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THE STRUCTURE OF SOLUTIONS OF THE MATRIX LINEAR UNILATERAL

POLYNOMIAL EQUATION WITH TWO VARIABLES

We investigate the structure of solutions of the matrix linear polynomial equation

A(λ)X(λ) + B(λ)Y(λ) = C(λ), in particular, possible degrees of the solutions. The solving of

this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix

coefficients in triangular forms with invariant factors on the main diagonals, to which the matri-

ces A(λ), B(λ) and C(λ) are reduced by means of semiscalar equivalent transformations. On the

basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solu-

tions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree

are established. An effective method for constructing minimal degree solutions of the equations is

suggested. In this article, unlike well-known results about the estimations of the degrees of the solu-

tions of the matrix polynomial equations in which both matrix coefficients are regular or at least one

of them is regular, we have considered the case when the matrix polynomial equation has arbitrary

matrix coefficients A(λ) and B(λ).
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INTRODUCTION

Let F be a field and F [λ] be a polynomial ring over F . The matrix linear polynomial

equations

A(λ)X(λ) + B(λ)Y(λ) = C(λ), (1)

A(λ)X(λ) + Y(λ)B(λ) = C(λ), (2)

where A(λ), B(λ) and C(λ) are known, X(λ) and Y(λ) are unknown m × m matrices over

ring F [λ], find application in the dynamical systems theory, the optimal control theory and in

other areas [6, 7, 12–14].

It is clear, that if equations (1) and (2) are solvable, then they have solutions of unlimited

on top degrees. Therefore, when we describe the solutions of such equations, it is important

to establish their minimal degrees. Some estimations of the degrees of the solutions of the

matrix polynomial equation (2) are known in [1, 5, 9]. In [1], it has been established that if in

the matrix polynomial equation (2) both matrices A(λ), B(λ) are regular, then there exists a

solution X(λ), Y(λ), such that

degX(λ) < degB(λ), degY(λ) < degA(λ) (3)
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and it is unique if and only if

degC(λ) ≤ degA(λ) + degB(λ)− 1 and (det A(λ), det B(λ)) = 1.

In [5], this result has been extended for the matrix equation (2) if at least one of the matrices

A(λ) or B(λ) is regular. We don’t know similar estimates of the degrees of the solutions of the

matrix polynomial equation (1).

In [2, 8], the matrix linear unilateral and bilateral equations in the form (1) and (2) over

other domains have been studied.

In [3], we have obtained some bounds of the degrees of the solutions of the matrix polyno-

mial equation (1) with singular matrix coefficients. In this paper, we have continued studing

the structure of solutions of this matrix polynomial equation. The triple of matrices A(λ), B(λ)

and C(λ) can be simultaneously reduced to triangular forms TA(λ), TB(λ) and TC(λ) with in-

variant factors on main diagonals by means of semiscalar equivalence transformations [10,11].

Following this, the bounds of the degrees of the solutions of the matrix polynomial equation

(1) have been pointed out. Necessary and sufficient conditions for the uniqueness of a solution

with a minimal degree have been established. There is also suggested an effective method for

constructing minimal degree solutions of such matrix polynomial equations.

1 PRELIMINARY RESULTS

We denote the ring of m × m matrices over F [λ] by M(m,F [λ]), groups of invertible

matrices over F and F [λ] by GL(m,F ) and GL(m,F [λ]), respectively.

It is well known, that every matrix A(λ) ∈ M(m,F [λ]), rankA = r, is equivalent to the

Smith normal form SA(λ), that is,

SA(λ) = U(λ)A(λ)V(λ) = diag(µA
1 (λ), . . . , µA

r (λ), 0, . . . , 0),

where U(λ), V(λ) ∈ GL(m,F [λ]), µA
i (λ) | µA

i+1(λ), i = 1, . . . , r − 1. The polynomials µA
i (λ)

are called the invariant factors of matrix A(λ).

Definition 1 ( [10, 11]). Collection of polynomial matrices

A1(λ), . . . , Ak(λ)

is called semiscalar equivalent to the collection of polynomial matrices

B1(λ), . . . , Bk(λ),

where Ai(λ), Bi(λ) ∈ M(m,F [λ]), if there exist matrices Q ∈ GL(m,F ) and Ri(λ) ∈

GL(m,F [λ]) such that Bi(λ) = QAi(λ)Ri(λ), i = 1, . . . , k.

