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ON THE CONVERGENCE CRITERION FOR BRANCHED CONTINUED FRACTIONS

WITH INDEPENDENT VARIABLES

In this paper, we consider the problem of convergence of an important type of multidimensional

generalization of continued fractions, the branched continued fractions with independent variables.

These fractions are an efficient apparatus for the approximation of multivariable functions, which

are represented by multiple power series. We have established the effective criterion of absolute con-

vergence of branched continued fractions of the special form in the case when the partial numerators

are complex numbers and partial denominators are equal to one. This result is a multidimensional

analog of the Worpitzky’s criterion for continued fractions. We have investigated the polycircular

domain of uniform convergence for multidimensional C-fractions with independent variables in the

case of nonnegative coefficients of this fraction.
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INTRODUCTION

The problem of convergence of continued fractions whether their multidimensional gen-

eralizations, branched continued fractions, in particular, branched continued fractions with

independent variables, is that on the basis of information about coefficients fraction to con-

clude its convergence or divergence. This class fractions was proposed by D.I. Bodnar [6], in

the study of the convergence of branched continued fractions with positive elements for es-

tablishing a analog of the Seidel convergence criteria for continued fractions. In the thesis by

Kh.Yo. Kuchminska [7] established the estimate of approximation of function by such fractions

under the conditions of the type of Śleszyński-Pringsheim in the case of the two branches of

branching. Further study of the convergence of branched continued fractions with indepen-

dent variables, in particular, branched continued fraction of the special form

1 +
N

∑
i1=1

ci(1)
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∑
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ci(2)

1 +

i2
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ci(3)

1 +
· · · , (1)

where N is fixed natural number, ci(k), i(k) ∈ Ik, k ≥ 1, are complex numbers,

Ik =
{

i(k) : i(k) = (i1, i2, . . . , ik), 1 ≤ ip ≤ ip−1, 1 ≤ p ≤ k, i0 = N
}
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denotes set of multiindices, k ≥ 1, and branched continued fraction of the special form which

is reciprocal to it

1

1 +

N

∑
i1=1

ci(1)

1 +

i1

∑
i2=1

ci(2)

1 +

i2

∑
i3=1

ci(3)

1 +
· · · (2)

received a continuation in the papers by O.E. Baran [3], where proved that (1) converges abso-

lutely, if there exists the real numbers 0 ≤ qi(k) < 1 or 0 < qi(k) ≤ 1, i(k) ∈ Ik, k ≥ 1, such

that

|ci(k)| ≤ i−1
k−1gi(k)(1 − gi(k−1)), gi(0) = 0, i(k) ∈ Ik, k ≥ 1, (3)

and by O.E. Baran [2], where investigated a convergence of (2) for

|ci(k)| ≤ i−1
k−1ρ(1 − ρ), 0 < ρ ≤ 2−1, i(k) ∈ Ik, k ≥ 1. (4)

The next stage of the study of convergence of branched continued fractions with independent

variables associated with the paper by T.M. Antonova and D.I. Bodnar [1], where proved that

(1) converges absolutely for

|ci(k)| ≤ ti(k)

(

1 −
ik

∑
ik+1=1

ti(k+1)

)

, ti(k) ≥ 0,
ik

∑
ik+1=1

ti(k+1) < 1, i(k) ∈ Ik, k ≥ 1. (5)

In addition, we note the paper by Kh.Yo. Kuchminska [8], where was proved a convergence of

(2) with the elements that satisfy (4) in a slightly more general form than it was done in [2],

and the paper by D.I. Bodnar and M.M. Bubnyak [5], where was investigated a convergence of

one-periodic branched continued fractions of a special form with the elements that lie in disks

whose radius form a geometric sequences with common ratio 4−1.

We remark that the convergence criteria of branched continued fractions of the special form

(1) and (2) established in the above mentioned works are multidimensional analogs of the

Worpitzky’s criterion for continued fractions [9].

Our research continues to establish the convergence criteria for the branched continued

fractions with independent variables.

1 BRANCHED CONTINUED FRACTIONS OF THE SPECIAL FORM

Let

fn = 1 +
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+

in−1

∑
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ci(n)

1

be the nth approximant of (1), n ≥ 1.

We shall prove the following result.

