MULTIPLICATIVE CONVOLUTION ON THE ALGEBRA OF BLOCK-SYMMETRIC ANALYTIC FUNCTIONS

A. V. Zagorodnyuk and V. V. Kravtsiv

UDC 517.98

Abstract

We introduce and study a multiplicative convolution operator on the spectrum of the algebra of blocksymmetric analytic functions of bounded type on an infinite ℓ_{1}-sum of copies of the Banach space \mathbb{C}^{s}. The case of the algebra of block-symmetric functions on the space \mathbb{C}^{2} and the action of multiplicative convolution on its spectrum are studied separately.

Introduction

The algebra of analytic functions of bounded type in a complex Banach space X is a standard object of investigations in nonlinear functional analysis. They were studied in [2, 4, 16, 17] and many other publications. In $[1,3,5,6-8,10,15]$, the authors studied the spectra of the algebras of symmetric (invariant) analytic functions on the spaces $\ell_{p}, 1 \leq p \leq \infty, L_{\infty}$, and $L_{\infty}[0,+\infty) \cap L_{1}[0,+\infty)$ relative to the groups of isometric mappings of these spaces. The analytic functions on the ℓ_{p}-sums of finite-dimensional spaces ("blocks") symmetric relative to the permutation of these blocks (block-symmetric) were considered in [11-13].

Thus, in particular, the algebraic basis of block-symmetric polynomials in the space

$$
\mathbb{C}^{n} \otimes \ell_{p}=\oplus_{\ell_{p}} \mathbb{C}^{n}
$$

was described in [13]. In the present work, we study an analog of symmetric multiplicative convolution (see [6]) for the case of block-symmetric polynomials.

Note that the block-symmetric polynomials are used in combinatorics and have applications in the field of quantum mechanics, where they are also called the MacMahon symmetric polynomials, diagonal polynomials, or multisymmetric polynomials (see $[9,14]$).

1. Preliminarily Data

Let $\mathcal{X}_{\infty}^{s}=\oplus_{\ell_{1}} \mathbb{C}^{s}$ be an infinite ℓ_{1}-sum of copies of the Banach space \mathbb{C}^{s}. Then every element from $\bar{x} \in \mathcal{X}_{\infty}^{s}$ can be represented in the form of a sequence $\bar{x}=\left(x_{1}, \ldots, x_{n}, \ldots\right)$, where $x_{n} \in \mathbb{C}^{s}$, with the norm

$$
\|\bar{x}\|=\sum_{k=1}^{\infty} \sum_{i=1}^{s}\left|x_{k}^{i}\right| .
$$

Stefanyk Pre-Carpathian National University, Ivano-Frankivs'k, Ukraine.
Translated from Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 60, No. 3, pp. 107-114, August-October, 2017. Original article submitted May 2, 2017.

A polynomial P in the space $\mathcal{X}_{\infty}^{s}=\oplus_{\ell_{1}} \mathbb{C}^{s}$ is called block-symmetric (or vector-symmetric) if

$$
P\left(\left(\begin{array}{l}
x_{1}^{1} \\
x_{1}^{2} \\
\vdots \\
x_{1}^{s}
\end{array}\right)_{1}, \ldots,\left(\begin{array}{l}
x_{m}^{1} \\
x_{m}^{2} \\
\vdots \\
x_{m}^{s}
\end{array}\right)_{m}, \ldots\right)=P\left(\left(\begin{array}{l}
x_{1}^{1} \\
x_{1}^{2} \\
\vdots \\
x_{1}^{s}
\end{array}\right)_{\sigma(1)}, \ldots,\left(\begin{array}{l}
x_{m}^{1} \\
x_{m}^{2} \\
\vdots \\
x_{m}^{s}
\end{array}\right)_{\sigma(m)}, \ldots\right)
$$

for any substitution $\sigma \in \mathcal{G}$, where \mathcal{G} is the group of substitutions on the set \mathbb{N} and $\left(x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{s}\right)^{\top} \in \mathbb{C}^{s}$. By $\mathcal{P}_{v s}\left(\mathcal{X}_{\infty}^{s}\right)$ we denote the algebra of block-symmetric polynomials on \mathcal{X}_{∞}^{s}.