Theorem 1 ( [10, 11]). Collection of nonsingular polynomial matrices

A1(λ), . . . , Ak(λ), Ai(λ) ∈ M(m,F [λ]),

i = 1, . . . , k, is semiscalar equivalent to the collection of triangular matrices

TA1(λ), . . . , TAk(λ),
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that is, there exist an upper unitriangular matrix Q ∈ GL(m,F ) and invertible matrices RAi(λ) ∈

GL(m,F [λ]) such that

TAi(λ) = QAi(λ)RAi(λ) =

∥∥∥∥∥∥∥∥∥∥∥

µ
Ai
1 (λ) 0 · · · 0

t
(i)
21 (λ)µ

Ai
1 (λ) µ

Ai
2 (λ) · · · 0

· · · · · · · · · · · ·

t
(i)
m1(λ)µ

Ai
1 (λ) t

(i)
m2(λ)µ

Ai
2 (λ) · · · µ

Ai
m (λ)

∥∥∥∥∥∥∥∥∥∥∥

, (4)

where deg t
(i)
pq (λ) < deg µ

Ai
p (λ) − deg µ

Ai
q (λ), if deg µ

Ai
p (λ) > deg µ

Ai
q (λ) and t

(i)
pq (λ) ≡ 0, if

µ
Ai
p (λ) = µ

Ai
q (λ), for all p, q = 1, . . . , m, p > q; i = 1, . . . , k.

Triangular form TAi(λ) is called standard form of polynomial matrix Ai(λ) with respect

to semiscalar equivalence. Note that the matrix TAi(λ) may be written in the form TAi(λ) =

Ti(λ)S
Ai(λ), where Ti(λ) is a lower unitriangular matrix, SAi(λ) is the Smith normal form of

matrix Ai(λ).

It should be noted that this theorem holds if the field F is infinite or if it is finite but
k

∑
i=1

si < |F |, where |F | is the number of elements of finite field F , si = deg det Ai(λ), i =

1, . . . , k.

2 SOLUTIONS OF MINIMAL DEGREE OF MATRIX POLYNOMIAL EQUATIONS

By Theorem 1, the triple of nonsingular polynomial matrices A(λ), B(λ),

C(λ) ∈ M(m,F [λ]) from equation (1) is semiscalar equivalent to the triple of triangular poly-

nomial matrices TA(λ), TB(λ), TC(λ) in standard form, that is,

TA(λ) = QA(λ)RA(λ), TB(λ) = QB(λ)RB(λ), TC(λ) = QC(λ)RC(λ),

where Q ∈ GL(m,F ), RA(λ), RB(λ), RC(λ) ∈ GL(m,F [λ]).

Matrices TA(λ), TB(λ) and TC(λ) have the form (4), that is,

TA(λ) =

∥∥∥∥∥∥∥∥∥∥∥

µA
1 (λ) 0 · · · 0

ã21(λ)µ
A
1 (λ) µA

2 (λ) · · · 0

· · · · · · · · · · · ·

ãm1(λ)µ
A
1 (λ) ãm2(λ)µ

A
2 (λ) · · · µA

m(λ)

∥∥∥∥∥∥∥∥∥∥∥

,

TB(λ) =

∥∥∥∥∥∥∥∥∥∥∥

µB
1 (λ) 0 · · · 0

b̃21(λ)µ
B
1 (λ) µB

2 (λ) · · · 0

· · · · · · · · · · · ·

b̃m1(λ)µ
B
1 (λ) b̃m2(λ)µ

B
2 (λ) · · · µB

m(λ)

∥∥∥∥∥∥∥∥∥∥∥

,

TC(λ) =

∥∥∥∥∥∥∥∥∥∥∥

µC
1 (λ) 0 · · · 0

c̃21(λ)µ
C
1 (λ) µC

2 (λ) · · · 0

· · · · · · · · · · · ·

c̃m1(λ)µ
C
1 (λ) c̃m2(λ)µ

C
2 (λ) · · · µC

m(λ)

∥∥∥∥∥∥∥∥∥∥∥

.
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Then from equation (1) we obtain the matrix polynomial equation

TA(λ)X̃(λ) + TB(λ)Ỹ(λ) = TC(λ), (5)

where X̃(λ) = (RA(λ))−1X(λ)RC(λ), Ỹ(λ) = (RB(λ))−1Y(λ)RC(λ).