Theorem 1. Let for the elements ci(k), i(k) ∈ Ik, k ≥ 1, of branched continued fraction of the

special form (1) hold the following conditions

|ci(k)| ≤ q
ik

i(k)
q

ik−1
i(k−1)

(1 − qi(k−1)), i(k) ∈ Ik, k ≥ 1, (6)

where qi(0) and qi(k), i(k) ∈ Ik, k ≥ 1, are constants which satisfy one or the other of the

conditions

0 ≤ qi(0) < 1, 0 ≤ qi(k) < 1, i(k) ∈ Ik, k ≥ 1, (7)
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or

0 < qi(0) ≤ 1, 0 < qi(k) ≤ 1, i(k) ∈ Ik, k ≥ 1. (8)

Then

(A) the branched continued fraction of special form (1) converges absolutely;

(B) the values of branched continued fraction of the special form (1) and of its approximants

are in the disk

|z − 1| ≤ 1 − qN
i(0); (9)

(C) the disk (9) is the "best" set of values of branched continued fraction of the special form

(1) and of its approximants for qi(k) = 2−1, i(k) ∈ Ik, k ≥ 1.

Proof. We show that branched continued fraction of the special form
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is a majorant of (1).

For the tails of (1) we introduce the following notation:

Q
(s)
i(s)

= 1, i(s) ∈ Is, s ≥ 1,

Q
(s)
i(k)

= 1 +
ik

∑
ik+1=1

ci(k+1)

1 +

ik+1
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ik+2=1

ci(k+2)
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+

is−1

∑
is=1

ci(s)

1
, i(k) ∈ Ik, 1 ≤ k ≤ s − 1, s ≥ 2.

It is clear that the following recurrence relations hold

Q
(s)
i(k)

= 1 +
ik

∑
ik+1=1

ci(k+1)

Q
(s)
i(k+1)

, i(k) ∈ Ik, 1 ≤ k ≤ s − 1, s ≥ 2. (11)

Let s be arbitrary integer number, moreover s ≥ 0. Using relations (11), by induction on k

for arbitrary of multiindex i(k) ∈ Ik we show that the following inequalities are valid

|Q
(s)
i(k)

| ≥ Q̃
(s)
i(k)

, i(k) ∈ Ik, 1 ≤ k ≤ s, (12)

where Q̃
(s)
i(k)

, i(k) ∈ Ik, 1 ≤ k ≤ s, denote the tails of (10), and

Q̃
(s)
i(k)

> qik

i(k)
, i(k) ∈ Ik, 1 ≤ k ≤ s, (13)

if the conditions (7) hold,

Q̃
(s)
i(k)

≥ q
ik

i(k)
, i(k) ∈ Ik, 1 ≤ k ≤ s, (14)

if the conditions (8) hold.

It is clear that for k = s, i(s) ∈ Is, relations (12)–(14) hold. By induction hypothesis that

(12)–(14) hold for k = p + 1, p + 1 ≤ s, i(p + 1) ∈ Ip+1, we prove (12)–(14) for k = p, i(p) ∈ Ip.
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Indeed, use of relations (11) for arbitrary of multiindex i(p) ∈ Ip lead to

|Q
(s)
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| ≥ 1 −
ip
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ip

∑
ip+1=1

q
ip+1

i(p+1)
q

ip+1−1

i(p)
(1 − qi(p))

Q̃
(s)
i(p+1)

= Q̃
(s)
i(p)

.

From (13) and (14) it follows that Q̃
(s)
i(p+1)

6= 0. Therefore, replacing q
ip+1

i(p+1)
by Q̃

(s)
i(p+1)

, inequali-

ties (13) and (14) are obtained for k = p, i(p) ∈ Ip.

Now, from (12)–(14) it follows that Q
(s)
i(k)

6= 0 and Q̃
(s)
i(k)

6= 0 for all indices. Applying the

method suggested in [4, p. 28] and recurrence relations (11), for m > n ≥ 1 we obtain
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where f̃k, k ≥ 1, denote the approximants of (10).

Hence,

| fm − fn| ≤ f̃n − f̃m, m > n ≥ 1,

and
k

∑
r=1

| fr+1 − fr | ≤
k

∑
r=1

( f̃r − f̃r+1) = −
N
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(1 − qi(0))− f̃k+1, k ≥ 1. (15)

From this it follows that the sequence { f̃k} is a monotonically decreases. Furthermore, from

(13) and (14) for arbitrary k ≥ 1 we have

f̃k = 1 −
N

∑
i1=1

qi1
i(1)

qi1−1
i(0)

(1 − qi(0))

Q̃
(k)
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≥ qN
i(0),

i.e. the sequence { f̃k} is bounded below. Therefore, the limit

f̃ = lim
k→∞

f̃k

exists and is a finite. Now, from (15) for k → ∞ it follows that (1) converges absolutely. This

proves part (A).

