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DETERMINANT IDENTITIES FOR TOEPLITZ-HESSENBERG MATRICES

WITH TRIBONACCI NUMBER ENTRIES

TARAS GOY AND MARK SHATTUCK∗

Communicated by Manouchehr Zaker

Abstract. In this paper, we evaluate determinants of some families of Toeplitz–Hessenberg matrices

having tribonacci number entries. These determinant formulas may also be expressed equivalently

as identities that involve sums of products of multinomial coefficients and tribonacci numbers. In

particular, we establish a connection between the tribonacci and the Fibonacci and Padovan sequences

via Toeplitz–Hessenberg determinants. We then obtain, by combinatorial arguments, extensions of our

determinant formulas in terms of generalized tribonacci sequences satisfying a recurrence of the form

T
(r)
n = T

(r)
n−1 +T

(r)
n−2 +T

(r)
n−r for n ≥ r, with the appropriate initial conditions, where r ≥ 3 is arbitrary.

1. Introduction

Let {Fn}n≥0 denote the Fibonacci sequence (sequence A000045 in the OEIS [19]) given by F0 = 0,

F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Some of the best known of the many analogues of

the Fibonacci numbers include the tribonacci and Padovan numbers, denoted here by Tn and Pn (see

entries A000073 and A000931 in [19], respectively). The tribonacci and Padovan sequences are defined

respectively by the following recurrence relations for n ≥ 3:

Tn = Tn−1 + Tn−2 + Tn−3, T0 = T1 = 0, T2 = 1,

Pn = Pn−2 + Pn−3, P0 = 1, P1 = P2 = 0.
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The tribonacci numbers represent the k = 3 case of the Fibonacci k-step numbers [8] and are given

equivalently by the explicit formula [3]

Tn =

⌊n/2⌋−1∑
i=0

i∑
j=0

(
i

j

)(
n− 2− i− j

i

)
, n ≥ 2,

where ⌊α⌋ denotes the floor of α. Tribonacci numbers have a long history and have been extensively

studied. First introduced by Agronomof [1] in 1914, the name tribonacci being later coined by Feinberg

[9], these numbers have been considered by many others since. Examples of some recent work that

involve tribonacci numbers and their various generalizations include [2, 5, 6, 7, 10, 14, 15, 16, 20, 21].

For instance, Choi [6] found a tribonacci triangle which is analogous to Pascal’s and also investigated

an efficient method of computing the nth tribonacci number using matrices. Kiliç [15] found some

identities and generating matrices for the sequences {Tn} and {T4n}, along with their sums. Irmak

and Alp [14] later gave a recurrence relation for the tribonacci numbers with subscripts in arithmetic

progression, {Trn+s} for 0 ≤ s < r, and found sums of {Trn} for arbitrary r via matrix methods. In

[10], Feng derived various recurrence relations for the tribonacci numbers and their sums and obtained

some related identities by use of companion and generating matrices. Kuhapatanakul and Sukruan

[16] derived an explicit formula for the generalized tribonacci polynomials with negative subscripts

possible. In this paper, we find some new formulas for the tribonacci numbers which can be expressed

equivalently in terms of certain determinant or multi-sum expressions.

The organization of this paper is as follows. The next section concerns preliminaries, while in the

third, we find new relations involving the tribonacci sequence which arise as determinants of certain

families of Toeplitz–Hessenberg matrices. We remark that some of the results from this section were

announced without proofs in [11]. Next, we state multi-sum versions of these relations involving

products of multinomial coefficients and powers of tribonacci numbers. In the final section, we extend

by combinatorial arguments the preceding determinant formulas to generalized tribonacci sequences

satisfying a recurrence of the form T
(r)
n = T

(r)
n−1 + T

(r)
n−2 + T

(r)
n−r where r ≥ 3. It should be noted that

while one of several possible extensions of the tribonacci number sequence might be considered, it

is this one that seems to yield the most generalizations of the determinant formulas from the third

section.

2. Toeplitz–Hessenberg matrices and determinants

A Toeplitz–Hessenberg matrix is an n× n matrix having the form

(2.1) Mn(a0; a1, . . . , an) =



a1 a0 0 · · · 0 0

a2 a1 a0 · · · 0 0

a3 a2 a1 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0

an an−1 an−2 · · · a2 a1


,
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where a0 ̸= 0 and at least one ak ̸= 0 for k > 0. Toeplitz–Hessenberg matrices are often encountered

in various applications of science and engineering (see, for example, [17] and references therein).

Repeated expansion along the first row yields the recurrence

(2.2) det(Mn) =

n∑
k=1

(−a0)
k−1ak det(Mn−k), n ≥ 1,

where det(M0) = 1, by convention.

The following result, which provides a multinomial expansion of det(Mn), is known as Trudi’s

formula, the a0 = 1 case of which is called Brioschi’s formula [18].

Lemma 2.1. Let n be a positive integer. Then

(2.3) det(Mn) =
∑

(s1,...,sn)

(−a0)
n−(s1+···+sn)

(
s1 + · · ·+ sn
s1, . . . , sn

)
as11 as22 · · · asnn ,

where the summation is over all integers si ≥ 0 satisfying s1 + 2s2 + · · ·+ nsn = n and(
s1 + · · ·+ sn
s1, . . . , sn

)
=

(s1 + · · ·+ sn)!

s1! · · · sn!

denotes the multinomial coefficient.

For example,

det(M4) = (−a0)
0

(
4

4, 0, 0, 0

)
a41 + (−a0)

1

(
3

2, 1, 0, 0

)
a21a2 + (−a0)

2

(
2

1, 0, 1, 0

)
a1a3

+ (−a0)
2

(
2

0, 2, 0, 0

)
a22 + (−a0)

3

(
1

0, 0, 0, 1

)
a4

= a41 − 3a0a
2
1a2 + 2a20a1a3 + a20a

2
2 − a30a4.

For brevity, we write det(±1; a1, a2, . . . , an) in place of det (Mn(±1; a1, a2, . . . , an)).

3. Tribonacci determinant formulas

We find in this section determinant formulas for certain Toeplitz–Hessenberg matrices whose entries

are various translates of the tribonacci sequence. Our first result provides a connection between the

tribonacci numbers and the Fibonacci and Padovan sequences.

Theorem 3.1. The following formulas hold:

det(1;T0, T1, . . . , Tn−1) = (−1)n−1Fn−2, n ≥ 2,(3.1)

det(1;T2, T3, . . . , Tn+1) = (−1)n−1Pn+2, n ≥ 1.(3.2)

Proof. To prove formula (3.1), we induct on n. The proof of (3.2) which we omit is similar.
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Let Dn = det(1;T0, T1, . . . , Tn−1). The n = 2 and n = 3 cases of formula (3.1) are easily verified.