We will call the equation (5) associate to the equation (1).

Lemma 1. The equation (1) is solvable if and only if the equation (5) is solvable. Each solution

X(λ), Y(λ) of the equation (1) corresponds to a solution X̃(λ), Ỹ(λ) of the equation (5) and the

converse each solution X̃(λ), Ỹ(λ) of the equation (5) corresponds to a solution X(λ), Y(λ) of

the equation (1).

Proof. It is well known [6, 13], that the matrix equation (1) is solvable if and only if the left

greatest common divisor D(λ) of matrices A(λ) and B(λ) is the left divisor of the matrix C(λ).

Then the greatest common divisor of triangular forms TA(λ) and TB(λ) is D1(λ) = QD(λ).

Is it easy to see that if the matrix D(λ) is the left divisor of the matrix C(λ), then D1(λ) is the

divisor of the matrix TC(λ) and conversely.

Furthermore, each solution X̃(λ), Ỹ(λ) of the equation (5) corresponds to the solution

X(λ) = RA(λ)X̃(λ)(RC(λ))−1, Y(λ) = RB(λ)Ỹ(λ)(RC(λ))−1

of the equation (1) and conversely.

Thus, the description of solutions of the matrix equation (1) is reduced to the description

of solutions of the associated equation (5).

Solutions X(λ), Y(λ) and X̃(λ), Ỹ(λ) of the matrix equations (1) and (5) are associate.

We denote the i-th row of matrix A by rowi(A).

Theorem 2. Let the matrix equation (5) be solvable. Then, it has the solution

X̃1(λ) = ‖x̃
(1)
ij (λ)‖m

1 , Ỹ1(λ) = ‖ỹ
(1)
ij (λ)‖m

1

such that

rowi(X̃1(λ)) = 0 if degµB
i (λ) = 0 (µB

i (λ) = 1), i = 1, . . . , k, (6)

deg rowi(X̃1(λ)) < degµB
i (λ) if degµB

i (λ) ≥ 1, i = k + 1, . . . , m, (7)

and the solution X̃2(λ) = ‖x̃
(2)
ij (λ)‖m

1 , Ỹ2(λ) = ‖ỹ
(2)
ij (λ)‖m

1 such that

rowi(Ỹ2(λ)) = 0 if degµA
i (λ) = 0 (µA

i (λ) = 1), i = 1, . . . , l, (8)

deg rowi(Ỹ2(λ)) < degµA
i (λ) if degµA

i (λ) ≥ 1, i = l + 1, . . . , m. (9)

Proof. From the matrix equation (5), we obtain the system of linear polynomial equations

i

∑
k=1

(
µA

k (λ)ãik(λ)x̃kj(λ) + µB
k (λ)b̃ik(λ)ỹkj(λ)

)
= µC

j (λ)c̃ij(λ), (10)

i, j = 1, . . . , m, where ãii(λ) = b̃ii(λ) = c̃ii(λ) = 1.
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The description of solutions of this system is reduced to the description of solutions of

linear polynomial equations in the following form

µA
i (λ)x̃ij(λ) + µB

i (λ)ỹij(λ) = ĉij(λ), i, j = 1, . . . , m. (11)

If the equation (11) is solvable, then it has the solution x̃ij(λ) = x̃
(1)
ij (λ), ỹij(λ) = ỹ

(1)
ij (λ)

such that degx̃
(1)
ij (λ) < degµB

i (λ) and the solution x̃ij(λ) = x̃
(2)
ij (λ), ỹij(λ) = ỹ

(2)
ij (λ) such

that degỹ
(2)
ij (λ) < degµA

i (λ) [4, 7]. If degµB
i (λ) ≥ 1, i = k + 1, . . . , m, then for each element

in the row rowi(X̃1(λ)) the condition (7) of the theorem is true. Similarly, if degµA
i (λ) ≥ 1,

i = l + 1, . . . , m, the condition (9) is true.