Next we prove part (B) and (C). Using (6), (13) and (14) for arbitrary k ≥ 1 we have
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Therefore, the disk (9) includes the set of value of (1). We show that it coincides with (9) for

qi(k) = 2−1, i(k) ∈ Ik, k ≥ 1.

Let c be an arbitrary complex number such that |c| < 1 − qN
i(0)

. Then for the approximant

f1 of (1), where the ci(1) = c(1 − qN
i(0)

)−1qi1−1
i(0)

(1 − qi(0)), 1 ≤ i1 ≤ N, and the ci(k), i(k) ∈ Ik,

k ≥ 2, are arbitrary complex numbers that satisfy (6), we obtain f1 = 1 + c. If |c| = 1 − qN
i(0)

then (1), where the ci(1) = 2−i1c(1 − qN
i(0)

)−1qi1−1
i(0)

(1 − qi(0)), 1 ≤ i1 ≤ N, and the ci(k) = −4−ik ,

i(k) ∈ Ik, k ≥ 2, satisfy (6) for qi(k) = 2−1, i(k) ∈ Ik, k ≥ 1, get value 1 + c. We show it.

Indeed, in the above mentioned values of elements of (1) by equivalent transformation

ρi(k) = 2ik−1, i(k) ∈ Ik, k ≥ 1, [4, pp. 29–33] we can write it in the form

1 +
N

∑
i1=1

2−1c(1 − qN
i(0)

)−1qi1−1
i(0)

(1 − qi(0))

2i1−1 −

i1

∑
i2=1

2i1−i2−2

2i2−1 −

i2

∑
i3=1

2i2−i3−2

2i3−1 −
· · · . (16)

To prove that the value of (16) is equal to 1 + c it is sufficient to prove the following relations

f (k) = 2k−1 −
k

∑
i2=1

2k−i2−2

2i2−1 −

i2

∑
i3=1

2i2−i3−2

2i3−1 −

i3

∑
i4=1

2i3−i4−2

2i4−1 −
· · · = 2−1, 1 ≤ k ≤ N. (17)

By induction on k we show that the relations (17) are valid.

It is easy to shown that for k = 1 relation (17) holds. By induction hypothesis that (17) hold

for k = n − 1, n ≥ 2, we prove (17) for k = n. We have

f (n) = 2n−1 −
2n−3

f (1)
−

2n−4

f (2)
− . . . −

1

f (n−2)
−

2−1

f (n−1)
−

2−2

f (n)
. (18)

Since f (k) = 2−1, 1 ≤ k ≤ n − 1, n ≥ 2, and

2n−1 − 2n−2 − 2n−3 − . . . − 20 = 2n−1 − 2n−2 21−n − 1

2−1 − 1
= 1,

than from (18) we obtain f (n) = 2−1. From this it follows that the value of (16) is equal to 1 + c.

Finally, it follows from concept of equivalent transformation [4, pp. 29–33] that the value of (1)

is also equal to 1 + c.

It is now a simple matter to prove the following theorem.

Theorem 2. Let for the elements ci(k), i(k) ∈ Ik, k ≥ 1, of branched continued fraction of the

special form (2) hold the conditions (6), where qi(0) and qi(k), i(k) ∈ Ik, k ≥ 1, are constants

which satisfy one or the other of the conditions

0 < qi(0) ≤ 1, 0 ≤ qi(k) < 1, i(k) ∈ Ik, k ≥ 1, (19)

or

0 < qi(0) ≤ 1, 0 < qi(k) ≤ 1, i(k) ∈ Ik, k ≥ 1. (20)
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Then

(A) the branched continued fraction of special form (2) converges absolutely;

(B) the values of the branched continued fraction of the special form (2) and of its approxi-

mants are in the disk
∣

∣

∣

∣

∣

z −
1

qN
i(0)

(2 − qN
i(0)

)

∣

∣

∣

∣

∣

≤
1 − qN

i(0)

qN
i(0)

(2 − qN
i(0)

)
; (21)

(C) the disk (21) is the "best" set of values of branched continued fraction of the special form

(2) and of its approximants for qi(k) = 2−1, i(k) ∈ Ik, k ≥ 1.

Proof. By analogous considerations as in the proof of Theorem 1, it is easy to shown that a

majorant of (2) is the following branched continued fraction of the special form

1
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∑
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qi1
i(1)
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1 −
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1 −
· · · . (22)

From the fact that the approximants of (22) form the sequence, which is a monotonically in-

creasing and bounded above, it follows that (2) converges absolutely.

