ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2019, **11** (1), 136–151 doi:10.15330/cmp.11.1.136-151

Omidi S.¹, Davvaz B.¹, Hila K.²

CHARACTERIZATIONS OF REGULAR AND INTRA-REGULAR ORDERED Γ-SEMIHYPERGROUPS IN TERMS OF BI-Γ-HYPERIDEALS

The concept of Γ -semihypergroups is a generalization of semigroups, a generalization of semihypergroups and a generalization of Γ -semigroups. In this paper, we study the notion of bi- Γ -hyperideals in ordered Γ -semihypergroups and investigate some properties of these bi- Γ -hyperideals. Also, we define and use the notion of regular ordered Γ -semihypergroups to examine some classical results and properties in ordered Γ -semihypergroups.

Key words and phrases: ordered Γ-semihypergroup, Γ-hyperideal, bi-Γ-hyperideal.

kostaq_hila@yahoo.com(HilaK.)

1 INTRODUCTION

A semigroup is an algebraic structure consisting of a non-empty set S together with an associative binary operation [24]. The notion of a Γ -semigroup was introduced by Sen and Saha [37] as a generalization of semigroups as well as of ternary semigroups. Since then, hundreds of papers have been written on this topic, see [6,7,16]. Many classical notions of semigroups have been extended to Γ -semigroups. Let $S = \{a, b, c, \dots\}$ and $\Gamma = \{\alpha, \beta, \gamma, \dots\}$ be two non-empty sets. Then, *S* is called a Γ -semigroup if there exists a mapping from $S \times \Gamma \times S$ to *S*, written as $(a, \gamma, b) \rightarrow a\gamma b$, satisfying the identity $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all a, b, c in S and α, β in Γ . In this case by (S, Γ) we mean S is a Γ -semigroup. By an *ordered semigroup*, we mean an algebraic structure (S, \cdot, \leq) , which satisfies the following conditions: (1) (S, \cdot) is a semigroup; (2) *S* is a partial ordered set by \leq ; (3) If a and b are elements of S such that $a \leq b$, then $a \cdot c \leq b \cdot c$ and $c \cdot a \leq c \cdot b$ for all $c \in S$. Ordered semigroups have been studied extensively by Kehayopulu and Tsingelis, for example, see [27–29]. The notions of an ordered Γ -groupoid and an ordered Γ-semigroup were defined by Sen and Seth in [38]. Many authors studied different aspects of ordered Γ -semigroups, for instance, Abbasi and Basar [1], Chinram and Tinpun [7,8], Dutta and Adhikari [16, 17], Hila [22], Iampan [25], Kehayopulu [26], Kwon [31], Kwon and Lee [32, 33], and many others. Recall from [38], that an ordered Γ -semigroup (S, Γ, \leq) is a Γ semigroup (S, Γ) together with an order relation \leq such that $a \leq b$ implies that $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$ for all $a, b, c \in S$ and $\gamma \in \Gamma$.

The concept of ordered semihypergroups is a generalization of the concept of ordered semigroups. The concept of ordering hypergroups introduced by Chvalina [11] as a special class

2010 Mathematics Subject Classification: 16Y99, 20N20, 06F99.

¹ Department of Mathematics, Yazd University, P.O. Box 89195-741, Yazd, Iran

² Department of Mathematical Engineering, Polytechnic University of Tirana, 1000, Tirana, Albania

E-mail: omidi.saber@yahoo.com(OmidiS.), davvaz@yazd.ac.ir(DavvazB.),

of hypergroups. Many authors studied different aspects of ordered semihypergroups, for instance, Davvaz et al. [15], Gu and Tang [19], Heidari and Davvaz [20], Tang et al. [39], and many others. Explicit study of ordered semihypergroups seems to have begun with Heidari and Davvaz [20] in 2011. Recall from [20], that an *ordered semihypergroup* (S, \circ , \leq) is a semihypergroup (S, \circ) together with a partial order \leq that is compatible with the hyperoperation \circ , meaning that for any x, y, $z \in S$,

$$x \leq y \Rightarrow z \circ x \leq z \circ y$$
 and $x \circ z \leq y \circ z$.

Here, $z \circ x \le z \circ y$ means for any $a \in z \circ x$ there exists $b \in z \circ y$ such that $a \le b$. The case $x \circ z \le y \circ z$ is defined similarly.

Recently, Davvaz et al. [4, 5, 13, 21, 23] studied the notion of Γ-semihypergroup as a generalization of a semigroup, a generalization of a semihypergroup and a generalization of a Γ -semigroup. They proved some results in this respect and presented many exaples of Γ semihypergroups. Many classical notions of semigroups and semihypergroups have been extended to Γ-semihypergroups. The notion of a Γ-hyperideal of a Γ-semihypergroup was introduced in [4]. Davvaz et al. [5] introduced the notion of Pawlak's approximations in Γ semihypergroups. Abdullah et al. [2] studied M-hypersystems and N-hypersystems in a Γsemihypergroup. Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. The concept of hyperstructure was first introduced by Marty [34] at the eighth Congress of Scandinavian Mathematicians in 1934. A comprehensive review of the theory of hyperstructures can be found in [9, 10, 12, 40]. Let S be a non-empty set and $P^*(S)$ be the family of all non-empty subsets of S. A mapping $\circ : S \times S \to P^*(S)$ is called a hyperoperation on S. A hypergroupoid is a set *S* together with a (binary) hyperoperation. In the above definition, if *A* and *B* are two non-empty subsets of *S* and $x \in S$, then we denote

$$A \circ B = \bigcup_{a \in A \ b \in B}$$
, $x \circ A = \{x\} \circ A$ and $B \circ x = B \circ \{x\}$.

A hypergroupoid (S, \circ) is called a *semihypergroup* if for every x, y, z in $S, x \circ (y \circ z) = (x \circ y) \circ z$. That is,

$$\bigcup_{u\in y\circ z}x\circ u=\bigcup_{v\in x\circ y}v\circ z.$$

A non-empty subset *K* of a semihypergroup *S* is called a *subsemihypergroup* of *S* if $K \circ K \subseteq K$. A hypergroupoid (S, \circ) is called a *quasihypergroup* if for every $x \in S$, $x \circ S = S = S \circ x$. This condition is called the reproduction axiom. The couple (S, \circ) is called a *hypergroup* if it is a semihypergroup and a quasihypergroup. A non-empty subset *K* of *S* is a *subhypergroup* of *S* if $K \circ a = a \circ K = K$, for every $a \in K$. A hypergroup (S, \circ) is called *commutative* if $x \circ y = y \circ x$, for every $x, y \in S$.

2 Review: ordered Γ -semihypergroups

The notion of a Γ -semihypergroup was introduced by Davvaz et al. [4,5,21]. In [20], Heidari and Davvaz introduced the concept of ordered semihypergroups, which is a generalization of

ordered semigroups. In this section, we recall the notion of an ordered Γ -semihypergroup and then we present some definitions and properties which we will need in this paper. Throughout this paper, unless otherwise stated, *S* is always an ordered Γ -semihypergroup (*S*, Γ , \leq).

Definition 1 ([4,5]). Let *S* and Γ be two non-empty sets. Then, *S* is called a Γ -semihypergroup if every $\gamma \in \Gamma$ is a hyperoperation on *S*, i.e., $x\gamma y \subseteq S$ for every $x, y \in S$, and for every $\alpha, \beta \in \Gamma$ and $x, y, z \in S$, we have $x\alpha(y\beta z) = (x\alpha y)\beta z$. If every $\gamma \in \Gamma$ is an operation, then *S* is a Γ -semigroup. Let *A* and *B* be two non-empty subsets of *S*. We define

$$A\Gamma B = \bigcup \{a\gamma b \mid a \in A, b \in B \text{ and } \gamma \in \Gamma \} = \bigcup_{\gamma \in \Gamma} A\gamma B.$$

A Γ-semihypergroup *S* is called *commutative* if for all $x, y \in S$ and $\gamma \in \Gamma$, we have $x\gamma y = y\gamma x$. A Γ-semihypergroup *S* is called a Γ-hypergroup if for every $\gamma \in \Gamma$, (S, γ) is a hypergroup.

Now, we consider the notion of an ordered Γ -semihypergroup.