Suppose (3.1) holds for all k ≤ n− 1, where n ≥ 4. By recurrence (2.2), we have

Dn =

n∑
i=1

(−1)i−1Ti−1Dn−i

= T0Dn−1 − T1Dn−2 + T2Dn−3 +

n∑
i=4

(−1)i−1 (Ti−2 + Ti−3 + Ti−4)Dn−i

= Dn−3 −
n∑

i=4

(−1)iTi−2Dn−i −
n∑

i=4

(−1)iTi−3Dn−i −
n∑

i=4

(−1)iTi−4Dn−i

= Dn−3 +

n−1∑
i=3

(−1)iTi−1Dn−i−1 −
n−2∑
i=2

(−1)iTi−1Dn−i−2 +

n−3∑
i=1

(−1)iTi−1Dn−i−3

= Dn−3 +

n−1∑
i=1

(−1)iTi−1Dn−i−1 −
n−2∑
i=1

(−1)iTi−1Dn−i−2 −Dn−3 = −Dn−1 +Dn−2

= −(−1)n−2Fn−3 + (−1)n−1Fn−4 = (−1)n−1Fn−2.

Consequently, formula (3.1) is true in the n case. Therefore, by induction, the formula holds for all

n ≥ 2. □

The next theorem provides the value of det(±1; a1, a2, . . . , an) for some special tribonacci entries

ai.
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Theorem 3.2. Let n ≥ 1, except where stated otherwise. Then

det(−1;T0, T1, . . . , Tn−1) =

⌊
2n + 6

14

⌋
,

det(−1;T0, T2, . . . , T2n−2) =
17 +

√
17

34

(
3

2
+

√
17

2

)n−2

+
17−

√
17

34

(
3

2
−

√
17

2

)n−2

, n ≥ 2,

det(1;T1, T2, . . . , Tn) = (−1)n−1

⌊(n−2)/3⌋∑
i=0

(
n− 2− 2i

i

)
,(3.3)

det(−1;T1, T2, . . . , Tn) =

⌊(2n−4)/3⌋∑
i=0

(
2n− 4− 2i

i

)
, n ≥ 2,

det(1;T1, T3, . . . , T2n−1) = (−1)n−1
⌊
4 · 3n−3

⌋
,

det(1;T3, T4, . . . , Tn+2) = 0, n ≥ 4 ,(3.4)

det(1;T3, T5, . . . , T2n+1) = (−2)n−1
n−1∑
i=0

2−i−⌊i/2⌋
(
n− 1− i

⌊i/2⌋

)
,

det(1;T4, T5, . . . , Tn+3) =


(−1)n, if n ≡ 0 (mod 3);

(−1)n+1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),

n ≥ 2,

det(1;T4, T6, . . . , T2n+2) = 4 · (−1)n−1, n ≥ 3,

det(1;T5, T6, . . . , Tn+4) =

⌊(n+1)/2⌋∑
i=0

(
n+ 2 + i

n+ 1− 2i

)
,

det(1;T5, T7, . . . , T2n+3) = 4, n ≥ 3.

Proof. To prove formula (3.3), we induct on n; the others may also be shown inductively. Let Dn =

det(1;T1, T2, . . . , Tn). When 1 ≤ n ≤ 3, the formula is seen to hold. Assume that (3.3) is true for all
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k ≤ n− 1 where n ≥ 4, and we prove it in the n case. By (2.2), we have

Dn =

n∑
i=1

(−1)i+1TiDn−i

= T1Dn−1 − T2Dn−2 +

n∑
i=3

(−1)i+1 (Ti−1 + Ti−2 + Ti−3)Dn−i

= −Dn−2 −
n∑

i=3

(−1)iTi−1Dn−i −
n∑

i=3

(−1)iTi−2Dn−i −
n∑

i=3

(−1)iTi−3Dn−i

= −Dn−2 +

n−1∑
i=1

(−1)iTiDn−i−1 −
n−2∑
i=1

(−1)iTiDn−i−2 +

n−3∑
i=1

(−1)iTiDn−i−3

= −Dn−2 −Dn−1 +Dn−2 −Dn−3 = −Dn−1 −Dn−3

= (−1)n−1

⌊n−3
3 ⌋∑

i=0

(
n− 3− 2i

i

)
+ (−1)n−1

⌊n−5
3 ⌋∑

i=0

(
n− 5− 2i

i

)
.

Thus,

(3.5) Dn = (−1)n−1

⌊n−3
3 ⌋∑

i=0

(
n− 3− 2i

i

)
+

⌊n−2
3 ⌋∑

i=1

(
n− 3− 2i

i− 1

) .

Let n ̸= 3ℓ− 1 for some ℓ. Then
⌊
n−3
3

⌋
=
⌊
n−2
3

⌋
. From (3.5), using the well-known recurrence

(3.6)

(
n− 1

k

)
+

(
n− 1

k − 1

)
=

(
n

k

)
,

we then have

Dn = (−1)n−1

⌊n−2
3 ⌋∑

i=0

(
n− 3− 2i

i

)
+

⌊n−2
3 ⌋∑

i=0

(
n− 3− 2i

i− 1

)
= (−1)n−1

⌊n−2
3 ⌋∑

i=0

(
n− 2− 2i

i

)
.

If n = 3ℓ− 1, then
⌊
n−3
3

⌋
=
⌊
n−2
3

⌋
− 1. In this case, using (3.6), we have

Dn = (−1)n−1

⌊n−2
3 ⌋−1∑
i=0

(
n− 3− 2i

i

)
+

⌊n−2
3 ⌋∑

i=1

(
n− 3− 2i

i− 1

)
= (−1)n−1

⌊n−2
3 ⌋∑

i=0

(
n− 3− 2i

i

)
+

⌊n−2
3 ⌋∑

i=0

(
n− 3− 2i

i− 1

)
= (−1)n−1

⌊n−2
3 ⌋∑

i=0

(
n− 2− 2i

i

)
.

Formula (3.3) now follows by induction on n. □
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4. Multinomial versions of Toeplitz–Hessenberg determinant formulas

Theorems 3.1 and 3.2 may be rewritten in terms of Trudi’s formula (2.3) as follows.

Theorem 4.1. Let n ≥ 1, except where stated otherwise. Then

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
0 T s2

1 · · ·T sn
n−1 = −Fn−2, n ≥ 2,

∑
(s1,...,sn)

pn(s)T
s1
0 T s2

1 · · ·T sn
n−1 =

⌊
2n + 6

14

⌋
,

∑
(s1,...,sn)

pn(s)T
s1
0 T s2

2 · · ·T sn
2n−2 =

17 +
√
17

34

(
3

2
+

√
17

2

)n−2

+
17−

√
17

34

(
3

2
−

√
17

2

)n−2

, n ≥ 2,(4.1)

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
1 T s2

2 · · ·T sn
n = −

⌊(n−2)/3⌋∑
i=0

(
n− 2− 2i

i

)
,

∑
(s1,...,sn)

pn(s)T
s1
1 T s2

2 · · ·T sn
n =

⌊(2n−4)/3⌋∑
i=0

(
2n− 4− 2i

i

)
, n ≥ 2,

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
1 T s2

3 · · ·T sn
2n−1 = −

⌊
4 · 3n−3

⌋
,

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
2 T s2

3 · · ·T sn
n+1 = −Pn+2,(4.2)

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
3 T s2

4 · · ·T sn
n+2 = 0, n ≥ 4,(4.3)

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
3 T s2

5 · · ·T sn
2n+1 = −2n−1

n−1∑
i=0

2−i−⌊i/2⌋
(
n− 1− i

⌊i/2⌋

)
,

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
4 T s2

5 · · ·T sn
n+3 =


1, if n ≡ 0 (mod 3);

−1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),

n ≥ 2,

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
4 T s2

6 · · ·T sn
2n+2 = −4, n ≥ 3,

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
5 T s2

6 · · ·T sn
n+4 = (−1)n

⌊(n+1)/2⌋∑
i=0

(
n+ 2 + i

n+ 1− 2i

)
,

∑
(s1,...,sn)

(−1)σnpn(s)T
s1
5 T s2

7 · · ·T sn
2n+3 = 4 · (−1)n, n ≥ 3,
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where the summation is over all n-tuples of integers si ≥ 0 satisfying s1 + 2s2 + · · · + nsn = n,

pn(s) =
(
s1+···+sn
s1,...,sn

)
, and σn = s1 + · · ·+ sn.