We write the kth approximant of (2) in the form

z =



1 +
N

∑
i1=1

ci(1)

Q
(k−1)
i(1)





−1

=
1

1 + w
.

Using relations (19), (20) and conditions (6), we have

|w| ≤
N
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|ci(1)|

|Q
(k−1)
i(1)

|
≤

N

∑
i1=1

qi1
i(1)
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(1 − qi(0))

Q̃
(k−1)
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≤ 1 − qN
i(0).

Therefore,
∣

∣

∣

∣

1 − z

z

∣

∣

∣

∣

= |w| ≤ 1 − qN
i(0),

from where we obtain (21).

Since 0 < qi(0) ≤ 1 then (21) contains the point 1. In view of proof part (C) of Theorem 1,

to show that (21) is the "best" set, it suffices to note that values of the particular branched

continued fraction of special form

z =
1

1 +

N

∑
i1=1

2−1c(1 − qN
i(0)

)−1qi1−1
i(0)

(1 − qi(0))

2i1−1 −

i1

∑
i2=1

2i1−i2−2

2i2−1 −

i2

∑
i3=1

2i2−i3−2

2i3−1 −
· · · =

1

1 + c
.

fill the disk (21) as c ranges over the set |c| ≤ 1 − qN
i(0)

.

2 MULTIDIMENSIONAL C-FRACTIONS WITH INDEPENDENT VARIABLES

In this section we have two convergence criteria for the multidimensional C-fractions with

independent variables. Their proof is a simple application of Theorems 1 and 2 respectively.



126 DMYTRYSHYN R.I.

Corollary 2.1. Let ai(k), i(k) ∈ Ik, k ≥ 1, be nonnegative numbers such that

ai(k) ≤ q
ik

i(k)
q

ik−1
i(k−1)

(1 − qi(k−1)), i(k) ∈ Ik, k ≥ 1, (23)

where qi(0) and qi(k), i(k) ∈ Ik, k ≥ 1, are constants which satisfy one or the other of the

conditions (7) or (8). Then the multidimensional C-fraction with independent variables

1 +
N

∑
i1=1

ai(1)zi1

1 +

i1

∑
i2=1

ai(2)zi2

1 +

i2

∑
i3=1

ai(3)zi3

1 +
· · ·

converges uniformly in the domain

G =
{

z = (z1, z2, . . . , zN) ∈ C
N : |zk| < 1, 1 ≤ k ≤ N

}

. (24)

Corollary 2.2. Let ai(k), i(k) ∈ Ik, k ≥ 1, be nonnegative numbers such that satisfy the inequal-

ities (23), where qi(0) and qi(k), i(k) ∈ Ik, k ≥ 1, are constants which satisfy one or the other of

the conditions (19) or (20). Then the multidimensional C-fraction with independent variables

1

1 +

N

∑
i1=1

ai(1)zi1

1 +

i1

∑
i2=1

ai(2)zi2

1 +

i2

∑
i3=1

ai(3)zi3

1 +
· · ·

converges uniformly in the domain (24).

CONCLUSION

The convergence criteria (6), as well as (3) and (5), is an effective criterion for investigating

the convergence of branched continued fractions with independent variables.
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Дмитришин Р.I. Про критерiй збiжностi гiллястих ланцюгових дробiв з нерiвнозначними змiнни-

ми // Карпатськi матем. публ. — 2017. — Т.9, №2. — C. 120–127.

Дослiджується питання збiжностi багатовимiрних узагальнень неперервних дробiв — гiл-

лястих ланцюгових дробiв з нерiвнозначними змiнними. Цi дроби є ефективним апаратом при

наближеннi функцiй, заданих кратними степеневими рядами. Встановлено ефективнi умови

абсолютної збiжностi гiллястих ланцюгових дробiв з нерiвнозначними змiнними у випадку ко-

ли частиннi чисельники комплекснi числа, а частиннi знаменники дорiвнюють одиницi. Отри-

маний результат є багатовимiрним аналогом критерiю Ворпiтського для неперервних дробiв.

Дослiджено полiкругову область рiвномiрної збiжностi для багатовимiрних C-дробiв з нерiв-

нозначними змiнними у випадку невiд’ємних коефiцiєнтiв дробу.

Ключовi слова i фрази: збiжнiсть, абсолютна збiжнiсть, рiвномiрна збiжнiсть, гiллястий лан-

цюговий дрiб з нерiвнозначними змiнними, багатовимiрний C-дрiб з нерiвнозначними змiнни-

ми.