Definition 2 ([30]). An algebraic hyperstructure (S, Γ, \leq) is called an ordered Γ -semihypergroup if (S, Γ) is a Γ -semihypergroup and (S, \leq) is a partially ordered set such that for any $x, y, z \in S$ and $\gamma \in \Gamma$, $x \leq y$ implies $z\gamma x \leq z\gamma y$ and $x\gamma z \leq y\gamma z$. Here, if A and B are two non-empty subsets of S, then we say that $A \leq B$ if for every $a \in A$ there exists $b \in B$ such that $a \leq b$.

Let *S* be an ordered Γ -semihypergroup. By a sub Γ -semihypergroup of *S* we mean a nonempty subset *A* of *S* such that $a\gamma b \subseteq A$ for all $a, b \in A$ and $\gamma \in \Gamma$.

Example 1 ([30]). Let (S, \circ, \leq) be an ordered semihypergroup and Γ a non-empty set. We define $x\gamma y = x \circ y$ for every $x, y \in S$ and $\gamma \in \Gamma$. Then, (S, Γ, \leq) is an ordered Γ -semihypergroup.

Definition 3. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. A non-empty subset I of S is called a *left* Γ -hyperideal of S if it satisfies the following conditions:

- (1) $S\Gamma I \subseteq I$;
- (2) When $x \in I$ and $y \in S$ such that $y \leq x$, imply that $y \in I$.

A right Γ -hyperideal of an ordered Γ -semihypergroup *S* is defined in a similar way. By *two-sided* Γ -*hyperideal* or simply Γ -*hyperideal*, we mean a non-empty subset of *S* which both left and right Γ -hyperideal of *S*. A Γ -hyperideal *I* of *S* is said to be *proper* if $I \neq S$.

Let *K* be a non-empty subset of an ordered Γ -semihypergroup (S, Γ, \leq) . If *H* is a non-empty subset of *K*, then we define $(H]_K := \{k \in K \mid k \leq h \text{ for some } h \in H\}$. Note that if K = S, then we define $(H] := \{x \in S \mid x \leq h \text{ for some } h \in H\}$. For $H = \{h\}$, we write (h] instead of $(\{h\}]$. Note that the condition (2) in Definition 3 is equivalent to $(I] \subseteq I$. If *A* and *B* are non-empty subsets of *S*, then we have

- (1) $A \subseteq (A];$
- (2) ((A]] = (A];
- (3) If $A \subseteq B$, then $(A] \subseteq (B]$;
- (4) $(A]\Gamma(B] \subseteq (A\Gamma B];$
- (5) $((A]\Gamma(B]] = (A\Gamma B].$

Lemma 1. If *I* and *J* are Γ -hyperideals of an ordered Γ -semihypergroup (S, Γ, \leq) , then $I \cap J$ is a Γ -hyperideal of *S*.

Proof. Let $x \in I$, $y \in J$ and $\gamma \in \Gamma$. Then, $x\gamma y \subseteq I\Gamma J \subseteq I\Gamma S \subseteq I$ and $x\gamma y \subseteq I\Gamma J \subseteq S\Gamma J \subseteq J$. So, $x\gamma y \subseteq I \cap J$ and hence $\emptyset \neq I \cap J \subseteq S$. We have $(I \cap J)\Gamma S \subseteq I\Gamma S \subseteq I$ and $S\Gamma(I \cap J) \subseteq S\Gamma J \subseteq J$. Similarly, $(I \cap J)\Gamma S \subseteq J$ and $S\Gamma(I \cap J) \subseteq I \cap J$. So, we have $(I \cap J)\Gamma S \subseteq I \cap J$ and $S\Gamma(I \cap J) \subseteq I \cap J$. Now, let $x \in I \cap J$, $y \in S$ and $y \leq x$. Since I and J are Γ -hyperideals of S, we obtain $y \in I$ and $y \in J$. Thus, $y \in I \cap J$. This completes the proof.

Let (S, Γ, \leq) be an ordered Γ -semihypergroup. A subset *A* of *S* is called *idempotent* if *A* = $(A\Gamma A]$.

Lemma 2. The Γ -hyperideals of an ordered Γ -semihypergroup (S, Γ, \leq) are idempotent if and only if for any Γ -hyperideals I, J of S, we have $I \cap J = (I\Gamma J]$.

Proof. The sufficiency is obvious. For the necessity, let *I*, *J* be Γ -hyperideals of *S*. We have $(I\Gamma J] \subseteq (I\Gamma S] \subseteq (I] = I$ and $(I\Gamma J] \subseteq (S\Gamma J] \subseteq (J] = J$. So, we have $(I\Gamma J] \subseteq I \cap J$. On the other hand, by Lemma 1, $I \cap J$ is a Γ -hyperideal of *S*. By assumption, we have $I \cap J = ((I \cap J)\Gamma(I \cap J)] \subseteq (I\Gamma J]$. This completes the proof.

Theorem 1. Let (S, Γ, \leq) be a commutative ordered Γ -semihypergroup. If I is a Γ -hyperideal of S and A is a non-empty subset of S, then $(I : A) = \{x \in S \mid x\gamma a \subseteq I \text{ for all } a \in A \text{ and } \gamma \in \Gamma\}$ is a Γ -hyperideal of S.

Proof. Suppose that $x \in (I : A)$, $s \in S$ and $\delta \in \Gamma$. Then, $x\gamma a \subseteq I$ for all $a \in A$ and $\gamma \in \Gamma$. We have $(s\delta x)\gamma a = s\delta(x\gamma a) \subseteq S\Gamma I \subseteq I$. So, we have $s\delta x \subseteq (I : A)$. In the similar way, we obtain $x\delta s \subseteq (I : A)$. Now, let $x \in (I : A)$, $y \in S$ and $y \leq x$. Then, $x\gamma a \subseteq I$ for all $a \in A$ and $\gamma \in \Gamma$. Also, we have $y\gamma a \leq x\gamma a$ for all $a \in A$ and $\gamma \in \Gamma$, by hypothesis. So, for any $u \in y\gamma a$, $u \leq v$ for some $v \in x\gamma a \subseteq I$. Since *I* is a Γ -hyperideal of *S*, it follows that $u \in I$. So, we have $y\gamma a \subseteq I$ for all $a \in A$ and $\gamma \in \Gamma$. Thus, we have $y \in (I : A)$. Therefore, (I : A) is a Γ -hyperideal of *S*. \Box

3 BI-Γ-HYPERIDEALS

The study of ordered semihyperrings was first undertaken by Davvaz and Omidi [14]. In [35], Omidi, Davvaz and Corsini studied some properties of hyperideals in ordered Krasner hyperrings. The concept of a bi-ideal is a very interesting and important thing in semigroups and ordered semigroups. In 1952, Good and Hughes [18] introduced the notion of bi-ideals in semigroups. Recently, Davvaz et al. [4] introduced the notion of bi- Γ -hyperideal in Γ -semihypergroups (cf. [3]). In [36], Pibaljommee and Davvaz studied the properties of bi-hyperideals in ordered semihypergroups. The concept of bi- Γ -hyperideals of an ordered Γ semihypergroup is a generalization of the concept of Γ -hyperideals (left Γ -hyperideals, right Γ hyperideals) of an ordered Γ -semihypergroup. First, we define the concept of a bi- Γ -hyperideal in ordered Γ -semihypergroups.

Definition 4 ([30]). A sub Γ -semihypergroup *B* of an ordered Γ -semihypergroup (S, Γ, \leq) is called a *bi*- Γ -hyperideal of *S* if the following conditions hold:

- (1) $B\Gamma S\Gamma B \subseteq B$;
- (2) When $x \in B$ and $y \in S$ such that $y \leq x$, imply that $y \in B$.

The concept of bi- Γ -hyperideals of an ordered Γ -semihypergroup is a generalization of the concept of Γ -hyperideals (left Γ -hyperideals, right Γ -hyperideals) of an ordered Γ -semi-hypergroup. Obviously, every left (right) Γ -hyperideal of an ordered Γ -semihypergroup *S* is a bi- Γ -hyperideal of *S*, but the the following example shows that the converse is not true in general case. Indeed, If *I* is a left (right) Γ -hyperideal of *S*, then $I\Gamma I \subseteq S\Gamma I \subseteq I$. Hence, *I* is a sub Γ -semihypergroup of *S*.

