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In this paper, the short algorithmic formulas for computations of the crystals thermal and kinetic properties
are given. These formulas are fulfilled the case of isotropic crystals for any one of dispersion laws of current
carriers, where these carriers can be scattered by all kinds of the crystal lattice defects. In the paper, these
algorithmic formulas were used to calculations the important properties of crystals with the nonparabolic Kane’s
dispersion law of current carriers. Here, the passing from these non-parabolic dispersion law crystals to the

parabolic dispersion law crystals was also described.
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I. Thermal properties of the charge
carriers gas in crystals

At the equilibrium state, the free charge carriers are
moving chaotically, their average energy remains
constant and the entropy of all the set of current carriers
has its maximum value. This is the thermodynamic
equilibrium gas of the charge carriers. This gas is
described by the Gibbs grand thermodynamic potential
Q. This potential, as it was shown in the cited literature
[1-5], is described by the following general algorithmic
formula:

G(e)

()]

Q= —Vog de =-V O(f:G(g) fo(e)de (1th)

U = 0~ (42) 5= (422) 7= v-nge,1)-

du daT

In this formula, V is the crystal volume, f,(¢) is the

known Fermi-Dirac function, G(e) = [ g(e)de, and

g(e) = % is the density of the energy states (DOS) of

charge carriers lying in allowed band, ¢ is the energy of
quantum particle, it depends on the quasi-momentum
vector p. The function e(p) is called the dispersion law.
According to the quantum theory laws, the exact
dispersion relation is a periodic and even function of the
vector p.

The thermal properties of quantum gases, via the
Gibbs grand thermodynamic potential Q (1th), are
described by the following set of general algorithmic
formulas:
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Fo= 0= (2) w=Von, ) (g + 1) (4th)
Gp = — (%)Tu =V JOuT) =V -n@,T) p (5th)
Q=-V fooo %de =-V fooo G(e)fo(e)de, (6th)
Su= (@), = =5 e ((Gn - w) (7
Crn = (52). (8th)

PV = —Q, = kTIn(E,) = N, j EZE‘EB (9th)

== (), =1 6@ (-5 de =, T) = n(u, T).

%4 v\du

In these formulas, n(u*, T) denotes the concentration
of crystal current carriers’ gas, and besides, the following
general notations were used for an integral:

](i,‘u-,T) _ f0°° Si . G(S) (—%) dE,

_ -1
where fy(e) = (exp(%)+1) is the known Fermi-
Dirac function.
Definitions and physical meaning of the
thermodynamic potentials (2th)-(10th) are given in the
cited works [1-5].

Il. Kinetic properties of the conducting
crystals

Kinetic properties of the conducting crystals are
determined by the concentration of the free charge
carriers in the crystals and by the character of their
motion throughout the crystal interstitial site.

In equilibrium state, the free charge carriers are
moving chaotically, their average energy is conserved,
and the entropy of the system of these carriers obtains its
maximum value. This is an equilibrium gas of the charge
carriers. Necessary conditions for the system to be in this
state are the constant values of temperature and chemical
potential in all its points. If even one of these conditions
is not satisfied, then there the non-equilibrium processes
result in the crystal. These non-equilibrium processes are
trying to bring the system to the thermodynamic
equilibrium state.

To remove the crystal out from equilibrium, the

electric field E, the temperature gradient V;T or the
chemical potential gradient Vzpu must exists in the
crystal. These fields may exist simultaneously in the
crystal. In the presence of these fields in the crystal there
are the fluxes of mass, energy and charge — these are
described by the first and second laws of nonequilibrium
thermodynamics:

(10th)

U oo o
e vaTE
I (the first law of nonequilibrium
thermodynamics)
as, 1 B qv;T
aa "1 )

II (the second law of nonequilibrium
thermodynamics)

In the above laws, 7, G are the vectors of the electric
current density and heat flow, and U,, S, are respectively
the internal energy and entropy of the system.

In statistical physics it was shown that when there is
an increase of the entropy in the thermodynamic system,
the processes of heat and electric charge transport
(processes of heat and electric conduction) occur.
Conversely, when the processes of heat and electric
charge transport occur in the system, its entropy inreases.
Thus, we have:

ds, 1 (ﬁﬁ ~ qva>

a1\

>0

In nonequilibrium thermodynamics, it was shown
that under the above conditions there the electric charge
and heat transport processes begin to exist in the crystal.
These processes are described by the following
generalized electrical and heat conduction equations:

= (o (B)E — (Bu(B))V;T, 1)

G = (Yi(B))E — (hy(B))V:T. )

Equations (1), (2) — these are well known in non-
equilibrium thermodynamics generalized equations of
electrical and heat conduction. They describe the
response of conducting medium to the action of the
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electric field, temperature gradient and magnetic field.
Coefficients in these equations,
(o (B)), (B (B)), (Vi (B)), (hix(B)) — these are the
tensors of kinetic coefficients. These tensors describe
numerous matter properties of the conducting medium (i.
e., this crystal).