Example 4.2. It follows for example from formulas (4.1), (4.3), and (4.2), respectively, that

T 3
2 + 2T2T6 + T 2

4 + T10 = 100,

T 4
3 − 3T 2

3 T4 + 2T3T5 + T 2
4 − T6 = 0,

T 5
2 − 4T 3

2 T3 + 3T 2
2 T4 + 3T2T

2
3 − 2T2T5 − 2T3T4 + T6 = P7 = 1.

5. Generalized identities

In this section, we will generalize the foregoing identities by combinatorial arguments. See, for

example, [12] or [13] for comparable combinatorial proofs involving determinants of matrices with

Catalan or Fibonacci number entries, respectively. In our arguments, we will make frequent use of the

definition of the determinant of an n× n matrix A = (ai,j) given by

det(A) =
∑
σ∈Sn

(−1)sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n),

where sgn(σ) denotes the sign of a permutation σ. Assume that permutations are expressed such that

within each cycle, the first element is the smallest, where cycles are arranged from left to right in

ascending order of smallest elements. Note that if A is Toeplitz-Hessenberg, then only permutations

σ where the elements within each cycle are increasing and comprise an interval contribute to the

determinant sum above. Upon regarding the various cycle lengths as parts, such σ are synonymous

with compositions ρ of n, where n is the size of A. Assume that the sign of ρ is the same as that of

the associated σ; i.e., let ρ have sign (−1)n−ν(ρ), where ν(ρ) denotes the number of parts of ρ.

Let each part i of ρ be assigned the weight ai for all i ≥ 1. Then, for a Toeplitz-Hessenberg matrix

A of size n with superdiagonal entry a0 = 1, one may view det(A) as a weighted (signed) sum over

the set of compositions ρ of n, where the weight of ρ is defined to be the product of the weights of

its parts and the sign is as stated above. That is, if ρ = (x1, . . . , xm) where x1 + · · · + xm = n with

each xi ≥ 1, then the sign of ρ is (−1)n−m and the weight is
∏m

i=1 axi . On the other hand, if a0 = −1,

then each term in the expansion of det(A) is positive, as the sign of the associated composition ρ is

always the same as the sign derived from the product of the superdiagonal elements in this case. Thus,

det(−1; a1, . . . , an) may be viewed as a sum of positively weighted compositions, with the weight of

each individual composition being the same as before.

Note that compositions of n are synonymous with linear tilings of length n where parts are identified

as tiles of various lengths (tiles of the same length are understood to be indistinguishable). The tilings

themselves may be regarded as coverings of the members of [n], written consecutively in a row (see,

e.g., [4, Chapter 1]). Here, we will be considering various kinds of restricted tilings where only pieces

of a certain length may be used. Given n ≥ 1 and r ≥ 3, let T (r)
n denote the set of tilings of length

n that use only pieces of length 1, 2, or r, which will be denoted respectively by s for square, d for
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domino, and r for r-mino (where an r-mino is a 1×r piece capable of covering r consecutive numbers).

The set T (r)
0 when n = 0 is understood to consist of the empty tiling having length zero.

Members of T (r)
n will be referred to as generalized r-tribonacci tilings. Note that when r = 3, one

gets the usual tribonacci tilings (see [4, Section 3.3]) whose pieces are s, d, and t (t standing for

tromino). Tilings of length n that use only s and d are often referred to as square-and-domino tilings

and have cardinality given by the Fibonacci number Fn+1. In the combinatorial proofs below, we will

impose various restrictions on the positions of the different types of tiles and/or permit certain tiles

to be marked or colored. This allows for generalizations of the tribonacci determinant identities above

in terms of the parameter r.

Let T
(r)
n for r ≥ 3 be defined by the recurrence T

(r)
n = T

(r)
n−1 + T

(r)
n−2 + T

(r)
n−r for n ≥ r, with

T
(r)
0 = · · · = T

(r)
r−2 = 0 and T

(r)
r−1 = 1. Note that |T (r)

n | = T
(r)
n+r−1 for n ≥ 0 and that T

(r)
n reduces to Tn

when r = 3. One could then refer to the T
(r)
n as generalized r-tribonacci numbers. Let P

(r)
n for r ≥ 3

satisfy P
(r)
n = P

(r)
n−2 +P

(r)
n−r if n ≥ r, with P

(r)
0 = 1 and P

(r)
1 = · · · = P

(r)
r−1 = 0. The P

(r)
n coincide with

the Padovan numbers when r = 3. Let a
(r)
n be defined recursively by a

(r)
n = a

(r)
n−1 + a

(r)
n−r for n ≥ r,

with a
(r)
0 = · · · = a

(r)
r−1 = 1.

The following identities for determinants involving generalized r-tribonacci numbers reduce respec-

tively when r = 3 to formulas (3.1), (3.3), (3.2), and (3.4) above.

Theorem 5.1. If r ≥ 3, then

(5.1) det(1;T
(r)
0 , T

(r)
1 , . . . , T

(r)
n−1) = (−1)n−1Fn−r+1, n ≥ r − 1,

(5.2) det(1;T
(r)
r−2, T

(r)
r−1, . . . , T

(r)
n+r−3) = (−1)n−1a

(r)
n−2, n ≥ 2,

(5.3) det(1;T
(r)
r−1, T

(r)
r , . . . , T

(r)
n+r−2) = (−1)n−1P

(r)
n+r−1, n ≥ 1,

(5.4) det(1;T (r)
r , T

(r)
r+1, . . . , T

(r)
n+r−1) = (−1)n−1δn,r, n ≥ 3,

where δn,r is the Kronecker delta.

Proof. Since (5.1) clearly holds for n = r− 1, we may assume n ≥ r. Given 1 ≤ k ≤ n, let A(k)
n denote

the set of all sequences of tilings (λ1, . . . , λk) such that λi ∈ T (r)
ℓi

where ℓ1 + · · · + ℓk = n − rk and

ℓi ≥ 0 for all i. Define the sign of a member of A(k)
n to be (−1)n−k and let An = ∪n

k=1A
(k)
n . Since

T
(r)
0 = · · · = T

(r)
r−2 = 0, all cycles in any permutation contributing a nonzero term in the expansion of

det(1;T
(r)
0 , . . . , T

(r)
n−1) must have length at least r. It is then seen that this expansion equals the sum

of the signs of all members of An.