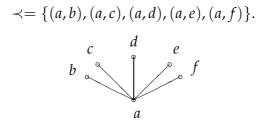
Example 2. Let $S = \{a, b, c, d, e, f\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined as follows.

γ	а	b	С	d	е	f	β	а	b	С	d	е	f
а	а	b	а	а	а	а	а	а	b	а	а	а	а
b	b	b	b	b	b	b	b	b	b	b	b	b	b
С	а	b	$\{a,c\}$	а	а	$\{a, f\}$	С	а	b	а	а	а	а
d	а	b	$\{a, e\}$	а	а	$\{a,d\}$	d	а	b	а	$\{a,d\}$	$\{a, e\}$	а
е	а	b	$\{a, e\}$	а	а	$\{a,d\}$	е	а	b	а	а	а	а
f	а	b	$\{a, c\}$	а	а	$\{a, f\}$	f	а	b	а	$\{a, f\}$	$\{a, c\}$	а

Then *S* is a Γ -semihypergroup [41]. We have (S, Γ, \leq) is an ordered Γ -semihypergroup where the order relation \leq is defined by:

$$\leq := \{(a, a), (a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (c, c), (d, d), (e, e), (f, f)\}.$$

The covering relation and the figure of *S* are given by:



Here,

- (1) It is a routine matter to verify that $B_1 = \{a, b, c\}$ is a bi- Γ -hyperideal of *S*, but it is not a Γ -hyperideal of *S*.
- (2) With a small amount of effort one can verify that $B_2 = \{a, b, c, f\}$ is a bi- Γ -hyperideal of *S*, but it is not a left Γ -hyperideal of *S*.

Lemma 3. The intersection of any family of bi- Γ -hyperideals of an ordered Γ -semihypergroup (S, Γ, \leq) is a bi- Γ -hyperideal of S.

Proof. Let $\{B_k \mid k \in \Lambda\}$ be a family of bi- Γ -hyperideals of S and $B = \bigcap_{k \in \Lambda} B_k$. It is easy to check that B is a sub Γ -semihypergroup of S. Now, let $x \in B\Gamma S\Gamma B$. Then, $x \in a\alpha s\beta b$ for some $a, b \in B$, $s \in S$ and $\alpha, \beta \in \Gamma$. Since each B_k is a bi- Γ -hyperideal of S, it follows that $a\alpha s\beta b \subseteq B_k\Gamma S\Gamma B_k \subseteq B_k$ for all $k \in \Lambda$. Then, $x \in B_k$ for all $k \in \Lambda$. So, we have $x \in \bigcap_{k \in \Lambda} B_k = B$. Since x was chosen arbitrarily, we have $B\Gamma S\Gamma B \subseteq B$. If $x \in B$ and $y \in S$ such that $y \leq x$, then $x \in B_k$ for all $k \in \Lambda$. Since each B_k is a bi- Γ -hyperideal of S, it follows that $y \in S$ some $x \in B_k$ for all $k \in \Lambda$. Since each B_k is a bi- Γ -hyperideal of S, it follows that $y \in S_k$ for all $k \in \Lambda$. Since each B_k is a bi- Γ -hyperideal of S, it follows that $y \in B_k$ for all $k \in \Lambda$. Since each B_k is a bi- Γ -hyperideal of S.

Lemma 4. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. If *B* is a bi- Γ -hyperideal of *S* and *C* is a bi- Γ -hyperideal of *B*, such that $C = (C\Gamma C]$, then *C* is a bi- Γ -hyperideal of *S*.

Proof. By assumption, we have that

$$C\Gamma C = (C\Gamma C]\Gamma(C\Gamma C] \subseteq (C\Gamma(C\Gamma C\Gamma C)] \subseteq (C\Gamma C] = C,$$

which shows that *C* is a sub Γ -semihypergroup of *S*. On the other hand, we have $B\Gamma S\Gamma B \subseteq B$ and $C\Gamma B\Gamma C \subseteq C$. Thus, we have

$$C\Gamma S\Gamma C = (C\Gamma C]\Gamma S\Gamma (C\Gamma C] = (C\Gamma C]\Gamma (S]\Gamma (C\Gamma C]$$
$$\subseteq (C\Gamma C\Gamma S]\Gamma (C\Gamma C] \subseteq (C\Gamma (C\Gamma S\Gamma C)\Gamma C]$$
$$\subseteq (C\Gamma (B\Gamma S\Gamma B)\Gamma C] \subseteq (C\Gamma B\Gamma C] \subseteq (C]_B \subseteq C.$$

Now, let $c \in C$ and $x \leq c$, where $x \in S$. Since *B* is a bi- Γ -hyperideal of *S* and $C \subseteq B$, we get $x \in B$. On the other hand, *C* is a bi- Γ -hyperideal of *B*. It follows that $x \in C$. This completes the proof.

Let *A* be a non-empty subset of an ordered Γ -semihypergroup (S, Γ, \leq) . We denote by $L_S(A)$ (resp. $R_S(A)$, $I_S(A)$) the left (resp. right, two-sided) Γ -hyperideal of *S* generated by *A*.

Lemma 5. If *A* is a non-empty subset of an ordered Γ -semihypergroup (S, Γ, \leq) , then the following hold:

(1)
$$L_S(A) = (A \cup S\Gamma A];$$

- (2) $R_S(A) = (A \cup A\Gamma S];$
- (3) $I_S(A) = (A \cup S\Gamma A \cup A\Gamma S \cup S\Gamma A\Gamma S].$

Proof. Since $A \subseteq L_S(A)$ and $S\Gamma A \subseteq L_S(A)$, it follows that $(A \cup S\Gamma A] \subseteq L_S(A)$. Clearly, $(A \cup S\Gamma A] \neq \emptyset$. We have

$$S\Gamma(A \cup S\Gamma A] = (S]\Gamma(A \cup S\Gamma A] \subseteq (S\Gamma(A \cup S\Gamma A)]$$
$$= (S\Gamma A \cup S\Gamma(S\Gamma A)] \subseteq (S\Gamma A] \subseteq (A \cup S\Gamma A].$$

Thus, $(A \cup S\Gamma A]$ is a left Γ -hyperideal of S containing A. This means that $L_S(A) \subseteq (A \cup S\Gamma A]$. This proves that (1) holds. The conditions (2) and (3) are proved similarly.

Corollary 1. Let *a* be an element of an ordered Γ -semihypergroup (S, Γ, \leq) . Then,

- (1) $L_S(a) = (a \cup S\Gamma a];$
- (2) $R_S(a) = (a \cup a\Gamma S];$
- (3) $I_S(a) = (a \cup S\Gamma a \cup a\Gamma S \cup S\Gamma a\Gamma S].$

Let *A* be a non-empty subset of an ordered Γ -semihypergroup (S, Γ, \leq) . We define

 $\Theta = \{B \mid B \text{ is a bi-}\Gamma\text{-hyperideal of } S \text{ containing } A\}.$

Since $S \in \Theta$, it follows that $\Theta \neq \emptyset$. We denote by $B_S(A)$ the bi- Γ -hyperideal of S generated by A. Clearly, $A \subseteq B_S(A) = \bigcap_{B \in \Theta} B$. By Lemma 3, $B_S(A)$ is a bi- Γ -hyperideal of S.