Among equations of the system (10) there are such polynomial equations

µA
i (λ)x̃ii(λ) + µB

i (λ)ỹii(λ) = µC
i (λ). (12)

If µA
i (λ) = 1 and µB

i (λ) = 1, then this equation has solutions x̃ii(λ) = 0, ỹii(λ) = µC
i (λ) and

x̃ii(λ) = µC
i (λ), ỹii(λ) = 0. If only one of µA

i (λ) = 1 or µB
i (λ) = 1, then this equation has

solutions x̃ii(λ) = 0, ỹii(λ) =
µC

i (λ)

µB
i (λ)

and x̃ii(λ) =
µC

i (λ)

µA
i (λ)

, ỹii(λ) = 0, respectively.

The system (10) also has polynomial equations in the following form

µA
i (λ)x̃ij(λ) + µB

i (λ)ỹij(λ) = 0, i < j, i = 1, . . . , m − 1, j = 2, . . . , m. (13)

These equations always have a zero solution, that is, x̃ii(λ) = 0, ỹii(λ) = 0. Thus, the condi-

tions (6) and (8) of the theorem are true. This completes the proof.

From the proof of this theorem, we get a method for constructing solutions of the matrix

equation (5). Since, the following inequalities degµA
i (λ) ≤ degµA

m(λ), i = 1, . . . , m − 1, are

true for the invariant factors of matrix A(λ), then degSA(λ) = degµA
m(λ). Therefore, from

Theorem 2 we get the following corollary.

Corollary 1. Let the matrix equation (5) be solvable. Then it has the solution

X̃1(λ), Ỹ1(λ)

such that

X̃1(λ) = 0 if degSB(λ) = 0 (B(λ) is an invertible matrix),

degX̃1(λ) < deg SB(λ) if degSB(λ) ≥ 1,

and the solution

X̃2(λ), Ỹ2(λ)

such that

Ỹ2(λ) = 0 if degSA(λ) = 0 (A(λ) is an invertible matrix),

degỸ2(λ) < deg SA(λ) if degSA(λ) ≥ 1.

Theorem 3. Let

SA(λ) = diag(1, . . . , 1︸ ︷︷ ︸
k

, µA
k+1(λ), . . . , µA

m(λ)), k ≥ 0, (14)

and

SB(λ) = diag(1, . . . , 1︸ ︷︷ ︸
l

, µB
l+1(λ), . . . , µB

m(λ)), l ≥ 0, (15)

be the Smith normal forms of the matrices A(λ) and B(λ), respectively, and let the matrix

equation (5) be solvable. Without loss of generality, let k ≥ l.
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(i) If degµC
i (λ) ≥ degµA

i (λ) + degµB
i (λ), µA

i (λ) 6= 1, µB
i (λ) 6= 1, i = 1, . . . , m, then the

matrix equation (5) has the solution

X̃(λ) = ‖x̃ij(λ)‖
m
1 , Ỹ(λ) = ‖ỹij(λ)‖

m
1

such that

deg rowi(X̃(λ)) < degµB
i (λ), deg rowi(Ỹ(λ)) = degµC

i (λ)− degµB
i (λ), (16)

(ii) if degµC
i (λ) = degµA

i (λ) + degµB
i (λ), µA

i (λ) = 1 or µB
i (λ) = 1, i = 1, . . . , k, then the

matrix equation (5) has solutions X̃(λ), Ỹ(λ) such that

rowi(X̃(λ)) = 0, deg rowi(Ỹ(λ)) ≤ degµC
i (λ)− degµB

i (λ), (17)

and

deg rowi(X̃(λ)) ≤ degµC
i (λ)− degµA

i (λ), rowi(Ỹ(λ)) = 0, (18)

(iii) if degµC
i (λ) < degµA

i (λ) + degµB
i (λ), i = k+ 1, . . . , m, then the matrix equation (5) has

the solution X̃(λ), Ỹ(λ) such that

deg rowi(X̃(λ)) < degµB
i (λ), deg rowi(Ỹ(λ)) < degµA

i (λ). (19)

Proof. Case (i). In the proof of Theorem 2, it has been shown that the solving of the matrix

equation (5) is reduced to the solving of the system of linear polynomial equations (10). This

system has equations (12). Then, there exists a solution with the condition deg x̃ii(λ) <

degµB
i (λ) of the i-th equation (12) [4, 7]. So, deg ỹij(λ) = degµC

i (λ) − degµB
i (λ) for a fixed

value of i and all values of j = 1, . . . , m. Thus, the matrix equation (5) has the solution

X̃(λ), Ỹ(λ) with the condition (16).