For each λ = (λ1, . . . , λk) ∈ A(k)
n , we concatenate the λi tilings (to form a single tiling of length

n− rk), insert an r-mino between λi and λi+1 for i < k as well as after λk and finally mark (indicated

by underlining) each inserted r-mino to obtain λ′ = λ1rλ2r · · ·λkr. Doing so for all λ ∈ An implies

that members of An may be identified as r-tribonacci tilings of length n ending in an r-mino, where

r-minos may be marked and the final r-mino is always marked, the set of which will be denoted by

A′
n. Then det(1;T

(r)
0 , . . . , T

(r)
n−1) is seen to give the sum of the signs of all members of A′

n, where the
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sign is given by (−1)n−(# marked r-minos). We define a sign-changing involution of A′
n by identifying

the rightmost non-terminal r-mino and either marking it or unmarking it, whichever applies. This

operation is defined on all members of A′
n except those containing a single r-mino, i.e., the terminal

one. Such members of A′
n then have sign (−1)n−1 and their number is Fn−r+1 as they correspond to

square-and-domino tilings of length n− r, which implies formula (5.1).

An analogous interpretation may be used to prove the determinant formula (5.2). Here, let Bn

denote the set of marked r-mino tilings of length n in which dominos may be marked and whose final

piece is a marked domino. By similar reasoning as before, one has that det(1;T
(r)
r−2, . . . , T

(r)
n+r−3) gives

the sum of the signs of all members of Bn, where the sign equals (−1)n−(# marked dominos). Define an

involution on Bn by switching the rightmost non-terminal domino to the other option, if possible. The

survivors of this involution each have sign (−1)n−1 and are synonymous with tilings of length n − 2

containing only square and r-mino pieces. Thus, they have cardinality a
(r)
n−2 =

∑⌊n−2
r

⌋
i=0

(
n−2−(r−1)i

i

)
.

Similar reasoning applies to (5.3) and (5.4), where instead of Bn, one considers sets Cn and Dn that

are defined the same way as Bn except that instead of marking dominos, one marks squares for Cn and

any of the three kinds of pieces for Dn. One then defines the sign and the involution comparably as

before in either case. Note that in (5.3), the r-Padovan number P
(r)
n+r−1 enumerates the survivors of

the involution as they are tilings of length n− 1 that use only dominos and r-minos. For (5.4), note

that if n ≥ r + 1 or 3 ≤ n ≤ r − 1, then each member of Dn must contain at least two pieces (and,

in particular, a non-terminal piece). Hence, there are no survivors of the involution in these cases,

implying that the determinant is zero. If n = r, then the sole survivor is the tiling consisting of a

single (marked) r-mino, implying the determinant is (−1)r−1 in this case. □

The determinant formulas in the following theorem involve those in which a0 = 1 and a1 = T
(r)
r+1,

with the subsequent ai subscripts increasing by either one or two. They extend the comparable

identities above where a1 = T4.

Theorem 5.2. If r ≥ 3, then

(5.5) det(1;T
(r)
r+1, T

(r)
r+2, . . . , T

(r)
n+r) =

⌊ n
r−1⌋∑
i=0

(−1)ri
(
n− (r − 2)i

i

)
, n ≥ 2,

and

(5.6) det(1;T
(r)
r+1, T

(r)
r+3, . . . , T

(r)
2n+r−1) =


4 · (−1)n−1, n ≥ r, if r is odd;

(−1)n−1

⌊ 2(n−1)
r ⌋∑

i=0

(
n− 1−

(
r
2 − 1

)
i

i

)
, n ≥ 1, if r is even.

Proof. Given 1 ≤ k ≤ n, let E(k)
n denote the set of sequences of tilings λ = (λ1, . . . , λk) such that λj is

an r-tribonacci tiling of length ℓj , where ℓ1+· · ·+ℓk = n+k and ℓj ≥ 2 for all j, and let En = ∪n
k=1E

(k)
n .

Define the sign of λ ∈ E(k)
n by (−1)n−k. Then the left side of (5.5) gives the sum of the signs of all

members of En. Let E∗
n ⊆ En consist of those sequences λ = (λ1, λ2, . . .) such that λj = d or r for all j

(that is, each λj is the tiling consisting of a single domino or r-mino piece). Note that the sum of the
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signs of all members of E∗
n is given by the right-hand side of (5.5), upon considering the number of

times r is chosen. For if r is chosen exactly i times as a tiling within λ, then we must have n− (r−1)i

d’s in λ and hence k = n− (r − 2)i. This implies that there are
(
n−(r−2)i

i

)
such members of E∗

n, each

of sign (−1)n−k = (−1)(r−2)i = (−1)ri.

To complete the proof of (5.5), we define a sign-changing involution of En − E∗
n. Consider first the

pairing

λ = (λ1, . . . , λk = αs) ↔ λ′ = (λ1, . . . , λk−1, λ
′
k = α, λ′

k+1 = ss),

where |α| ≥ 2, if the final tiling ends in s. So assume that the final tiling of λ = (λ1, λ2, . . .) ∈ En−E∗
n

does not end in s. Let jo be the largest index j such that λj is either of the form (i) λj = βd or βr

or (ii) λj = βs, where |β| ≥ 1. Note that by the assumptions on λ, such an index jo always exists

and that if (ii) holds, then λjo is not the final tiling. Consider the replacement of λjo = βd or βr with

λjo = βs, λjo+1 = d or r if (i) holds, and vice versa, if (ii). This operation yields the desired involution

of En − E∗
n, as one may verify.

For (5.6), first let Fn denote the set of marked r-tribonacci tilings of length 2n wherein any tile (in-

cluding a square) whose rightmost section corresponds to an even-numbered position may be marked,

with the final tile always marked. Define the sign as (−1)n−(# marked tiles). By similar reasoning as

before, the determinant in (5.6) gives the sum of the signs of all members of Fn. We define an invo-

lution on Fn by identifying the rightmost non-terminal tile that ends on an even-numbered position

and either marking or unmarking it. If r is odd, then the set S of survivors for n ≥ r is given by

S = {sdn−1s, rdn−(
r+1
2 )s, sdn−(

r+1
2 )r, rdn−rr}.

Since only the terminal piece can be marked, each member of S has sign (−1)n−1, which implies the

odd case of (5.6). If r is even, then

S = {sαs : α ∈ T (r)
2n−2 and contains no squares}.

Considering the number i of r-minos within α, and then halving the size of each tile, implies the even

case of (5.6) and completes the proof. □

Remark 5.3. The preceding involution shows further in the odd case of r that

det(1;T
(r)
r+1, T

(r)
r+3, . . . , T

(r)
2n+r−1) =

3 · (−1)n−1, if r+1
2 ≤ n < r;

(−1)n−1, if 2 ≤ n < r+1
2 .

Note also that the r = 3 case of (5.5) reduces to the corresponding identity in Theorem 3.2 above

by the well-known formula [4, Identity 175]

⌊n/2⌋∑
i=0

(−1)i
(
n− i

i

)
=


(−1)n, if n ≡ 0 (mod 3);

(−1)n+1, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3).
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Theorem 5.4. Let r ≥ 3. If r is odd, then

(5.7) det
(
1;T

(r)
1 , T

(r)
3 , . . . , T

(r)
2n−1

)
= (−1)n−1an,

where an = 3an−1 − an−2 + an− r+1
2
, n ≥ r + 1, with ar = 1 + Fr+1, an = F2n−r+1 for r+1

2 ≤ n < r,

and an = 0 for 1 ≤ n < r+1
2 .