Lemma 6. Let *A* be a non-empty subset of an ordered Γ -semihypergroup (S, Γ, \leq) . Then,

$$B_S(A) = (A \cup A\Gamma A \cup A\Gamma S\Gamma A].$$

Proof. Set $B = (A \cup A\Gamma A \cup A\Gamma S\Gamma A]$. Clearly, $B \neq \emptyset$. We have

$$B\Gamma B = (A \cup A\Gamma A \cup A\Gamma S\Gamma A]\Gamma(A \cup A\Gamma A \cup A\Gamma S\Gamma A]$$
$$\subseteq ((A \cup A\Gamma A \cup A\Gamma S\Gamma A)\Gamma(A \cup A\Gamma A \cup A\Gamma S\Gamma A)]$$
$$\subseteq (A\Gamma S\Gamma A] \subseteq (A \cup A\Gamma A \cup A\Gamma S\Gamma A].$$

Hence, *B* is a sub Γ -semihypergroup of *S*. Now,

$$B\Gamma S\Gamma B = (A \cup A\Gamma A \cup A\Gamma S\Gamma A]\Gamma S\Gamma (A \cup A\Gamma A \cup A\Gamma S\Gamma A]$$
$$\subseteq ((A \cup A\Gamma A \cup A\Gamma S\Gamma A)\Gamma S\Gamma (A \cup A\Gamma A \cup A\Gamma S\Gamma A)]$$
$$\subseteq (A\Gamma A \cup A\Gamma S\Gamma A] \subseteq (A \cup A\Gamma A \cup A\Gamma S\Gamma A].$$

Therefore, *B* is a bi- Γ -hyperideal of *S*, and hence $B_S(A) \subseteq (A \cup A\Gamma A \cup A\Gamma S\Gamma A]$. Let *C* be a bi- Γ -hyperideal of *S* containing *A*. Then, $A\Gamma A \subseteq C$ and $A\Gamma S\Gamma A \subseteq C\Gamma S\Gamma C \subseteq C$. Thus, we have $B = (A \cup A\Gamma A \cup A\Gamma S\Gamma A] \subseteq (C] = C$. Hence, *B* is the smallest bi- Γ -hyperideal of *S* containing *A*. Therefore, $B_S(A) = B = (A \cup A\Gamma A \cup A\Gamma S\Gamma A]$.

Corollary 2. Let *a* be an element of an ordered Γ -semihypergroup (S, Γ, \leq) . Then,

$$B_S(a) = (a \cup a\Gamma a \cup a\Gamma S\Gamma a].$$

4 MAIN RESULTS

The concepts of regular (resp. intra-regular) ordered Γ -semihypergroups generalize the corresponding concepts of regular (resp. intra-regular) Γ -semihypergroups as each regular (resp. intra-regular) Γ -semihypergroup endowed with the order $\leq := \{(a, b) \mid a = b\}$ is a regular (resp. intra-regular) ordered Γ -semihypergroup. In this section, we introduce the notion of regular ordered Γ -semihypergroups and investigate some related results. We characterize regular ordered Γ -semihypergroups in terms of bi- Γ -hyperideals, left Γ -hyperideals and right Γ -hyperideals of ordered Γ -semihypergroups. In this paper, some well known results of ordered semihypergroups in case of ordered Γ -semihypergroups are examined.

Definition 5. An ordered Γ -semihypergroup (S, Γ, \leq) is called *regular* if for every $a \in S$ there exist $x \in S$, $\alpha, \beta \in \Gamma$ such that $a \leq a\alpha x\beta a$. This is equivalent to saying that $a \in (a\Gamma S\Gamma a]$, for every $a \in S$ or $A \subseteq (A\Gamma S\Gamma A]$, for every $A \subseteq S$.

Example 3. Let $S = \{a, b, c, d, e\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined as follows.

γ	а	b	С	d	е	β	;	а	b	С	d	е
а	$\{a,b\}$	$\{b,e\}$	С	$\{c,d\}$	е	a		$\{b,e\}$	е	С	$\{c,d\}$	е
b	$\{b,e\}$	е	С	$\{c,d\}$	е	b		е	е	С	$\{c,d\}$	е
С	С	С	С	С	С	С		С	С	С	С	С
d	$\{c,d\}$	$\{c,d\}$	С	d	$\{c,d\}$	d	!	$\{c,d\}$	$\{c,d\}$	С	d	$\{c,d\}$
е	е	е	С	$\{c,d\}$	е	е		е	е	С	$\{c,d\}$	е

Then *S* is a Γ -semihypergroup [42]. We have (S, Γ, \leq) is an ordered Γ -semihypergroup where the order relation \leq is defined by:

$$\leq := \{(a,a), (a,b), (a,c), (a,e), (b,b), (b,c), (b,e), (c,c), (d,c), (d,d), (e,c), (e,e)\}.$$

The covering relation and the figure of *S* are given by:

$$= \{(a, b), (b, e), (d, c), (e, c)\}$$

$$c \\ e \\ b \\ a \\ d$$

We can easily verify that *S* is a regular ordered Γ -semihypergroup.

 \prec

Lemma 7. Every Γ -hyperideal I of a regular ordered Γ -semihypergroup (S, Γ, \leq) is a regular sub Γ -semihypergroup of S.

Proof. Let $a \in I$. Since *S* is a regular ordered Γ-semihypergroup, there exist $x \in S$, α , β , γ , $\delta \in \Gamma$ such that $a \leq a\alpha x\beta a \leq a\alpha x\beta a\gamma x\delta a = a\alpha (x\beta a\gamma x)\delta a$. Since *I* is a Γ-hyperideal of *S*, it follows that $x\beta a\gamma x \subseteq S\Gamma I\Gamma S \subseteq I$. Thus, $a \leq t$ for some $t \in a\alpha (x\beta a\gamma x)\delta a \subseteq a\Gamma I\Gamma a$. So, we have $a \in (a\Gamma I\Gamma a]_I$. Therefore, *I* is a regular sub Γ-semihypergroup of *S*.

Theorem 2. If *I* and *J* are regular Γ-hyperideals of an ordered Γ-semihypergroup (S, Γ, \leq) , then $I \cap J$ is also a regular Γ-hyperideal of *S*.

Proof. Let *I* and *J* are regular Γ-hyperideals of *S*. By Lemma 1, $I \cap J$ is a Γ-hyperideal of *S*. By Lemma 7, *I* and *J* are regular sub Γ-semihypergroups of *S*. Now, let $a \in I \cap J$. Then, $a \leq a\alpha x\beta a$ and $a \leq a\gamma y\delta a$ for some $x, y \in S$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. So, we have $a \leq a\alpha x\beta a \leq (a\alpha x\beta a)\mu s\lambda(a\gamma y\delta a) = a\alpha(x\beta a\mu s\lambda a\gamma y)\delta a$. Since *I* and *J* are Γ-hyperideals of *S*, we obtain $x\beta a\mu s\lambda a\gamma y \subseteq I \cap J$. Thus, we have $a \leq t$ for some $t \in a\alpha(x\beta a\mu s\lambda a\gamma y)\delta a \subseteq a\Gamma(I \cap J)\Gamma a$ which implies that $a \in (a\Gamma(I \cap J)\Gamma a]_I$. Hence, there exists $z \in I \cap J$ such that $a \leq a\alpha z\delta a$. Therefore, $I \cap J$ is a regular sub Γ-semihypergroup of *S*.

We now prove the following theorem which is the crucial theorem in the establishment of our main theorems.

Theorem 3. An ordered Γ -semihypergroup (S, Γ, \leq) is regular if and only if for every right Γ -hyperideal R and every left Γ -hyperideal L of S, we have $R \cap L = (R\Gamma L]$.

Proof. Let *R* be a right Γ -hyperideal and *L* a left Γ -hyperideal of *S*. As $R\Gamma L \subseteq S\Gamma L \subseteq L$ and $R\Gamma L \subseteq R\Gamma S \subseteq R$, we have $R\Gamma L \subseteq R \cap L$. So, $(R\Gamma L] \subseteq (R \cap L] \subseteq (R] \cap (L] \subseteq R \cap L$. Let *S* be regular; we need to prove that $R \cap L \subseteq (R\Gamma L]$. Since *S* is regular, we have

$$R \cap L \subseteq ((R \cap L)\Gamma S\Gamma(R \cap L)] \subseteq (R\Gamma S\Gamma(R \cap L)] \subseteq (R\Gamma S\Gamma L] \subseteq (R\Gamma L].$$

Conversely, suppose that $R \cap L = (R\Gamma L]$ for any right Γ -hyperideal R and any left Γ -hyperideal L of S. Let $a \in S$. Since $a \in R_S(a)$ and $a \in L_S(a)$, it follows that $a \in R_S(a) \cap L_S(a)$. By hypothesis, we have that

$$a \in (R_S(a)\Gamma L_S(a)] = ((a \cup a\Gamma S]\Gamma(a \cup S\Gamma a)]$$

$$\subseteq (a\Gamma a \cup a\Gamma S\Gamma a \cup a\Gamma S\Gamma S\Gamma a] \subseteq (a\Gamma a \cup a\Gamma S\Gamma a].$$

Hence, $a \leq t$ for some $t \in a\Gamma a \cup a\Gamma S\Gamma a$. If $u \in a\Gamma S\Gamma a$, then $a \leq a\alpha x\beta a$ for some $x \in S$, $\alpha, \beta \in \Gamma$. Thus, we have $a \in (a\Gamma S\Gamma a]$. Therefore, *S* is a regular ordered Γ -semihypergroup. If $u \in a\Gamma a$, then $a \leq a\alpha a \leq a\alpha (a\beta a)$. So, we have $a \in (a\Gamma S\Gamma a]$. Therefore, *S* is regular.