Case (ii). In this case the condition has the form degµC
i (λ) = degµA

i (λ) or degµC
i (λ) =

degµB
i (λ) if µB

i (λ) = 1 or µA
i (λ) = 1 for a fixed value of i. If µB

i (λ) = 1 and µA
i (λ) = 1 for a

fixed value of i, then the condition has the form degµC
i (λ) = 0. In the proof of Theorem 2, it

has been shown that the system of linear polynomial equations (11) has equations (12) and (13).

In this case, these equations have zero solutions. Thus, the matrix equation (5) has solutions

X̃(λ), Ỹ(λ) with the conditions (17) and (18).

Case (iii). There exists a solution of the equation (11) with the condition deg x̃ij(λ) <

degµB
j (λ), deg ỹij(λ) < degµA

i (λ) if the condition degµC
i (λ) < degµA

i (λ) + degµB
i (λ) is true

for a fixed value of i and all values of j = 1, . . . , m [4, 7]. This completes the proof.

Remark 1. We should note that in cases (ii) and (iii), opposite propositions hold, that is, their

conditions are necessary for the existence of solutions with the conditions (17)—(19).

Theorem 4. Let the equation (5) be solvable. Then it has solutions

X̃(λ) = ‖x̃ij(λ)‖
m
1 , Ỹ(λ) = ‖ỹij(λ)‖

m
1

of lower triangular forms such that

(i) degx̃ii(λ) < degµB
i (λ), degỹii(λ) < degµA

i (λ)

if degµC
i (λ) < degµA

i (λ) + degµB
i (λ), i = 1, . . . , m;
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(ii) degx̃ii(λ) < degµB
i (λ), degỹii(λ) = degµC

i (λ)− degµB
i (λ)

if degµC
i (λ) ≥ degµA

i (λ) + degµB
i (λ), i = 1, . . . , m.

Proof. We prove this theorem in a similar way to Theorem 2 and Theorem 3.

We get solutions of the matrix equation (1) from solutions of the matrix equation (5):

X(λ) = RA(λ)X̃(λ)(RC(λ))−1, Y(λ) = RB(λ)Ỹ(λ)(RC(λ))−1.

3 THE UNIQUENESS OF SOLUTIONS OF MINIMAL DEGREES OF MATRIX POLYNOMIAL

EQUATIONS

We will establish the conditions for the uniqueness of solutions of minimal degrees of the

matrix equation (5).

Theorem 5. The matrix equation (5) has a unique solution

X̃
(1)
0 (λ) = ‖x̃

(1)
ij (λ)‖m

1 , Ỹ
(1)
0 (λ) = ‖ỹ

(1)
ij (λ)‖m

1

and

X̃
(2)
0 (λ) = ‖x̃

(2)
ij (λ)‖m

1 , Ỹ
(2)
0 (λ) = ‖ỹ

(2)
ij (λ)‖m

1

such that

rowi(X̃
(1)
0 (λ)) = 0 if degµB

i (λ) = 0, i = 1, . . . , k, (20)

deg rowi(X̃
(1)
0 (λ)) < degµB

i (λ) if degµB
i (λ) ≥ 1, i = k + 1, . . . , m, (21)

and

rowi(Ỹ
(2)
0 (λ)) = 0 if degµA

i (λ) = 0, i = 1, . . . , k, (22)

deg rowi(Ỹ
(2)
0 (λ)) < degµA

i (λ) if degµA
i (λ) ≥ 1, i = k + 1, . . . , m, (23)

if and only if

(µA
m(λ), µB

m(λ)) = 1.

Proof. It is clear that the matrix equation (5) has a unique solution X̃
(1)
0 (λ), Ỹ

(1)
0 (λ) with

the condition (21) if and only if each equation (11) has a unique solution x̃
(1)
ij (λ), ỹ

(1)
ij (λ)

such that degx̃
(1)
ij < degµB

i (λ). This solution of the equation (11) is unique if and only

if (µA
i (λ), µB

j (λ)) = 1 for all i, j = 1, . . . , m [4, 7]. The last condition holds if and only if

(µA
m(λ), µB

m(λ)) = 1.

As it has been shown in the proof of Theorem 2, the system (10) has equations (12) and (13).

By the condition of the theorem, these equations have a zero solution, which is unique. Thus,

the solution X̃
(1)
0 (λ), Ỹ

(1)
0 (λ) with the condition (20) is unique.