In [11], it was proved that the algebraic basis of the algebra $\mathcal{P}_{v S}\left(\mathcal{X}_{\infty}^{s}\right)$ is formed by the polynomials

$$
\begin{gathered}
H_{n}^{k_{1}, k_{2}, \ldots, k_{s}}\left(x^{1}, x^{2}, \ldots, x^{s}\right)=\sum_{i=1}^{\infty}\left(x_{i}^{1}\right)^{k_{1}}\left(x_{i}^{2}\right)^{k_{2}} \ldots\left(x_{i}^{s}\right)^{k_{s}} \\
k_{1}+k_{2}+\ldots+k_{s}=n
\end{gathered}
$$

By $\mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ we denote the algebra of block-symmetric analytic functions of bounded type. Let $\mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ be the spectrum of this algebra.

2. Multiplicative Convolution

In [6], the definition of multiplicative shift was introduced for elements of the space ℓ_{1}. In a similar way, we introduce the definition of multiplicative shift for elements of the space \mathcal{X}_{∞}^{s}.

Definition 1. Let $\left(x^{1}, x^{2}, \ldots, x^{s}\right)$ and $\left(y^{1}, y^{2}, \ldots, y^{s}\right) \in \mathcal{X}_{\infty}^{s}$. The multiplicative shift of the elements $\left(x^{1}, x^{2}, \ldots, x^{s}\right)$ and $\left(y^{1}, y^{2}, \ldots, y^{s}\right)$ is introduced as a vector formed by the elements $\left(x_{i}^{1} y_{j}^{1}, x_{i}^{2} y_{j}^{2}, \ldots, x_{i}^{s} y_{j}^{s}\right)^{\top}$ enumerated in any order, $i, j \in \mathbb{N}$, and denoted by $\left(x^{1}, x^{2}, \ldots, x^{s}\right) \diamond\left(y^{1}, y^{2}, \ldots, y^{s}\right)$.

Proposition 1. For any $\tilde{x}=\left(x^{1}, x^{2}, \ldots, x^{s}\right), \tilde{y}=\left(y^{1}, y^{2}, \ldots, y^{s}\right) \in \mathcal{X}_{\infty}^{s}$, the following assertions are true:
$\left(\mathbf{1}^{\circ}\right) \quad \tilde{x} \diamond \tilde{y} \in \mathcal{X}_{\infty}^{s}$ and $\|\tilde{x} \diamond \tilde{y}\| \leq\|\tilde{x}\| \cdot\|\tilde{y}\| ;$
$\left(2^{\circ}\right) \quad H_{n}^{k_{1}, \ldots, k_{s}}(\tilde{x} \diamond \tilde{y})=H_{n}^{k_{1}, \ldots, k_{s}}(\tilde{x}) H_{n}^{k_{1}, \ldots, k_{s}}(\tilde{y}) ;$
$\left(3^{\circ}\right)$ if P is an n-homogeneous polynomial on \mathcal{X}_{∞}^{s}, and \tilde{y} is a fixed element from \mathcal{X}_{∞}^{s}, then the function $\quad \tilde{x} \mapsto P(\tilde{x} \diamond \tilde{y})$ is an n-homogeneous polynomial.

Proof. It is clear that

$$
\begin{aligned}
\|\tilde{x} \diamond \tilde{y}\| & =\sum_{i, j=1}^{\infty} \sum_{k=1}^{s}\left|x_{i}^{k} y_{j}^{k}\right| \leq \sum_{i=1}^{\infty} \sum_{k=1}^{s}\left|x_{i}^{k}\right| \cdot \sum_{i=1}^{\infty} \sum_{k=1}^{s}\left|y_{j}^{k}\right| \\
& =\left\|\left(x^{1}, x^{2}, \ldots, x^{s}\right)\right\| \cdot\left\|\left(y^{1}, y^{2}, \ldots, y^{s}\right)\right\|=\|\tilde{x}\| \cdot\|\tilde{y}\| .
\end{aligned}
$$