Now, we obtain the following corollaries.

Corollary 3. *If* (S, Γ, \leq) *is a regular ordered* Γ *-semihypergroup, then* $S = (S\Gamma S]$ *.*

Corollary 4. An ordered Γ -semihypergroup *S* is called fully Γ -hyperidempotent if every Γ -hyperideal of *S* is idempotent. If *S* is a regular ordered Γ -semihypergroup, then *S* is fully Γ -hyperidempotent.

Theorem 4. Let (S, Γ, \leq) be a regular ordered Γ -semihypergroup. Then, *B* is a bi- Γ -hyperideal of *S* if and only if there exists a right Γ -hyperideal *R* and a left Γ -hyperideal *L* of *S* such that $B = (R\Gamma L]$.

Proof. Let *S* be a regular ordered Γ -semihypergroup and *B* a bi- Γ -hyperideal of *S*. First, we show that $(B\Gamma S]$ is a right Γ -hyperideal of *S*. Let $y \in S$ and $x \in (B\Gamma S]$. Then, there exist $b \in (B\Gamma S]$, $c \in B$, $s \in S$ and $\alpha \in \Gamma$ such that $x \leq b \leq c\alpha s$. Since *S* is an ordered Γ -semihypergroup, it follows that $x\beta y \leq b\beta y \leq b \leq (c\alpha s)\beta y \subseteq B\Gamma S$, where $\beta \in \Gamma$. Hence, $x\beta y \subseteq (B\Gamma S]$. If $y \leq x$, then $y \leq x \leq b$, and so $y \in (B\Gamma S]$. Therefore, $(B\Gamma S]$ is a right Γ -hyperideal of *S*. Similarly, we can prove that $(S\Gamma B]$ is a left Γ -hyperideal of *S*. Now, we prove that $B = ((B\Gamma S]\Gamma(S\Gamma B)]$. Since *S* is regular, it follows that $B \subseteq (B\Gamma S\Gamma B)$, for every $B \subseteq S$. Since *B* is a bi- Γ -hyperideal of *S*, it follows that $B\Gamma S\Gamma B \subseteq B$. So, we have $(B\Gamma S\Gamma B) \subseteq (B] = B$. Hence, $B = (B\Gamma S\Gamma B)$. By Corollary 3, we have $S = (S\Gamma S)$. Hence,

$$B = (B\Gamma S\Gamma B] = (B\Gamma (S\Gamma S]\Gamma B] = ((B]\Gamma ((S\Gamma S]]\Gamma B] = ((B\Gamma S\Gamma S]\Gamma B])$$
$$= ((B\Gamma S\Gamma S)\Gamma (B]] = ((B\Gamma S\Gamma S)\Gamma B] = ((B\Gamma S)\Gamma (S\Gamma B)].$$

Conversely, suppose that *R* is a right Γ -hyperideal and *L* a left Γ -hyperideal of *S* such that $B = (R\Gamma L]$. We prove that $(R\Gamma L]$ is a bi- Γ -hyperideal of *S*. We have

 $(R\Gamma L]\Gamma(R\Gamma L] \subseteq ((R\Gamma L)\Gamma(R\Gamma L)] = ((R\Gamma L\Gamma R)\Gamma L] \subseteq ((R\Gamma S\Gamma R)\Gamma L] \subseteq (R\Gamma L].$

Then, $(R\Gamma L]$ is a sub Γ -semihypergroup of *S*. Also, we have

$$\begin{aligned} (R\Gamma L]\Gamma S\Gamma (R\Gamma L) &= (R\Gamma L]\Gamma (S]\Gamma (R\Gamma L) \subseteq ((R\Gamma L)\Gamma S]\Gamma (R\Gamma L) \subseteq ((R\Gamma L)\Gamma S\Gamma (R\Gamma L)) \\ &\subseteq (R\Gamma (L\Gamma S)\Gamma R\Gamma L) \subseteq ((R\Gamma S)\Gamma R\Gamma L) \subseteq (R\Gamma R\Gamma L) \subseteq (R\Gamma S\Gamma L) \subseteq (R\Gamma L). \end{aligned}$$

Now, suppose that $y \in S$ and $x \in (R\Gamma L]$ such that $y \leq x$. Since $x \in (R\Gamma L]$, it follows that $x \leq a$ for some $a \in R\Gamma L$. Since $y \leq x$ and $x \leq a$, we get $y \leq a$. So, we have $y \in (R\Gamma L]$. Therefore, $(R\Gamma L]$ is a bi- Γ -hyperideal of S.

Theorem 5. An ordered Γ -semihypergroup (S, Γ, \leq) is regular if and only if for every right Γ -hyperideal R, every left Γ -hyperideal L and every bi- Γ -hyperideal B of S, we have $R \cap B \cap L \subseteq (R\Gamma B\Gamma L]$.

Proof. Let *R* be right Γ -hyperideal, *L* a left Γ -hyperideal and *B* a bi- Γ -hyperideal of *S*. By hypothesis, we have

$$\begin{split} R \cap B \cap L &\subseteq ((R \cap B \cap L)\Gamma S\Gamma(R \cap B \cap L)] \\ &\subseteq ((R \cap B \cap L)\Gamma S\Gamma(R \cap B \cap L)\Gamma S\Gamma(R \cap B \cap L)\Gamma S\Gamma(R \cap B \cap L)] \\ &\subseteq (R\Gamma S\Gamma B\Gamma S\Gamma B\Gamma S\Gamma L] = ((R\Gamma S)\Gamma(B\Gamma S\Gamma B)\Gamma(S\Gamma L)] \subseteq (R\Gamma B\Gamma L]. \end{split}$$

Conversely, suppose that $R \cap B \cap L \subseteq (R\Gamma B\Gamma L]$ for every right Γ -hyperideal R, every left Γ -hyperideal L and every bi- Γ -hyperideal B of S. Since S is a bi- Γ -hyperideal of S, we have $R \cap L = R \cap S \cap L \subseteq (R\Gamma S\Gamma L] \subseteq (R\Gamma L]$. By Theorem 3, S is regular.

Definition 6. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. An element $a \in S$ is said to be intra-regular if there exist $x, y \in S$, $\alpha, \beta, \gamma \in \Gamma$ such that $a \leq x\alpha a\beta a\gamma y$. An ordered Γ -semihypergroup S is called intra-regular if all elements of S are intra-regular.

Equivalent definitions:

- (1) $a \in (S\Gamma a\Gamma a\Gamma S]$, for all $a \in S$.
- (2) $A \subseteq (S\Gamma A\Gamma A\Gamma S]$, for all $A \subseteq S$.

Example 4. Let $S = \{a, b, c, d, e\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined as follows.

γ	а	b	С	d	е	β	а	b	С	d	е
а	$\{a,b\}$	$\{b,c\}$	С	$\{d,e\}$	е	а	$\{b,c\}$	С	С	$\{d, e\}$	е
b	$\{b,c\}$	С	С	$\{d,e\}$	е	b	С	С	С	$\{d, e\}$	е
С	С	С	С	$\{d,e\}$	е	С	С	С	С	$\{d, e\}$	е
d	$\{d,e\}$	$\{d,e\}$	$\{d, e\}$	d	е			$\{d,e\}$			
е	е	е	е	е	е			е			

Then *S* is a Γ -semihypergroup [41]. We have (S, Γ, \leq) is an ordered Γ -semihypergroup where the order relation \leq is defined by:

$$\leq := \{(a,a), (a,b), (a,c), (b,b), (b,c), (c,c), (d,d), (e,e)\}.$$

The covering relation and the figure of *S* are given by:

$$\prec = \{(a,b), (b,c)\}.$$

Then, by routine calculations, (S, Γ, \leq) is intra-regular.

