with the one from Example 8, where we have shown that

o= B0l B (1) (2L )

Our last example is (A, B) = (1, —1/2). In this case, we get the relation

k)i:o (}) -1t = 5% k; () (3) v

£ (mer £0) ()

k=0 k=0
Theorem 7. Forn > 0 it holds that

b (3p—5A\" & (n 24 \*
w=3 (P57) L) (50m) Mo

A [(5A-3p\" & (n 6 \*
Mz”‘?( 2A >,§0<k> <5A—3p> e

Proof. The first formula follows from the relation u (32)

or

and

): .
and an application
of formula (8). Moreover, the first formula shows that u,

n
24
of Moy, <m>
The second formula is a rearrangement of the inverse binomial transform relation. O

n
<3p_%> is the binomial transform

Theorem 8. Forn > 0 it holds that

b (3p—5A\" & (n 24 \F b (p+A\"
w3 (750) B0 (5rm) a5 (557

k=0

A [5A-3p\" & (n 6 \* \
v =5 () 5 (1) (a0sp) e

and
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Proof. To prove the first formula we use
o (5) = & (ot ions),

The second formula is once more an application of the inverse binomial transform, where
we used that

5A —3p ”i n\ (3A+3p\* _ (58 —3p\” S A R
20 &= \k) \5a—3p 2A 5A —3p '

O
Theorem 9. Forn > 0 we have
b 3p2+6q—5pA>” n <n> < 2pA )"
S M
Han A< 6 k; k) \3p2+6q—5pn)
and ) , .
A (5pA —3p —6q> e <n> ( 6 )
M2 = - < Usg.
b 2pA k;l k) \5pA —3p? — 6q
Proof. The first formula follows from the relation
2
MZ(Z) = %6£me¥)2]"2 <%Z>
and an application of formula (8). The second formula is a rearrangement of the inverse bino-
mial transform relation. g

A proof comparable to the one given for Theorem 4 yields the following relation between
numbers uy,.1 and My, . 1. In this case we use the relations

3p?+6q-5ps . ((pAZ

2 i) = 20% e (2

2 2 _
P +22q+pAZ p-+2q pAZ

— (2(p* +9) + b(p* +29— pA))e +b(p*+2q9+ pA)e 2

and

—3p2—6q+5pA
2(p* + q)p(2) = 2pAuy (—A> eI
+ (2(p* +q) + b(p* + 29 — pA))e™ — b(p* +2q + pA)e”.
Theorem 10. Forn > 0

2 2 non k
. p°+gq (3p°+6g—5pA n 2pA
Uppy1 = b oA ( G k;l k) \32+6q —5phA M4

3PP A= pA (PP 4294 pANT L P29+ pA (P2 429 — pAN”
2pA 2 2pA 2

and

_(pA)' (5pA —3p? —69\" & (1 6 k
M2”+1_b(p2+q) 2 k; k) \5pa —3p2 —6q) "2

pP+2q—pA 0 pPH29+pA

+ 4",
2(p*+9) 2(p*>+9)
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3 MERSENNE-LUCAS IDENTITIES VIA EXPONENTIAL GENERATING FUNCTIONS

In this section we establish connections between the fundamental Lucas sequence
vn = wn(2, p; p,q) and Mersenne numbers M,,.

s () B0 ()

Oy = (p;‘%)n i (Z) (M, +2) (pEAMY. (16)

k=0

Theorem 11. Forn > 0

and

Proof. It is known that the exponential generating function of the sequence v, can be given as

00 n
=) Oy = 2e%* cosh(éz>. (17)
= n! 2
Using (7) and (17) we obtain
@) = 3D = 3 M2 3o sinn(2) 4o cosn()
Wz —nion T n+17y = 3ez sinh(3 ) +e2 cosh(

Therefore,

i (2M,21 — 3M,,) Z—l = (5) ()2
n=0 :

To complete the first part, observe that 2M,,,1 — 3M,, = M,, + 2. To get (16) we may apply
the argument of the inverse binomial transform. O

When v, = L, is the Lucas sequence, then
_(9—2n\"\~ (n k
e (5 £ (o

and

L, = (25 — ¢) i()( 17>k(Mk+2).

21 —¢

(L) - (55

we observe that an equivalent version of the last identity is

=21" + (27 — ¢)" i <Z> ( Py )kMk- (18)

k=1 2n—¢

In view of

We also have the following summation identity.
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Theorem 12. Let A and B be arbitrary complex numbers. Then for n > 0 it is true that

i (Z) AFB" gy = Z (Z) (AD) <AP +2§ _3AA>nk(Mk+z).

k=0 k=0

Proof. The proof is very similar to that one given in the last section and omitted. O

As examples, we will state the companion results for v, = L, from the previous section. If
(A,B) = (1,1), then

¥ (P)r= L (1) wara-var () v

This gives the identity

=2+ o0 5 (1) (%52) e

k=1

If (A,B) = (—1,1), then the result is

Ly =2¢" + (29 — )" Z (Z) (—1)F ( co )kMkf

k=1 291

which should be compared with (18).
Finally, for (A, B) = (1, —1/2) we get the relation

= (n —(n—k) nel—ngh 1yn (1 n—k 3 ok
Y )2 Ly = (—1)"2'""52 +52 ) . (1) > My
k=0 k=0
or ‘
S () (o)L =25t 4 3st 3 (M) (2
k;(J( 2L =2-52+3 Szk;(k)( 3> M;.

The results of this section also highlight some other hidden relations, since ([4], Proposi-
tion 2.4)

jn, if niseven,
Mn + 2 —
3J,, ifnisodd,

where (J;)n>0 is the Jacobsthal and (j, ),>0 is the Jacobsthal-Lucas sequence.
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Y poboTi BcTaHOBAEHI POPMYyAN 3B'I3KY MiX umcramu MepcerHa M, = 2" — 1 Ta y3araabHe-
‘M ancaamy @iborauvdi (umcaramm ['oparama) wy,, SKi 3aA0BOABHSIIOTE AiHiliHe peKypeHTHe CIIiB-
BiAHOIIIEHHSI APYTOTO HOPSIAKY Wy, = PWy_1 + qWy—2, Ae 1 > 2, wy = a, w; = b, aucraa, b, p > 0
iq # 0 e miavmm. ITpy IbOMY MM BUKOPMCTOBYEMO BiAITOBiAHI CITIBiAHOIIIEHHS MiX 3BMUYATHVMU Ta
€KCTIOHEHITIHIMIY TeHepaTpucaMyt 060X UMCAOBMX IIOCAIAOBHOCTeN. 30KpeMa, HaBeAeHi IPMKAaAL,
sIKi cTocytoThest umcen dibonaudi, Atoxka, [Teans:, SIkobcrans Ta 36araHCOBAHMX UMCEA.

Kontouosi crosa i ppasu: Ymcaa Mepcerna, mocaiaoBHicTs 'opasama, mocaiaosricTs diboHaTwi,
mocAia0BHiCTD Afoka, TocAiaoBHICTD [Teanst, reHepaTpuca, 6iHOMiaAbHe IepeTBOPEHHSI.