The tensors of Kkinetic coefficients and the
coefficients of different phenomena given in this work
are calculated with the use Gibbs grand canonical
thermodynamic potential Q. This potential is detailed
described in the works [1-5]. It is given as:

G(g)

e—u—Ap
(exp(Tpﬁ 1)

Q=-2v/[" de. (3)

In this formula, & is the charge carriers’ energy

dispersion law, and Au(p) is the change in the one
particle chemical potential by the action of these
perturbations. When the perturbations are absent,
Au(p) = 0 and then, this thermodynamic potential will
be equal to the classical Gibbs grand canonical
thermodynamic potential.

The value Au(p) was calculated in the works [1-5],
where it was shown that Au(p) is an odd function of the
vector p and it has an analytical dependence on the
dispersion law, chemical potential and magnetic
induction vector B.

The statistical equations (1), (2), that were obtained
with the use potential (3), via linear transformation may
take the following form:

E = (pi (B) + Ry8iB))J + (g (B) + Ny 834 B)V:T, (4)

q= (ﬂik(ﬁ) + Py 8y By)j — (Xik(E) + Si8u By ) Vi T- (5)

In these equations, &;; is the Levi-Civita symbol. It
has the following properties: 8;;; = 1, if "ikl" is an even
permutation of numbers “ikl”; &, = —1, if "ikl" is an
odd permutation of these numbers; "ikl" = 0, if any two
indices are equal. Besides, in these formulas a
summation is over the indices "l", which appear twice in
a single term.

The physical meaning of the statistical tensors in
equations (4) and (5) may be cleared up with the use of
the number phenomenological laws of non-equilibrium
thermodynamics. They describe all set of the
galvanomagnetic and thermomagnetic effects in
semiconductor crystals. Such analysis of these equations
shows that (p;), (@), (my), (xi) — these are
respectively, the material tensors of the resistivity,
Seebeck effect, Peltier effect and thermal conductivity,
and Ry, Ny, Pi, Sy — these are respectively, the
coefficients of the Hall effect, Nernst-Ettigshausen
effect, Nernst effect, Righi-Leduc effect.

All tensors and coefficients, according to the
Onsager principle for the kinetic coefficients, can be only

even functions of the induction magnetic vector, and the
tensor coefficients R;,, Ni, Py, Si;x — in isotropic
crystals — turn into scalars R, N, P, S.

Equations (4), (5) show that in the presence of a
magnetic field in a crystal, the relativity simple processes
of the electric and heat conduction will become more
complicated. In this case, the additional transverse
galvanomagnetic and thermomagnetic effects there
occur. The first effects are determinated by the action of
a magnetic field on the omic part of the electrical current,
and the second effects — by the action of this field on the
thermal part. According to the generalized equation of
electrical conduction (1), the electrical current is
composed of the omic part (that it is proportional to the
electric field strength) and the thermal part (that it is
proportional to the temperature gradient).

Therefore, this analysis shows that the generalized
electrical and heat conduction equations (4) and (5) of
the isotropic crystals may be written in the following
form:

E = (pu(B))] + R(B)[B xJ] + (u(B)) V;T + N(B)[B x V;T], ©6)

G = (mu(B))7 + P(B)[B xJ] - (xa(B)) Vs + S(B)[B x V:T]. )

In these equations, the vector products are denoted
by the square brackets.

All these kinetic tensors and coefficients in these
equations have pragmatic significance for modern solid-
state electronics, because they describe a number of the
crystal properties used in the fabrication of solid state
instruments and systems.

The formulas to calculations the tensors and kinetic
coefficients of equations (6), (7) for an arbitrary strength
of the magnetic induction vector in a crystal have very
complicated structure and symmetry.

When the magnetic induction vector is agreeing in its
direction with the one major axis of a crystal energy
valley, then these formulas will have the simplest
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structure and symmetry. In this case, all symmetric
tensors become diagonal and antisymmetric tensors
obtain their simplest form. In the isotropic crystals every
axis may be taken as a major axis.