If r is even, then

(5.8) det
(
1;T

(r)
1 , T

(r)
3 , . . . , T

(r)
2n−1

)
= (−1)n−1bn,

where bn = 3bn−1 − bn−2 + bn− r
2
− bn− r

2
−1, n ≥ r+1, with bn = F2n−r+1 for r

2 ≤ n ≤ r and bn = 0 for

1 ≤ n < r
2 .

Proof. Let us refer to an r-mino within a tiling as even or odd, depending on whether its rightmost

section corresponds to an even- or odd-numbered position, respectively. Let Hn denote the set of

r-tribonacci tilings of length 2n wherein even r-minos may be marked, with the final piece a marked

r-mino. Let λ ∈ Hn have sign (−1)n−(# marked r-minos). Then it is seen that det(1;T
(r)
1 , . . . , T

(r)
2n−1)

gives the sum of the signs of all λ. Define a sign-changing involution on Hn by either marking or

unmarking the rightmost non-terminal even r-mino. This operation is not defined on the subset H∗
n

of Hn whose members contain no even r-mino outside of the terminal r-mino. Each member of H∗
n

has sign (−1)n−1, so we must determine |H∗
n|. Note that members of H∗

n are synonymous with tilings

in T (r)
2n−r containing only odd r-minos.

First assume r is odd and let an = |H∗
n|. If 1 ≤ n < r+1

2 , then H∗
n is empty, whereas if r+1

2 ≤ n < r,

then members of H∗
n correspond to square-and-domino tilings and thus have cardinality F2n−r+1. If

n = r, then the tiling consisting of a single r-mino is also possible since it would be odd in this case,

which implies ar = 1 + Fr+1. If n ≥ r + 1, then λ ∈ H∗
n ending in ss or d may be obtained from

members of H∗
n−1 by appending the respective suffix. Furthermore, appending sr to an arbitrary tiling

in H∗
n− r+1

2

gives those λ with this suffix. Members of H∗
n ending in ds or dr may be obtained from

those in H∗
n−1 not ending in d by inserting a d directly prior to the final piece. Since λ ∈ H∗

n cannot

end in rr or rs, all members of H∗
n have thus been accounted for. Combining the previous cases then

implies an = 2an−1 + an− r+1
2

+ (an−1 − an−2), which completes the odd case.

Now assume r is even and let bn = |H∗
n| in this case. Upon verifying the initial conditions, one

may assume n ≥ r + 1. Then there are clearly 2an−1 members of H∗
n ending in either ss or d. Since

r even implies tilings in H∗
n are of even length, the final piece cannot be r. Thus, the remaining

possibilities are tilings of the form λ = αsβds or λ = αsβrs, where α and β are possibly empty and β

does not contain s. Upon removal of the rightmost d or r, it is apparent that there are an−1 − an−2

or an− r
2
− an− r

2
−1 possibilities, respectively, for tilings of the stated form, by subtraction. Combining

the preceding cases gives (5.8) and completes the proof. □

Using the preceding result, one can show the generating function f(x) =
∑

n≥1 anx
n for the r odd

case is given by

f(x) =
x

r+1
2 + xr

1− 3x+ x2 − x
r+1
2

,
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whereas g(x) =
∑

n≥1 bnx
n in the even case is given by

g(x) =
x

r
2 (1− x− x

r
2 )

1− 3x+ x2 − x
r
2 + x

r
2
+1

.

Remark 5.5. Letting r = 3 in (5.7) implies an = 3an−1 for n ≥ 4, with a3 = 4, which yields the

formula found in the previous section for det(1;T1, T3, . . . , T2n−1). Taking r = 4 in (5.8) implies bn

satisfies the third-order recurrence bn = 3bn−1 − bn−3 for n ≥ 5, with b2 = 1, b3 = 2, and b4 = 5.

Theorem 5.6. Let n ≥ 1 and r ≥ 3. Then

(5.9) det(1;T (r)
r , T

(r)
r+2, . . . , T

(r)
2n+r−2) =


(−1)n−1k(r)n , if r is odd;

(−1)n−1
n−1∑
i=0

a
(r/2)
i a

(r/2)
n−1−i, if r is even,

where k
(r)
n is determined by ∑

n≥1

k(r)n xn =
x+ x

r+1
2

1− 2x+ x2 − x
r+1
2 − xr

.

In particular, for r = 3, we have

det(1;T3, T5, . . . , T2n+1) = (−2)n−1
n−1∑
i=0

2−i−⌊i/2⌋
(
n− 1− i

⌊i/2⌋

)
.

Proof. Let Kn = K(r)
n denote the set of r-tribonacci tilings of length 2n in which squares occurring in

even-numbered positions may be marked and whose final piece is a marked square. Define the sign

of λ ∈ Kn by (−1)n−(# marked squares). Note that λ may be written as λ = λ1λ2 · · ·λℓ for some ℓ ≥ 1

such that λi = λ′
is for 1 ≤ i ≤ ℓ, where the terminal s is marked and λ′

i contains no marked squares.

Note that if λ′
i has length ki for each i, then there are

∏ℓ
i=1 T

(r)
r+ki−1 possibilities for the various λ′

i

once ℓ and the ki are specified. Furthermore, we have k1 + · · ·+ kℓ = 2n− ℓ with each ki odd. Since

ℓ may be identified as the number of cycles within a permutation that contributes a non-zero term in

the expansion of det(1;T
(r)
r , . . . , T

(r)
2n+r−2), it follows that the sum of the signs of all members of Kn is

given by det(1;T
(r)
r , . . . , T

(r)
2n+r−2).

We define a sign-changing involution of Kn by identifying the rightmost square that is in an even

but not in the terminal position and either marking it if it is unmarked or removing the marking from

it if marked. This involution is not defined on the subset K∗
n of Kn consisting of those tilings in which

squares (necessarily unmarked) occur only in odd-numbered positions. Note that each member of K∗
n

has sign (−1)n−1 since only the terminal square is marked. To determine |K∗
n|, we consider cases based

on the parity of r. If r is even, then members of K∗
n can contain only one square in addition to the

terminal square and thus must be of the form λ = λ′sλ′′s, where the sections λ′ and λ′′ contain no

squares. If 2i denotes the length of λ′, where 0 ≤ i ≤ n − 1, then considering all possible i implies

|K∗
n| =

∑n−1
i=0 a

(r/2)
i a

(r/2)
n−1−i, upon halving the length of each piece within a tiling.

Assume now r = 3 and let us find |K∗
n| in this case. The proof of (5.9) for general r odd, which we

outline briefly below, will follow similarly. We may clearly assume n ≥ 2. Let α = α0sα1 · · · sαps ∈ K∗
n,
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where only the terminal s is marked, p ≥ 0, and each section α0, . . . , αp contains no squares. Note

that if p ≥ 1, then α0 and αp must be of even length, with α1, . . . , αp−1 of odd length. Let ∆n denote

the set of tilings of length n using only square and tromino pieces such that the squares come in two

colors. Since

|∆n−1 ∪∆n−2| =
⌊n−1

2 ⌋∑
i=0

2n−1−3i

(
n− 1− 2i

i

)
+

⌊n−2
2 ⌋∑

i=0

2n−2−3i

(
n− 2− 2i

i

)

=
n−1∑
i=0

2n−1−i−⌊i/2⌋
(
n− 1− i

⌊i/2⌋

)
,

to establish the r = 3 case, it suffices to define a bijection h between K∗
n and ∆n−1 ∪∆n−2.