Similarly we prove the existence of a unique solution X̃
(2)
0 (λ), Ỹ

(2)
0 (λ) with the conditions

(22) and (23). This completes the proof.
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Theorem 6. Let the matrix equation (5) be solvable and let SA(λ), and SB(λ) be the Smith

normal forms (14) and (15) of the matrices A(λ) and B(λ), respectively. Then, there exists a

unique solution

X̃(λ) = ‖x̃ij(λ)‖
m
1 , Ỹ(λ) = ‖ỹij(λ)‖

m
1

of the matrix equation (5) with the conditions (17) and (18) if and only if

degµC
i (λ) = degµA

i (λ) + degµB
i (λ), i = 1, . . . , k, and (µA

m(λ), µB
m(λ)) = 1,

and with the condition (19) if and only if

degµC
i (λ) < degµA

i (λ) + degµB
i (λ), i = k + 1, . . . , m, and (µA

m(λ), µB
m(λ)) = 1.

Proof. It is clear that a unique solution of the matrix equation (5) exists if and only if a unique

solution of the system of linear polynomial equations (10) exists, that is, a unique solution of

each linear polynomial equation (11) exists. This system has equations (12). If µA
i (λ) = 1

and µB
i (λ) = 1, then by the conditions of the theorem, this equation has solutions x̃ii(λ) =

0, ỹii(λ) = µC
i (λ) and x̃ii(λ) = µC

i (λ), ỹii(λ) = 0. If only one of µA
i (λ) = 1 or µB

i (λ) = 1, then

this equation has solutions

x̃ii(λ) = 0, ỹii(λ) =
µC

i (λ)

µB
i (λ)

and x̃ii(λ) =
µC

i (λ)

µA
i (λ)

, ỹii(λ) = 0,

respectively. The equations (13) always have a zero solution, that is, x̃ii(λ) = 0, ỹii(λ) = 0.

This solution is unique. So, there exists a unique solution with the conditions (17) and (18) of

the matrix equation (5).

If µA
i (λ) 6= 1 and µB

i (λ) 6= 1, then by the results [4, 7] the solution with the condition

(19) of the matrix equation (5) is unique if and only if the solution x̃ij(λ), ỹij(λ) such that

degx̃ij(λ) < degµB
i (λ) and degỹij(λ) < degµA

i (λ) of the equation (11) is unique. There exist

such solutions and they are unique if and only if degµC
i (λ) < degµA

i (λ) + degµB
i (λ) and

(µA
i (λ), µB

j (λ)) = 1 i, j = 1, . . . , m.

The last conditions are true if and only if (µA
m(λ), µB

m(λ)) = 1. This completes the proof.
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Джалюк Н.С., Петричкович В.М. Структура розв’язкiв матричного лiнiйного однобiчного полiно-

мiального рiвняння вiд двох змiнних // Карпатськi матем. публ. — 2017. — Т.9, №1. — C. 48–56.

Дослiджується структура розв’язкiв матричного лiнiйного полiномiального рiвняння

A(λ)X(λ) + B(λ)Y(λ) = C(λ), зокрема можливi степенi цих розв’язкiв. Розв’язування цьо-

го матричного полiномiального рiвняння зводиться до розв’язування еквiвалетного матри-

чного полiномiального рiвняння з матрицями-коефiцiєнтами у трикутних формах з iнварiан-

тними множниками на головних дiагоналях, до яких зводяться полiномiальнi матрицi A(λ),

B(λ) i C(λ) напiвскалярними еквiвалентними перетвореннями. На основi цього вказано межi

для степенiв розв’язкiв матричних полiномiальних рiвнянь. Встановлено необхiднi i достатнi

умови єдиностi розв’язку мiнiмального степеня. Запропоновано ефективний метод побудови

розв’язкiв мiнiмальних степенiв цих рiвнянь. На вiдмiну вiд вiдомих результатiв про оцiнки

степенiв розв’язкiв матричних полiномiальних рiвнянь, в яких обидва або принаймнi один iз

коефiцiєнтiв є регулярною матрицею, у цiй статтi розглянуто випадок матричного полiномi-

ального рiвняння з довiльними коефiцiєнтами A(λ) i B(λ).

Ключовi слова i фрази: матричне полiномiальне рiвняння, розв’язок рiвняння, напiвскаляр-

на еквiвалентнiсть полiномiальних матриць.