For example, suppose that indices "123" denote the
coordinate axes of Cartesian system and the magnetic
induction vector is agreeing in direction with the "3"-
axis. This axis is aligned with the major axis of a crystal

energy valley and it is normal to the vectors E, and V=T

(where E,=E — (ﬁ) (%) V;T). Under these
conditions, all tensors and coefficients in equations (6),
(7) depend on the induction vector B;, then the
symmetric tensors become diagonal as well as
antisymmetric tensors will have their simplest form. In
this case, taking into consideration the structure of the
tensors in these equations, we find the following
formulas for these tensors and coefficients:

(pij(Bs)) = (pii(B2)dy)), (8)

p11(B3) = pa2(B3) =

R (CX )
en J(0,1,B3,u’,T)A(B3)’

1 j(o,0u°T)

p33(0) = e JoLe Ty

1 J(0,0,u°T)](0,2,B3,u°T)
R(B3) =~ Y ©)

zen  J(0,1,B3,u"T)?A(B3) '

(aij(B3)) = (aii(33)5ij): a11(B3) = ap,(B3) =

_k {/(1 1,B5, 0, T)
“ze OB wD T

_ k. [Jaium)
(as3(0)) = ze Loien

J(0,2,B5,u°,T)* [](1. 2,B5,1°,T)
J(0,1, B, p*, T)?

[JQ2B3u%T)

1
-] 'BZ}A(BJ

-, (10)

](0: 2; B3l I’l" T)

VB = () Toann s

(mij(B3)) =T - (a;;(B3)), (12)
P(B3) =T - N(B3), (13)
(xij(B3)) = (i)z T (X;j(B)), (14)
5(5)(51'1'131) = (Zk_e)z T - (Z4(B3)). (15)

Formulas (14), (15) contain the cumbersome and
difficult to analysis terms, thus they are presented here in
their general forms and their exactly descriptions are not
given in this work.

All formulas (8)-(15) have an analytical dependence

J(0,2,B3,1°,T)

_ J(L1,B3u’T)
Jo,1B3,u° T (11)

on the general algorithmic functional — it is given as:

ssrr= [ (e

8(B3) = 1+ (u(e)B3)?, (16)
and on the dimensionless function:

S BT o (16a)

A(By) =1 .
(B3) +J(i.j.33.u'.r) 3

This functional has the following evident properties:

JCo, Boy ", D ussyss = 53y (£) w9 26(e) (L) e = /@G- 21, (17)
S B b, Dy = 17 () w(©/6(e) (~22) de = Jijow', T, (18)
J0,0,,7) = [ G(e) (- 2) de = [ g(e)fode = n(w',T), G(e) = [} gle)de. (19)

Formulas (8)-(15), together with the functional (16)
and function A(B3), establish the general computational
algorithms for the important kinetic properties of one
energy valley crystals with an arbitrary isotropic

dispersion law of charge carriers &5 = e(p) where these
charge carriers are scattered by arbitrary defects of
crystal lattice.

To the calculations of the properties (8)-(15), in a
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case of the classical strong magnetic fields, when the
condition (uB3)? > 1 holds, the functional (17) should
be used. On the other hand, in a case of the weak
magnetic field, when the condition (uB;)? « 1 holds,
the functional (18) should be used to these calculations.
In this connection the formulas (8)-(15) may be called
the determining formulas.

The determining formulas make possible the
calculations of the kinetic properties of 2D crystals
(nanosheets with a microscopic thickness) and 1D
crystals (nanowires), where the space quantization of
charge carriers’ spectrum may occurs.

2.1 Kinetic properties of the isotropic crystals
immersed in a strong magnetic field

A magnetic field with induction B; is called the
classical strong if the condition (uB;3)? > 1 holds, that
is, 6(B3) = 1+ (uB3)? = (uB;)?. It is easy to show that
the substition values of §(B3) = 1+ (uB3)? = (uB;)?
into the appropriate functionals of different kinetic
potentials and current carriers mobilities (8)-(15) gives
the following formulas:

1 j(,-1,u°,T)

P11 = P22 = E ' 7(0,0, %, T) 4
_ 1 jooum)
p33(0) = on JoLTy (8)
1
_ _k pjaowp,m) |
N TSy DR |
_ ki
33 = 2o [}(0,0,u‘,T) ]’ (103)
_ (1Ot )?
N(B3)~ (Jootol ) (11a)
m;;(B3) =T - a;;(Bs), (12a)
P(B;) =T -N(B3), (133a)
](0, _11 ,Ll., T) 2
X11(B3) = X22(B3)~ (m ,
X33(B3) = x33(0), (14a)
0,0,u°T
Uy (Bs) = Up(Bs) = 28200 (15a)

J(O,~1,u%T)

Hence it follows that in a strong magnetic field, the
transverse magnetic resistance, Hall coefficient R,
Seebeck coefficient, Hall mobility Uy, carrier mobility
U, obtain their stationary values and the electron heat
conductivity and coefficient of transverse Nernst-
Ettingshausen effect are inversely proportional to the
square of magnetic induction.