Theorem 6. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. Then, *S* is intra-regular if and only if for every right Γ -hyperideal *R* and every left Γ -hyperideal *L* of *S*, we have

$$R \cap L \subseteq (L\Gamma R].$$

Proof. Let *R* be a right Γ-hyperideal and *L* a left Γ-hyperideal of *S*. Let *S* be intra-regular; we need to prove that $R \cap L \subseteq (L\Gamma R]$. Since *S* is intra-regular, we have

$$R \cap L \subseteq (S\Gamma(R \cap L)\Gamma(R \cap L)\Gamma S] \subseteq (S\Gamma L\Gamma R\Gamma S] \subseteq (L\Gamma R].$$

Conversely, suppose that $R \cap L \subseteq (L\Gamma R]$ for any right Γ -hyperideal R and any left Γ -hyperideal L of S. Let $a \in S$. Since $a \in R_S(a)$ and $a \in L_S(a)$, it follows that $a \in R_S(a) \cap L_S(a)$. By hypothesis, we have

$$a \in (L_S(a)\Gamma R_S(a)] = ((a \cup S\Gamma a]\Gamma(a \cup a\Gamma S)]$$

$$\subseteq (a\Gamma a \cup S\Gamma a\Gamma a \cup a\Gamma a\Gamma S \cup S\Gamma a\Gamma a\Gamma S).$$

Hence, $a \leq u$ for some $u \in a\Gamma a \cup S\Gamma a\Gamma a \cup a\Gamma a\Gamma S \cup S\Gamma a\Gamma a\Gamma S$. If $u \in S\Gamma a\Gamma a\Gamma S$, then $a \leq x\alpha a\beta a\gamma y$ for some $x, y \in S$, $\alpha, \beta, \gamma \in \Gamma$. Thus, we have $a \in (S\Gamma a\Gamma a\Gamma S]$. Therefore, S is intra-regular. If $u \in a\Gamma a$, then $a \leq a\alpha a \leq a\alpha (a\beta a) \leq a\alpha a\beta a\gamma a$. So, we have $a \in (S\Gamma a\Gamma a\Gamma S]$. Hence, S is intra-regular. If $u \in S\Gamma a\Gamma a$, then $a \leq x\alpha a\beta a \leq x\alpha (x\gamma a\delta a)\beta a$ for some $x \in S$, $\alpha, \beta, \gamma, \delta \in \Gamma$. So, we have $a \leq s\gamma a\delta a\beta a$. Hence, $a \in (S\Gamma a\Gamma a\Gamma S]$. If $u \in a\Gamma a\Gamma S$, in a similar way, we obtain $a \in (S\Gamma a\Gamma a\Gamma S]$. Therefore, S is intra-regular.

Corollary 5. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. Then, the following statements are equivalent:

- (1) *S* is regular and intra-regular.
- (2) $(R\Gamma L] = R \cap L \subseteq (L\Gamma R]$ for every right Γ -hyperideal R and every left Γ -hyperideal L of S.

Proof. It is immediately followed by Theorem 3 and Theorem 6.

Theorem 7. An ordered Γ -semihypergroup (S, Γ, \leq) is intra-regular if and only if for every right Γ -hyperideal R, every left Γ -hyperideal L and every bi- Γ -hyperideal B of S, we have $R \cap B \cap L \subseteq (L\Gamma B\Gamma R]$.

Proof. The proof is similar to the proof of Theorem 5.

By routine verification we have the following theorem.

Theorem 8. An ordered Γ -semihypergroup (S, Γ, \leq) is both regular and intra-regular if and only if for every right Γ -hyperideal R, every left Γ -hyperideal L and every bi- Γ -hyperideal B of S, we have $R \cap B \cap L \subseteq (B\Gamma R\Gamma L]$.

Our main aim in the following is to introduce and study the notion of simple ordered Γ -semihypergroups. Also, we characterize this type of ordered Γ -semihypergroups in terms of Γ -hyperideals.

Definition 7. An ordered Γ -semihypergroup (S, Γ, \leq) is said to be left (resp. right) simple if *S* has no proper left (resp. right) Γ -hyperideals. *S* is called a simple ordered Γ -semihypergroup if it does not contain proper Γ -hyperideals, i.e., for any Γ -hyperideal $I \neq \emptyset$ of *S*, we have I = S.

Lemma 8. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. Then, the following assertions hold:

- (1) *S* is left simple if and only if $(S\Gamma a] = S$, for all $a \in S$.
- (2) *S* is right simple if and only if $(a\Gamma S] = S$, for all $a \in S$.

Proof. (1): Suppose that *S* is a left simple ordered Γ -semihypergroup and $a \in S$. We have

$$S\Gamma(S\Gamma a] = (S]\Gamma(S\Gamma a] \subseteq (S\Gamma(S\Gamma a)] = ((S\Gamma S)\Gamma a)] \subseteq (S\Gamma a].$$

Now, suppose that $x \in (S\Gamma a]$ and $y \in S$ such that $y \leq x$. Since $x \in (S\Gamma a]$, it follows that $x \leq u$ for some $u \in S\Gamma a$. Since $y \leq x$ and $x \leq u$, we get $y \leq u$. So, we have $y \in (S\Gamma a]$. Hence, $(S\Gamma a]$ is a left hyperideal of *S*. Since *S* is a left simple ordered Γ -semihypergroup, we have $(S\Gamma a] = S$.

Conversely, suppose that $(S\Gamma a] = S$ for all $a \in S$. Let *L* be a left hyperideal of *S* and $x \in L$. By assumption, we have $(S\Gamma x] = S$. If $s \in S$, then $s \in (S\Gamma x]$. So, $s \leq v$ for some $v \in S\Gamma x \subseteq L$. Since *L* is a left Γ -hyperideal of *S*, we have $s \in L$, and so L = S. Therefore, *S* is a left simple ordered Γ -semihypergroup.

(2): The proof is similar to the proof of (1).

Theorem 9. If (S, Γ, \leq) is a left (right) simple ordered Γ -semihypergroup, then S is a simple ordered Γ -semihypergroup.

Proof. It is straightforward.

Theorem 10. An ordered Γ -semihypergroup (S, Γ, \leq) is left and right simple if and only if for every $a \in S$, we have $(S\Gamma a\Gamma S] = S$.

Proof. Let *S* be left and right simple and $a \in S$. By Lemma 8, $a \in (S\Gamma a]$ and $a \in (a\Gamma S]$. We have

 $a \in (a\Gamma S] \subseteq ((S\Gamma a]\Gamma S] \subseteq (S\Gamma a\Gamma S],$

and so $S \subseteq (S\Gamma a\Gamma S]$. Thus, $(S\Gamma a\Gamma S] = S$.

Conversely, suppose that $(S\Gamma a\Gamma S] = S$ for every $a \in S$. Let *I* be a Γ -hyperideal of *S* such that $I \subsetneq S$. Let $x \in I$. By assumption, we have $s \leq s\mu x\lambda s$ for every $s \in S$ and $\mu, \lambda \in \Gamma$. We have

$$s\mu x\lambda s \subseteq S\Gamma I\Gamma S \subseteq (S\Gamma I\Gamma S] \subseteq (I] = I.$$

Then, $S \subseteq I$, a contradiction. Therefore, *S* has no proper left and right Γ -hyperideals. This completes the proof.

In what follows, we characterize simple ordered Γ -semihypergroups in terms of bi- Γ -hyper-ideals.

Theorem 11. An ordered Γ -semihypergroup (S, Γ, \leq) is left and right simple if and only if *S* does not contain proper bi- Γ -hyperideals.

Proof. Suppose that *S* is a left and right simple ordered Γ -semihypergroup and *B* a bi- Γ -hyperideal of *S*. We claim that $S \subseteq B$. Consider $s \in S$ and $x \in B$. Since *S* is left simple, we get $S = (x \cup S\Gamma x]$. We can consider the following two cases:

Case 1. If $s \le x$, then we have $s \in B$.