To do so, we will make use of the decomposition of α given above and consider each of the sections

αi separately, starting with α0 and first assuming p ≥ 1. Note that since α0 is of even length, it must

contain an even number of trominos and thus we have α0 = di1tdi2tdi3 · · · tdi2a+1 for some a ≥ 0, where

ij ≥ 0 for all 1 ≤ j ≤ 2a+ 1. Define

(α0)
′ = si12 s

i2
1 ts

i3
2 s

i4
1 t · · · s

i2a−1

2 si2a1 ts
i2a+1

2 ,

where s1 and s2 denote squares of two different colors. If 1 ≤ k ≤ p − 1, then the section αk of α

contains an odd number of trominos and thus is of the form αk = dj1tdj2t · · · dj2b−1tdj2b for some b ≥ 1,

where ji ≥ 0 for 1 ≤ i ≤ 2b. For each k, let

(sαk)
′ = sj1+1

1 sj2+1
2 (sj31 tsj42 ) · · · (sj2b−1

1 tsj2b2 ).

Next observe that the final section αp must contain an even number of trominos (possibly none). If

αp = dc for some c ≥ 0, then let (sαps)
′ = sc1. Otherwise, αp is of the form αp = dj1tdj2t · · · dj2btdj2b+1

where b ≥ 1, in which case we put

(sαps)
′ = sj1+1

1 sj2+1
2 (sj31 tsj42 ) · · · (sj2b−1

1 tsj2b2 )s
j2b+1

1 .

Let h(α) be given by h(α) = (α0)
′(sα1)

′ · · · (sαp−1)
′(sαps)

′, where the various tilings are concatenated.

Note that if αp contains no trominos, then h(α) ∈ ∆n−1, whereas if αp contains a tromino (hence, at

least two), then h(α) ∈ ∆n−2.

If p = 0, then α = α0s with α0 = di1t · · · di2a−1tdi2a , where a ≥ 1, and we set

h(α) = si12 s
i2
1 t · · · s

i2a−3

2 s
i2a−2

1 ts
i2a−1

2 si2a1 ∈ ∆n−2.

Note that in this case we obtain all members of ∆n−2 that do not contain an s2 directly following an

s1, which were missed in the preceding case.

To reverse h, first suppose δ ∈ ∆n−2 and consider the number of times that s2 directly follows s1

(which will correspond to p in the decomposition of h−1(δ) in this case). If this does not occur, then

simply reverse the last operation above. Otherwise, one may divide up δ accordingly into sections each

starting with a non-empty run of s1 directly followed by a non-empty run of s2 (with α0 comprising

any remaining initial tiles). Then by reversing the prime operation above in each of the cases, one can

reconstruct the sections α0, . . . , αp, and hence α. If δ ∈ ∆n−1, then proceed similarly except that we
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let αp = dc, where c denotes the length of a (possibly empty) terminal run of s1. This completes the

proof of the r = 3 case.

One may generalize the argument above when r = 3 to the general r odd case. Doing so implies

that the generating function for the number of members of K∗
n of the form α0s · · ·αps where p ≥ 0 is

given by

xp(
r−3
2 )+1 · x2p

(
1

1− 2x+ x2 − xr

)p+1

+ x(p−1)( r−3
2 )+r−1 · x2p

(
1

1− 2x+ x2 − xr

)p+1

=
(
x−(

r−1
2 ) + 1

)( x
r+1
2

1− 2x+ x2 − xr

)p+1

.

Summing over all p ≥ 0 implies∑
n≥1

|K∗
n|xn =

x+ x
r+1
2

1− 2x+ x2 − x
r+1
2 − xr

,

from which the general odd case follows since det(1;T
(r)
r , . . . , T

(r)
2n+r−2) = (−1)n−1|K∗

n|. □

Remark 5.7. Taking r = 3 in (5.9) gives∑
n≥1

det(1;T3, T5, . . . , T2n+1)x
n =

x− x2

1 + 2x+ x3
,

which yields the explicit formula stated above in this case. Note that one may find a formula for the

coefficients kn in terms of a double sum of binomial coefficients, upon considering cases on the parity

of n and whether r is congruent to 1 or 3 (mod 4), the details of which we leave to the reader.

Theorem 5.8. Let r ≥ 3 be odd and n ≥ r+3
2 . If r ≥ 7, then

(5.10) det(1;T
(r)
r+2, T

(r)
r+4, . . . , T

(r)
2n+r) =



(−1)n−q, if n = q(r − 1)/2;

2 · (−1)n−1−q, if n− 1 = q(r − 1)/2;

(−1)n−q, if n− 2 = q(r − 1)/2;

0, otherwise.

If r = 5, then

(5.11) det(1;T
(5)
7 , T

(5)
9 , . . . , T

(5)
2n+5) =

0, if n ≡ 0 (mod 2);

2 · (−1)
n−1
2 , if n ≡ 1 (mod 2).

If r = 3, then det(1;T5, T7, . . . , T2n+3) = 4 for all n ≥ 3.

Proof. Given n ≥ r+3
2 and 1 ≤ a ≤ n, let L(a)

n denote the set of sequences λ = (λ1, . . . , λa) of tilings

such that λi ∈ T (r)
2ℓi+1 for 1 ≤ i ≤ a where ℓ1 + · · · + ℓa = n and ℓi ≥ 1 for all i. Let λ ∈ L(a)

n have

sign (−1)n−a and Ln = ∪n
a=1L

(a)
n . From the definition of the determinant, the sum of the signs of the

members of Ln is seen to be given by det(1;T
(r)
r+2, . . . , T

(r)
2n+r). We define preliminarily an involution

on Ln as follows. Given λ ∈ L(a)
n where 1 ≤ a < n, let λ′ = (λ1, . . . , λa−1, λ

′
a, λ

′
a+1) be obtained from

λ by making the indicated replacement of the tiling λa in each case:
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• λa = αd, |α| ≥ 3 → λ′
a = α, λ′

a+1 = sd,

• λa = αss, |α| ≥ 3 → λ′
a = α, λ′

a+1 = sss,

• λa = αrs, |α| ≥ 3 → λ′
a = α, λ′

a+1 = srs,

• λa = αds, |α| ≥ 2 → λ′
a = αs, λ′

a+1 = ds,

• λa = αr, |α| ≥ 2 → λ′
a = αs, λ′

a+1 = r.

One may verify in each case that λ′ indeed belongs to L(a+1)
n .

Let U = Un be given by U := {(r, . . . , r), (r, . . . , r, ds), (sd, r, . . . , r), (sd, r, . . . , r, ds)} ∩ Ln. Note

that U may consist of up to four elements or be empty depending on n. We extend the prime operation

defined above to Ln − U by identifying the rightmost tiling ρi within ρ = (ρ1, ρ2, . . .) ∈ Ln − U such

that ρi (or possibly ρi, together with ρi−1) disqualifies ρ from membership in U and applying the

appropriate operation (or its inverse) from those defined above to ρi (or to ρi and ρi−1) so as to

obtain ρ′. For example, if n = 10, r = 5, and ρ = (sd, s2ds, d2s, r, r, ds) ∈ L(6)
10 , then ρ4 = r, taken

together with ρ3 = d2s, is the rightmost tiling that disqualifies ρ from belonging to U , which implies

ρ′ = (sd, s2ds, d2r, r, ds) ∈ L(5)
10 . One may verify that the operation ρ 7→ ρ′ defines a sign-changing

involution of Ln − U in all cases.