Therefore, in strong magnetic fields, the known

electron heat conductivity freezing effect occurs and the
transversal Nernst-Ettingshausen effect is strongly
reduced. In the same conditions, the Seebeck effect
coefficient does not depend on the scattering
mechanisms, but this coefficient depends on the energy
spectrum structure. The Hall coefficient has the same
independence from the scattering mechanisms.

2.2 Kinetic properties of the isotropic crystals
immersed in a weak magnetic field, or when there is
no any magnetic field

A magnetic field B; is called the weak magnetic
field if it fulfils the condition (u(€)B;) « 1. Under this
condition is easy to show that the determining formulas
(8)-(15) for this case have the following form:

. 1 j(o,0,uT)

p(u,T) =—- ]—(0_1_Z._T), (8b)

. 1 j(0,0u°1)J(0,2,4°T)
RWST) = ™ e (%)

ey (R [Jaien
a(w,T) = (=) Vs w) (10b)

. _(k . JLLuST)  J(@,2u°T)

N, T) = (£) Uy, T) ot - 22, (1)
n(u,T) =Ta",T), (12b)
P, T) =TN",T), (13b)

ey = (KY T [1eiwn _ 1aiutm)?
x(p ’T)_(e) p(usT) [1(0,1,;1'1) (1(0,1,;1'1)) » (140)

. J©,2,4°1) . JOL,p"7)
UnW',T) =3 o imry U@ 1) =300 (15D)

These formulas show that a crystal being anisotropic
by the action of a magnetic field, will turn into an
isotropic crystal, when a magnetic induction vector B of
this field will fulfil the condition (u(¢)B;) < 1.

All algorithmic formulas (8a)-(15a) as well as (8b)-
(15b) have been calculated with the statistical methods
by application of the non-equilibrium Gibbs grand
canonical thermodynamic potential (3).

All these calculation were made under the following
general conditions of observation: current carriers in a
crystal have a reduced effective mass m,, for electrons,
or m,, for holes, and these carriers in an isotropic crystal
are characterized by the following energy dispersion law:

pE+py+ps _  p?
2mmy,  2mmy E(e), (20)

where m is the electronic mass, the quantity E(¢) is the
quantum mechanical energy function of the first-order
and it depends on the energy of current carriers in a
crystal.

Under these general conditions of calculations, the
general computational algorithmic functional for the
kinetic properties of a crystal (18) has the following
form:
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J@ojou, T) = U, TY Ne(DI( jy 1, T), (1)

3/2
Ne(T) = o= ()™, (22)
U(r,T) — the temperature dependent function, it has a
dimension of the mobility and it is described by the
following formula:

where the following notations are used:

u(r,T) = [%(UA6(O, )+ UpS(L,7) + U;6(2,1))](m,) T ~5/AT=1/2), (23)
where Uy, Uy, U; are the dimensional crystal constants, which depend on the nature of the crystal and the scattering
mode of current carriers in the crystal lattice, §(m,n) is the known Kronecker symbol, it has the following values:
d(m,n) =1 form =n, §(m,n) = 0 for m # n, r is called the scattering parameter and it has the following values:
r = 0 for the scattering by the acoustic phonons and point defects in the crystal lattice, » = 1 for the scattering by the
optical phonons when the crystal’s temperature is larger than the Debye temperature, r = 2 for the scattering by the
charged impurities (ions) of the crystal lattice; and the dimensionless integral 1(i, j, u*, T) is given as:
{ EQoTT=1/2+3/2)

()

Next we apply this functional to calculation of the Kinetic properties of isotropic crystals with narrow energy gaps
EG-

In these crystals, as a rule, the dispersion laws for electrons and holes are described by the Kane’s nonparabolic
band:

[oe]

L. af
IG@j,p,T) = [, x -=

dx

e (24)
dx

p2

2mm

E

—E@) =+ =c+pMS, BT = (25)

kT
"
For the dispersion relation (25) and actual scattering mechanisms, as were denoted by the scattering parameter r,

the functional (24) has the form:

o]

16w, T = [ x

i (BT TI=I/243/2)
(1+28(T)x?)2)

_dh
dx

(26)

) dx.

In this formula, B(T) is the non-parabolicity crystals with an isotropic nonparabolic energy band of

parameter which in crystals with a wide energy gap E;
can be far less than unity,thus the Kane’s nonparabolic
band (25) turns into the parabolic energy band. In this
case, all calculations will be for crystals with the
parabolic dispersion law.