Case 2. Let $s \in (u\gamma x]$ for some $u \in S$ and $\gamma \in \Gamma$. By hypothesis, *S* is a right simple ordered Γ -semihypergroup. Then, we have $S = (x \cup x\Gamma S]$. Since $u \in S$, we have $u \leq x$ or $u \in (x\delta w]$ for some $w \in S$ and $\delta \in \Gamma$. By Lemma 8, we have $S = (x\Gamma S] = (S\Gamma x]$, and so $x \in (x\Gamma S] = (x\Gamma(S\Gamma x)] \subseteq (x\Gamma S\Gamma x)$. Then, *S* is a regular ordered Γ -semihypergroup. Thus, there exists $a \in S$ and $\alpha, \beta \in \Gamma$ such that $x \in (x\alpha a\beta x]$. If $u \leq x$, then we have

$$(u\gamma x] \subseteq (x\gamma x] \subseteq (x\gamma x\alpha a\beta x] \subseteq (B\Gamma S\Gamma B] \subseteq B,$$

and so $s \in B$. If $u \in (x \delta w]$, then we have

 $(u\gamma x] \subseteq (x\delta w\gamma x] \subseteq (B\Gamma S\Gamma B] \subseteq B,$

and so $s \in B$. Therefore, $S \subseteq B$.

Conversely, suppose that *S* does not contain proper bi- Γ -hyperideals. Let *L* be a left Γ -hyperideal of *S*. Then, *L* is a bi- Γ -hyperideal of *S*. By assumption, we have *S* = *L*. Therefore, *S* is a left simple ordered Γ -semihypergroup. Similarly, we can show that *S* is a right simple ordered Γ -semihypergroup.

In the following, we study some properties of bi- Γ -hyperideals and minimal bi- Γ -hyperideals in ordered Γ -semihypergroups.

Definition 8. An ordered Γ -semihypergroup (S, Γ, \leq) is said to be B-simple if S does not contain any proper bi- Γ -hyperideals. A bi- Γ -hyperideal C of S is called a minimal bi- Γ -hyperideal of S if C does not properly contain any bi- Γ -hyperideal of S.

Theorem 12. Let *B* be a bi- Γ -hyperideal of an ordered Γ -semihypergroup (S, Γ, \leq) . Then, $(u\Gamma B\Gamma v)$ is a bi- Γ -hyperideal of *S* for every $u, v \in S$. In particular, $(u\Gamma S\Gamma v)$ is a bi- Γ -hyperideal of *S* for every $u, v \in S$.

Proof. The proof is similar to the proof of Theorem 2.2 in [8].

Corollary 6. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. Then, S is B-simple if and only if $(u\Gamma S\Gamma u] = S$ for all $u \in S$.

Proof. The necessity is obvious. For the sufficiency, let $(u\Gamma S\Gamma u] = S$ for all $u \in S$. We have

$$(u\Gamma S\Gamma u] \subseteq (S\Gamma u] \subseteq S$$
 and $(u\Gamma S\Gamma u] \subseteq (u\Gamma S] \subseteq S$.

By assumption, we have $(S\Gamma u] = S$ and $(u\Gamma S] = S$ for all $u \in S$. Now, let *B* is a bi- Γ -hyperideal of *S* and $b \in B$. Then, $(S\Gamma b] = S = (b\Gamma S]$. So, we have

$$S = (b\Gamma S] = (b\Gamma (b\Gamma S)] \subseteq (b\Gamma S\Gamma b] \subseteq (B\Gamma S\Gamma B) \subseteq (B] \subseteq B.$$

This completes the proof.

Corollary 7. Let (S, Γ, \leq) be an ordered Γ -semihypergroup. If C is a minimal bi- Γ -hyperideal of S and B a bi- Γ -hyperideal of S, then $C = (c\Gamma B\Gamma d]$ for every $c, d \in C$.

Proof. By Theorem 12, $(c\Gamma B\Gamma d]$ is a bi- Γ -hyperideal of *S*. Since *C* is a minimal bi- Γ -hyperideal of *S* and $(c\Gamma B\Gamma d] \subseteq (C\Gamma B\Gamma C] \subseteq (C\Gamma S\Gamma C] \subseteq (C] \subseteq C$, we obtain $C = (c\Gamma B\Gamma d]$.

At the end of the paper, we prove the following theorem.

Theorem 13. Let *B* be a bi- Γ -hyperideal of an ordered Γ -semihypergroup (S, Γ, \leq) . Then, *B* is a minimal bi- Γ -hyperideal of *S* if and only if *B* is *B*-simple.

Proof. Let *B* be a minimal bi-Γ-hyperideal of *S*. Then, *B* is a sub Γ-semihypergroup of *S*. Now, let *C* be a bi-Γ-hyperideal of *B*. Then, $C\Gamma B\Gamma C \subseteq C$. Put $K = (C\Gamma B\Gamma C]_C$. Then, $\emptyset \neq K \subseteq C \subseteq B$. Now, we prove that *K* is a bi-Γ-hyperideal of *S*. Let $k_1, k_2 \in K$, $x \in S$ and $\gamma, \delta \in \Gamma$. Then, $k_1 \leq c_1 \alpha_1 b_1 \beta_1 c'_1$ and $k_2 \leq c_2 \alpha_2 b_2 \beta_2 c'_2$ for some $c_1, c'_1, c_2, c'_2 \in C$, $b_1, b_2 \in B$ and $\alpha_1, \beta_1, \alpha_2, \beta_2 \in \Gamma$. So, we have

$$k_1\gamma k_2 \le c_1\alpha_1(b_1\beta_1c_1'\gamma c_2\alpha_2b_2)\beta_2c_2'$$

and

$$k_1 \gamma x \delta k_2 \leq c_1 \alpha_1 (b_1 \beta_1 c_1' \gamma x \delta c_2 \alpha_2 b_2) \beta_2 c_2'.$$

Since $b_1\beta_1c'_1\gamma c_2\alpha_2b_2 \subseteq B\Gamma S\Gamma B \subseteq B$, it follows that $k_1\gamma k_2 \subseteq K\Gamma K \subseteq C\Gamma C \subseteq C$. So, $k_1\gamma k_2 \subseteq (C\Gamma B\Gamma C]_C = K$. Hence, *K* is a sub Γ -semihypergroup of *S*. Since $b_1\beta_1c'_1\gamma x\delta c_2\alpha_2b_2 \subseteq B\Gamma S\Gamma B \subseteq B$, we get

$$c_1\alpha_1(b_1\beta_1c'_1\gamma x\delta c_2\alpha_2b_2)\beta_2c'_2 \subseteq C\Gamma B\Gamma C \subseteq C.$$

Since *C* is a bi- Γ -hyperideal of *B* and $k_1\gamma x\delta k_2 \subseteq K\Gamma S\Gamma K \subseteq B\Gamma S\Gamma B \subseteq B$, we obtain $k_1\gamma x\delta k_2 \subseteq C$. So, we have $k_1\gamma x\delta k_2 \subseteq (C\Gamma B\Gamma C]_C = K$. Therefore, $K\Gamma S\Gamma K \subseteq K$. Now, let $y \in (K]$. Then, $y \leq k$ for some $k \in K$. Since $k \in K$, there exist $c, c' \in C$, $b \in B$ and $\mu, \lambda \in \Gamma$ such that $k \leq c\mu b\lambda c'$. Since $c\mu b\lambda c' \subseteq C\Gamma B\Gamma C \subseteq C \subseteq B$ and *B* is a bi- Γ -hyperideal of *S*, we get $k \in B$. Since *B* is a bi- Γ -hyperideal of *S*, we have $y \in B$. So, $y \leq z$ for some $z \in c\mu b\lambda c' \subseteq C\Gamma B\Gamma C \subseteq C$. Since *C* is a bi- Γ -hyperideal of *B*, we have $y \in C$. So, we have $y \in (C\Gamma B\Gamma C]_C = K$. Therefore, *K* is a bi- Γ -hyperideal of *S*. Since *B* is a minimal bi- Γ -hyperideal of *S*, it follows that K = B. So, we have C = B. Therefore, *B* is *B*-simple.