Thus, the determinant in question equals the sum of the signs of the members of U . If r ≥ 7,

then U is empty if n ̸≡ 0, 1, 2 mod
(
r−1
2

)
, whence the determinant is zero in these cases. Otherwise,

note that each tiling consisting of a single r contributes (−1)(r−3)/2 towards the sign. Thus, if n is

divisible by r−1
2 , then U consists of a single element (r, . . . , r) whose sign is (−1)q(r−3)/2 = (−1)n−q,

where n = q(r− 1)/2. If n ≡ 1 mod
(
r−1
2

)
, then U contains two elements each having sign (−1)n−1−q,

whereas if n ≡ 2 mod
(
r−1
2

)
, then U consists of a single element of sign (−1)n−q, where q is as given

above in the respective cases. If r = 5 and n ≥ 4, then U contains two elements of opposite sign, if n

is even, and of the same sign, if n is odd. If r = 3, then U contains four members each belonging to

L(n)
n for all n ≥ 3, which implies the last statement. □

Direct computations yield the following further expressions for the generating function of certain

r-tribonacci determinants.

Theorem 5.9. If r ≥ 3, then

(5.12)
∑
n≥1

det(1;T
(r)
0 , T

(r)
2 , . . . , T

(r)
2n−2)x

n =


(−x)

r+1
2 (−1− x)

1 + 3x+ x2 − (−x)
r+1
2 − (−x)

r+3
2 + xr

, if r is odd;

−(−x)
r
2
+1

1 + 3x+ x2 − 2(−x)
r
2 + 3(−x)

r
2
+1 + xr

, if r is even,

(5.13)
∑
n≥1

det(−1;T
(r)
0 , T

(r)
2 , . . . , T

(r)
2n−2)x

n =


x

r+1
2 (1− x)

1− 3x+ x2 − 3x
r+1
2 + x

r+3
2 − xr

, if r is odd;

x
r
2
+1

1− 3x+ x2 − 2x
r
2 + x

r
2
+1 + xr

, if r is even,
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and

(5.14)
∑
n≥1

det(1;T
(r)
r+2, T

(r)
r+3, . . . , T

(r)
n+r+1)x

n =
3x− 2x2 − (−x)r−2 − (−x)r−1 − 2(−x)r

1− 2x+ x2 + (−x)r−2 + (−x)r−1 + (−x)r
.

When r = 3 in (5.12), one gets
∑

n≥1 det(1;T0, T2, . . . , T2n−2)x
n = − x2(1+x)

1+3x+2x3 leading to the closed

form expression det(1;T0, T2, . . . , T2n−2) = (−1)n−1(an−2 − an−3) for n ≥ 3 where

am =

⌊m
3 ⌋∑

i=0

(
m− 2i

i

)
2i3m−3i, m ≥ 0,

which was not obtained previously. If r = 3 in (5.13), one gets∑
n≥1

det(−1;T0, T2, . . . , T2n−2)x
n =

x2(1− x)

1− 3x− 2x2
,

which implies the prior explicit formula in this case. Finally, when r = 3 in (5.14), we have∑
n≥1

det(1;T5, T6, . . . , Tn+4)x
n =

4x− 3x2 + 2x3

1− 3x+ 2x2 − x3
,

which leads to the explicit formula for det(1;T5, T6, . . . , Tn+4) stated in Theorem 3.2 above.

For our next result, we generalize a previous tribonacci determinant identity in terms of a different

extension of Tn. Let S
(r)
n for r ≥ 3 odd be defined recursively by S

(r)
n = S

(r)
n−1 + S

(r)

n− r+1
2

+ S
(r)
n−r for

n ≥ r, with S
(r)
0 = · · · = S

(r)
r−2 = 0 and S

(r)
r−1 = 1. Let S(r)

n denote the set of tilings of length n using

pieces of size 1, r+1
2 , or r. Note that S

(r)
n = |S(r)

n−r+1| for n ≥ r − 1 and that S
(r)
n reduces to Tn when

r = 3.

We have the following determinant identity involving S
(r)
n .

Theorem 5.10. If r ≥ 3 is odd, then

(5.15) det
(
− 1;S

(r)
r−1
2

, S
(r)
r+1
2

, . . . , S
(r)

n+ r−3
2

)
=

⌊ 2n−r−1
r ⌋∑

i=0

(
2n− r − 1− (r − 1)i

i

)
, n ≥ r + 1

2
.

Proof. Let Pn,k denote the set of sequences of tilings λ = (λ1, . . . , λk) such that λi uses s, r+1
2 , or r

pieces and has length ℓi, where ℓ1+ · · ·+ ℓk = n−
(
r+1
2

)
k and ℓi ≥ 0 for all i. Let Pn = ∪n

k=1P
(k)
n and

note that the expansion of det
(
− 1;S

(r)
r−1
2

, . . . , S
(r)

n+ r−3
2

)
gives |Pn|, by the definitions. Let Mn = M(r)

n

denote the set of marked members of S(r)
n wherein pieces of length r+1

2 may be marked and ending in

such a marked piece. Given λ = (λ1, λ2, . . .) ∈ Pn, let λ
′ ∈ Mn be obtained from λ by concatenating

the λi and inserting a marked tile of length r+1
2 directly after each λi, including the last. The mapping

λ 7→ λ′ is a bijection and thus |Mn| = |Pn|.
Since members of Mn are synonymous with tilings in S(r)

n− r+1
2

in which the r+1
2 tiles may be marked,

the set Mn has the same cardinality as the subset of T (r)
2n−r−1 whose members contain no dominos,

which we will denote by T̃ (r)
2n−r−1. To realize this, first note that r odd implies that members of

T̃ (r)
2n−r−1 must contain an even number of tiles altogether. Thus, one may group each adjacent pair of
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consecutive tiles and make the following replacements: (i) ss by s, (ii) rr by r, (iii) sr by r+1
2 , (iv) rs

by
(
r+1
2

)′
(indicating a marked tile of length r+1

2 ). This yields a bijection between T̃ (r)
2n−r−1 and Mn

and thus det
(
− 1;S

(r)
r−1
2

, . . . , Sn+ r−3
2

)
= |T̃ (r)

2n−r−1|, which implies the result. □

To extend the first formula in Theorem 3.2 above, we need to consider the generalized Fibonacci

numbers F
(r)
n defined recursively by F

(r)
n = F

(r)
n−1 + F

(r)
n−2 + · · · + F

(r)
n−r for n ≥ r, with F

(r)
0 = F

(r)
1 =

· · · = F
(r)
r−2 = 0 and F

(r)
r−1 = 1. See [8] and [4, Section 3.4], where they appear in a reparameterized

form. Note that for n ≥ r, the number F
(r)
n counts tilings of length n − r + 1 where any piece of

length up to r may be used. F
(r)
n coincides with Fn when r = 2 and with Tn when r = 3. We have

the following determinant formula involving F
(r)
n .

Theorem 5.11. If r ≥ 2, then

(5.16) det(−1;F
(r)
0 , F

(r)
1 , . . . , F

(r)
n−1) =

⌊
2n + 2r − 2

2r+1 − 2

⌋
, n ≥ 1.