Substituting the  functional (21) with the
dimensionless functional (26) into the algorithmic
formulas (8a)-(15a) and (8b)-(15b), we obtain a set of
calculation formulas for important kinetic properties of

I(i'j' ”.' T) = I(l']' ”.' T)(ﬁ‘:O) + (

= Fou W) + (a(i,j) — 4 —

.o . ~ Facij (7]
L+ (a()) =i = 4) =5 0= (T)

)

= Faq, (") (
where

_

Fagp®) = J;” x4 (=25

) dx.

(273a)

current carriers.

In crystals with a wide energy gap E;, the
nonparabolicity parameter S(T) < 1. In this connecton
we expand the dimensionless functional (i, j, u*,T) (26)
in a Taylor series of the little nonparabolicity parameter

B(T) = Z—T< 1 and we restrict ourselves to the linear
G
term of this expansion. Thus, we have:

dI(i,j,u"T)
— B(M)+...=
), B

DFaip+n W) - B(M+...= (27)

Here, in these formulas, the function Fy; j,(u") with
subscript
- 3. .. . ]
a(i,j) = (§+1+T]—E)
— this is known Fermi integral.
For non-degenerate current carriers the Fermi
integral (27a) has the following forms: Fy ;(p") =

10
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I'(a(l,j) + 1)e*, where T'(a(l,j)+ 1) is the gamma
function, then in this case we have:

1G,J,15,T) = T(a(i,) + 1) (1 + @(i.)) — i — 4) teeDD g (7)) -

u
I(a(i,j)+1) ) e (8)

In a case of a strong degeneracy (u° > +4), the Fermi integral (27a) according to the Sommerfeld approximation,
has the following form:

. oo 3 df . i
Faqp) = [, x*®) (— d—;) dx ~ (u*)®d),
thus, the dimensionless functional (26) is given as:

16,j,15,T) = WA+ (ai)) — i — 4)HuB(T)). (29)

Formulas (28), (29) give the possibility of calculate dispersion law, but the nonparabolicity parameter 8(T)
the crystal Kkinetic properties in cases of the classical should be set to zero, (T) = 0.
strong or weak magnetic field for the non-degenerate or
strong  degenerate  current  carriers  with  the
nonparabolical Kane’s dispersion law.

In a case of conducting crystals with a wide energy
gaps EG’ the nonparabo“city parameter ﬁ(’[‘) = k_T <« 1, Buthak Ya.S. - Professor, Doctor Of SCience;

Eg Wactawski T. - Adjunct, Doctor of Philosophy in

that is, B(T) — 0, Therefore, in such crystals the Physics

dispersion law will be a parabolic. Therefore, these
formulas may be used for the crystals with a parabolic
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BaxuBi NUTAHHA CTATUCTUYHOI TEOPil TEMJIOBUX i KiHETHYHUX
BJIACTHBOCTE KPHUCTAJIB

Hayionanonuii ynisepcumem «JIvgiecoxa nonimexuixay, m. Jlvsie, Yipaina, e-mail: jabudjak@ukr.net
2Kpaxiscvka nonimexnixa, m. Kpaxis, Ilonvwa, e-mail: tadeuszwaclawski0O@gmail.com

B npamiif poGoti mpuBeneHI JAKOHIYHI PO3PAXyHKOBI aNrOPUTMIidHI (OPMYIH TEIDIOBHX 1 KIHETHYHHX
BiacTUBOCTell KpuctamiB. Lli dopmymn oOrpyHTOBaHI Uit i30TPONHMX KPHUCTATiB 3 JOBUIBHUM 3aKOHOM
JMcITepcii Uit HOCIiB CTpyMy, SIKI pO3CIIOIOTBCS Ha JOBUIBHUX JedeKTax KpHCTamidHoi rpaTku. B poboti mi
anroput™miudi ¢opMynu Oyau BHKOPUCTaHI IS  PO3pPaxyHKIB  BaXIJIMBUX BJIACTHBOCTEH KPUCTANIiB 3
HemapaboaiyHuM 3akoHOM aucrepcii KelfHa amst HOCIIB cTpyMy i ONHMCAaHO LUIAX MEPEXOAy OO KPUCTATIB 3
napaboIIiYHUM 3aKOHOM JTUCIIepCii.

Kirouosi cioBa: motenmian [166ca, XiMigyHHI TOTEHIIIaM, EIEKTPONPOBIIHICTD, TEIUIONPOBITHICTE, TEH30D.
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