Conversely, assume that *B* is *B*-simple. Let *C* be a bi- Γ -hyperideal of *S* such that $C \subseteq B$. Then, $B \cap C \neq \emptyset$. Let $c \in B \cap C$. By Theorem 12, $(c\Gamma B\Gamma c]$ is a bi- Γ -hyperideal of *B*. Since *B* is *B*-simple, we obtain $(c\Gamma B\Gamma c] = B$. Now, we have

$$B = (c\Gamma B\Gamma c] \subseteq (C\Gamma B\Gamma C] \subseteq (C\Gamma S\Gamma C] \subseteq (C] = C.$$

Hence, C = B. Therefore, *B* is a minimal bi- Γ -hyperideal of *S*.

References

- Abbasi M.Y., Basar A. On ordered quasi-Γ-ideals of regular ordered Γ-semigroups. Algebra, 2013, 2013, 1–7. doi:10.1155/2013/565848.
- [2] Abdullah S., Aslam M., Anwar T. A note on M-hypersystems and N-hypersystems in Γ-semihypergroups. Quasigroups Related Systems 2011, 19 (2), 169–172.
- [3] Abdullah S., Hila K., Aslam M. On bi-Γ-hyperideals in Γ-semihypergroups. UPB Sci. Bull. Series A. 2012, 74 (4), 79–90.
- [4] Anvariyeh S.M., Mirvakili S., Davvaz B. On Γ-hyperideals in Γ-semihypergroups. Carpathian J. Math. 2010, 26 (1), 11–23.
- [5] Anvariyeh S.M., Mirvakili S., Davvaz B. Pawlak's approximations in Γ-semihypergroups. Comput. Math. Appl. 2010, 60 (1), 45–53.
- [6] Chinram R. Rough prime ideals and rough fuzzy prime ideals in Γ-semigroups. Commun. Korean Math. Soc. 2009, 24 (3), 341–351.
- [7] Chinram R., Tinpun K. Isomorphism theorems for Γ-semigroups and ordered Γ-semigroups. Thai J. Math. 2009, 7
 (2), 231–241.

- [8] Chinram R., Tinpun K. A note on minimal bi-ideals in ordered Γ-semigroups. International Mathematical Forum 2009, 4 (1), 1–5.
- [9] Corsini P. Prolegomena of Hypergroup Theory. Second edition, Aviani Editore, Italy, 1993.
- [10] Corsini P., Leoreanu V. Applications of Hyperstructure Theory. Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
- [11] Chvalina J. Commutative hypergroups in the sence of Marty and ordered sets. In: Proc. of the Summer School in General Algebra and Ordered Sets, Olomouck, 1994, 19–30.
- [12] Davvaz B., Leoreanu-Fotea V. Hyperring Theory and Applications. International Academic Press, USA, 2007.
- [13] Davvaz B., Leoreanu-Fotea V. Structures of fuzzy Γ-hyperideals of Γ-semihypergroups. J. Mult.-Valued Logic Soft Comput. 2012, 19, 519–535.
- [14] Davvaz B., Omidi S. Basic notions and properties of ordered semihyperrings. Categ. Gen. Algebr. Struct. Appl. 2016, 4 (1), 43–62.
- [15] Davvaz B., Corsini P., Changphas T. Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder. European J. Combin. 2015, 44, 208–217.
- [16] Dutta T.K., Adhikari N.C. On prime radical of Γ-semigroup. Bull. Calcutta Math. Soc. 1994, 86 (5), 437–444.
- [17] Dutta T.K., Adhikari N.C. On partially ordered Γ-semigroup. Southeast Asian Bull. Math. 2004, 28 (6), 1021– 1028.
- [18] Good R.A., Hughes D.R. Associated groups for a semigroup. Bull. Amer. Math. Soc. 1952, 58, 624–625.
- [19] Gu Z., Tang X. Ordered regular equivalence relations on ordered semihypergroups. J. Algebra 2016, 450, 384–397.
- [20] Heidari D., Davvaz B. On ordered hyperstructures. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2011, 73 (2), 85–96.
- [21] Heidari D., Dehkordi S.O., Davvaz B. Γ-semihypergroups and their properties. UPB Sci. Bull. Series A 2010, 72 (1), 197–210.
- [22] Hila K. On quasi-prime, weakly quasi-prime left ideals in ordered Γ-semigroups. Math. Slovaca 2010, 60, 195–212.
- [23] Hila K., Davvaz B., Dine J. Study on the structure of Γ-semihypergroups. Comm. Algebra 2012, 40 (8), 2932– 2948.
- [24] Howie J. Fundamentals of Semigroup Theory. Oxford University Press, New York, 1995.
- [25] Iampan A. Characterizing ordered bi-ideals in ordered Γ -semigroups. Iran. J. Math. Sci. Inform. 2009, 4 (1), 17-25.
- [26] Kehayopulu N. On ordered Γ-semigroups. Sci. Math. Jpn. 2010, 71 (2), 179–185.
- [27] Kehayopulu N. On prime, weakly prime ideals in ordered semigroups. Semigroup Forum 1992, 44, 341–346.
- [28] Kehayopulu N., Tsingelis M. On subdirectly irreducible ordered semigroups. Semigroup Forum 1995, 50, 161– 177.
- [29] Kehayopulu N., Tsingelis M. Pseudoorder in ordered semigroups. Semigroup Forum 1995, 50, 389–392.
- [30] Kondo M., Lekkoksung N. On intra-regular ordered Γ-semihypergroups. Int. J. Math. Analysis, 2013, 7 (28), 1379–1386.
- [31] Kwon Y.I. The filters of the ordered Γ-semigroups. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 1997, 4, 131–135.
- [32] Kwon Y.I., Lee S.K. On weakly prime ideals of ordered Γ-semigroups. Commun. Korean Math. Soc. 1998, 13 (2), 251–256.
- [33] Kwon Y.I., Lee S.K. Some special elements in ordered Γ-semigroups. Kyungpook Math. J. 1996, 35 (3), 679–685.
- [34] Marty F. Sur une generalization de la notion de groupe. 8^{iem} Congres Math. Scandinaves, Stockholm, Sweden, 1934, 45–49.

- [35] Omidi S., Davvaz B., Corsini P. Operations on hyperideals in ordered Krasner hyperrings. An. Ştiinţ Univ. "Ovidius" Constanţa Ser. Mat. 2016, 24 (3), 275–293.
- [36] Pibaljommee B., Davvaz B. *Characterizations of (fuzzy) bi-hyperideals in ordered semihypergroups*. J. Intell. Fuzzy Systems 2015, **28**, 2141–2148.
- [37] Sen M.K., Saha N.K. On Γ-semigroup I. Bull. Calcutta Math. Soc. 1986, 78, 180–186.
- [38] Sen M.K., Seth A. On po-T-semigroups. Bull. Calcutta Math. Soc. 1993, 85, 445–450.
- [39] Tang J., Davvaz B., Luo Y.F. Hyperfilters and fuzzy hyperfilters of ordered semihypergroups. J. Intell. Fuzzy Systems 2015, 29 (1), 75–84.
- [40] Vougiouklis T. Hyperstructures and Their Representations. Hadronic Press, Palm Harbor, Florida, 1994.
- [41] Yaqoob N., Aslam M. Prime (m, n) bi- Γ -hyperideals in Γ -semihypergroups. Appl. Math. Inf. Sci. 2014, 8 (5), 2243–2249.
- [42] Yaqoob N., Aslam M., Davvaz B., Ghareeb A. Structures of bipolar fuzzy Γ-hyperideals in Γ-semihypergroups. J. Intell. Fuzzy Systems 2014, 27, 3015–3032.

Received 07.09.2018

Оміді С., Давваз Б., Хіла К. Характеристики регулярних і внутрішньо-регулярних впорядкованих Г-напівгіпергруп в термінах bi-Г-гіперідеалів // Карпатські матем. публ. — 2019. — Т.11, №1. — С. 136–151.

Поняття Г-напівгіпергруп є узагальненням напівгруп, узагальненням напівгіпергруп і узагальненням Г-напівгруп. У даній роботі досліджується поняття бі-Г-гіперідалів у впорядкованих Г-напівгіпергрупах і досліджуються деякі властивості цих бі-Г-гіперідеалів. Також ми визначаємо і використовуємо поняття регулярно впорядкованих Г-напівгіпергруп для вивчення деяких класичних результатів і властивостей у впорядкованих Г-напівгіпергрупах.

Ключові слова і фрази: упорядковані Г-напівгіпергрупи, Г-гіперідеали, bi-Г-гіперідеали.