Proof. Given n ≥ r, let Un = U (r)
n denote the set of tilings of length n−r where pieces of any length up

to r may be used and r-mino pieces may be marked. Let un = |Un| for n ≥ r, with u1 = · · · = ur−1 = 0.

By similar reasoning as before, we have that un = det(−1;F
(r)
0 , . . . , F

(r)
n−1) for all n ≥ 1. We first show

(5.17) un = 2un−1 +
(−1)n+(r−1)⌊n/r⌋

2

(
(−1)⌊n/r⌋ + (−1)⌊(n+r−2)/r⌋

)
, n ≥ 2.

Note that (5.17) is seen to hold for 2 ≤ n ≤ r + 1, by the stipulated initial values and since ur =

ur+1 = 1, so we may assume n ≥ r+2. There are clearly un−1 members of Un that end in s, so let U∗
n

denote the subset of Un whose members do not end in s. To complete the proof of (5.17), we define a

“near” bijection f between U∗
n and Un−1.

Let λ ∈ U∗
n. Assume that λ contains at least one kind of piece other than a marked r-mino and

let z denote the rightmost such piece. If z is a square, then λ ∈ U∗
n implies z must be followed by a

marked r-mino. In this case, we delete z and remove the mark from the marked r-mino that directly

follows z to obtain f(λ). If z is not a square, then we shorten z by one unit to obtain f(λ). To reverse

f , consider the position of the rightmost piece that is not a marked r-mino and either lengthen it by

one unit if it is not an unmarked r-mino or change to a marked r-mino and insert a square directly

prior if it is. Note that if n ̸≡ 0, 1 (mod r), then f is in fact a bijection between U∗
n and Un−1. If

n ≡ 0 (mod r), then f fails to be defined for the tiling that consists of a sequence of marked r-minos,

whence |U∗
n| = |Un−1|+ 1 in this case. If n ≡ 1 (mod r), then f−1 is not defined for the same type of

tiling of length n− 1, whence |U∗
n| = |Un−1| − 1. Therefore, we have un = 2un−1 +1 if n ≡ 0 (mod r),

un = 2un−1 − 1 if n ≡ 1 (mod r) and un = 2un−1 otherwise. Combining these various cases gives

recurrence (5.17).

We now compute the generating function of un. Let f(x) =
∑

n≥1 unx
n. Multiplying both sides of

(5.17) by xn, summing over n ≥ 2, and considering cases mod r for n yields

f(x) =
xr(1− x)

(1− 2x)(1− xr)
=

1 +
∑
i≥1

2i−1xi

∑
i≥1

xri

 .
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Computing the coefficient of xn in this convolution gives

un =

1 + 2r−1 + 22r−1 + · · ·+ 2(m−1)r−1, if n = rm;

2q−1 + 2r+q−1 + · · ·+ 2(m−1)r+q−1, if n = rm+ q, with 1 ≤ q ≤ r − 1.

Thus, we have for all n ≥ 1,

un =


2rm−1 + 2r−1 − 1

2r − 1
, if n = rm;

2q−1

(
2rm − 1

2r − 1

)
, if n = rm+ q, with 1 ≤ q ≤ r − 1.

The case of (5.16) when n is divisible by r now follows immediately from the first case of the last

formula. On the other hand, if n = rm+ q, then 2r+1 ≡ 2 (mod (2r+1 − 2)) implies

2n = 2rm+q ≡ 2q (mod (2r+1 − 2)),

and thus

2q−1

(
2rm − 1

2r − 1

)
=

2n − 2q

2r+1 − 2
=

⌊
2n

2r+1 − 2

⌋
=

⌊
2n + 2r − 2

2r+1 − 2

⌋
,

as 2q + 2r − 2 < 2r+1 − 2 since 1 ≤ q ≤ r − 1. This yields formula (5.16) in the case when n is not

divisible by r, which completes the proof. □

Note that the r = 2 case of (5.16) gives det(−1;F0, F1, . . . , Fn−1) =
⌊
2n+2
6

⌋
for n ≥ 1, with (5.16)

reducing to the first formula in Theorem 3.2 when r = 3.

Remark 5.12. The arguments used to establish (5.1) and (5.3) above show further for r ≥ 2 that

(5.18) det(1;F
(r)
0 , F

(r)
1 , . . . , F

(r)
n−1) = (−1)n−1F

(r−1)
n−2 , n ≥ r − 1,

and

(5.19) det(1;F
(r)
r−1, F

(r)
r , . . . , F

(r)
n+r−2) = (−1)n−1Q

(r)
n+r−1, n ≥ 1,

where Q
(r)
n = Q

(r)
n−2 + Q

(r)
n−3 + · · · + Q

(r)
n−r for n ≥ r, with Q

(r)
0 = 1 and Q

(r)
1 = · · · = Q

(r)
r−1 = 0. Note

that Q
(r)
n reduces to Pn when r = 3.

We still seek a combinatorial proof of the penultimate identity in Theorem 3.2 above. We conclude

by providing a bijective proof of the underlying recurrence for the second identity in Theorem 3.2.

Theorem 5.13. The sequence an = det(−1;T0, T2, . . . , T2n−2) satisfies the recurrence an = 3an−1 +

2an−2 for n ≥ 4, with a2 = 1 and a3 = 2.

Proof. Let r stand here for a 4-mino and let us refer to a 4-mino as even if its final section corresponds

to an even-numbered position. Let Vn denote the set of tilings of length 2n that use pieces from

{s, d, t, r} and end in r, where all r pieces are even. Since T2i−2 enumerates all tribonacci tilings of

length 2i− 4, it is seen upon considering the number of 4-minos that det(−1;T0, . . . , T2n−2) gives the

cardinality of Vn. Members of Vn may be regarded as tilings of length 2n − 4 which use {s, d, t, r}
such that all r are even. Let an = |Vn| for n ≥ 2. We establish the recurrence for an where n ≥ 4, the
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initial conditions being easily verified. First note that there are clearly 2an−1 members of Vn ending

in d or ss, and 2an−2 that end in r or ts. Since tilings in Vn cannot end in rs, to complete the proof,

we must show that there are an−1 tilings that end in ds or t. Consider replacing, within members of

Vn that end in t, the final t with s. Let Ṽn and V∗
n denote the subsets of Vn whose members end in ds

or do not end in s, respectively. Then we can complete the proof by defining a bijection between Ṽn

and V∗
n−1.

In order to do so, first note that λ ∈ Ṽn implies λ = αsdis or λ = αtdis, where i ≥ 1 and α

is possibly empty. Observe no other forms for λ are possible since an r cannot appear between the

rightmost two tiles of odd length within any member of Vn. To define the bijection, we treat separately

the i = 1, i = 2, and i ≥ 3 cases as follows:

• λ = αsds → λ′ = αd,

• λ = αtds → λ′ = αst,

• λ = αsd2s → λ′ = αr,

• λ = αtd2s → λ′ = αsdt,

• λ = αsdis, i ≥ 3 → λ′ = αtdi−3t,

• λ = αtdis, i ≥ 3 → λ′ = αsdi−1t.

Considering the various cases, one may verify that the mapping λ 7→ λ′ furnishes the desired bijection

between Ṽn and V∗
n−1. □
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