Moreover,

$$
H_{n}^{k_{1}, \ldots, k_{s}}(\tilde{x} \diamond \tilde{y})=\sum_{i, j=1}^{\infty} \prod_{m=1}^{s}\left(x_{i}^{m} y_{j}^{m}\right)^{k_{m}}=\sum_{i=1}^{\infty} \prod_{m=1}^{s}\left(x_{i}^{m}\right)^{k_{m}} \cdot \sum_{j=1}^{\infty} \prod_{m=1}^{s}\left(y_{j}^{m}\right)^{k_{m}}
$$

Condition (3°) follows from the equality $\lambda(\tilde{x} \diamond \tilde{y})=(\lambda \tilde{x} \diamond \tilde{y})$.
The proposition is proved.
Let $\tilde{y} \in \mathcal{X}_{\infty}^{s}$. The mapping

$$
\tilde{x} \in \mathcal{X}_{\infty}^{s} \xrightarrow{\pi_{\tilde{y}}}(\tilde{x} \diamond \tilde{y}) \in \mathcal{X}_{\infty}^{s}
$$

is linear and continuous, which follows from Proposition 1. If $f \in H_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$, then $f \circ \pi_{\tilde{y}} \in H_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ because $f \circ \pi_{\tilde{y}}$ is analytic and bounded on bounded sets, and $f(\sigma(\tilde{x}) \diamond \tilde{y})=f(\tilde{x} \diamond \tilde{y})$ for any permutation $\sigma \in \mathcal{G}$. We call the operator $M_{\tilde{y}}=f \circ \pi_{\tilde{y}}$ a multiplicative convolution operator. It is obvious that $M_{\tilde{y}}=$ $M_{\sigma(\tilde{y})}$ for any permutation $\sigma \in \mathcal{G}$ and $M_{\tilde{y}}\left(H_{n}^{k_{1}, \ldots, k_{s}}\right)=H_{n}^{k_{1}, \ldots, k_{s}}(\tilde{y}) \cdot H_{n}^{k_{1}, \ldots, k_{s}}$.

Moreover, it is clear that

$$
\begin{gathered}
\pi_{\tilde{y}+\tilde{z}}(\tilde{x})=(\tilde{x} \diamond(\tilde{y}+\tilde{z}))=(\tilde{x} \diamond \tilde{y})+(\tilde{x} \diamond \tilde{z})=\pi_{\tilde{y}}(\tilde{x})+\pi_{\tilde{z}}(\tilde{x}), \\
\pi_{\lambda \tilde{y}}(\tilde{x})=(\tilde{x} \diamond \lambda \tilde{y})=\lambda(\tilde{x} \diamond \tilde{y})=\lambda \pi_{\tilde{y}(\tilde{x}) .} .
\end{gathered}
$$

Proposition 2. For any $\tilde{y} \in \mathcal{X}_{\infty}^{s}$, the multiplicative convolution operator $M_{\tilde{y}}$ is a continuous homomorphism of the algebra $\mathcal{H}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{s}\right)$ into itself.

Proof. Let $\tilde{x}=\left(x^{1}, x^{2}, \ldots, x^{s}\right), \quad \tilde{y}=\left(y^{1}, y^{2}, \ldots, y^{s}\right) \in \mathcal{X}_{\infty}^{s}, \quad$ and $\quad f(\tilde{x})=f\left(x^{1}, x^{2}, \ldots, x^{s}\right) \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$. We now show that $f(\tilde{x} \diamond \tilde{y}) \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$. Since every function $f \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ can be uniformly approximated by the polynomials $P_{n} \in \mathcal{P}_{v s}\left(\mathcal{X}_{\infty}^{s}\right)$, we find

$$
f(\tilde{x} \diamond \tilde{y})=\sum_{n=0}^{\infty} P_{n}(\tilde{x} \diamond \tilde{y})
$$

$$
\begin{aligned}
= & \sum_{n=0}^{\infty} G_{n}\left(H^{1,0, \ldots, 0}(\tilde{x} \diamond \tilde{y}), \ldots, H^{k_{1}, k_{2}, \ldots, k_{s}}(\tilde{x} \diamond \tilde{y}), \ldots\right) \\
= & \sum_{n=0}^{\infty} G_{n}\left(H^{1,0, \ldots, 0}(\tilde{x}) \cdot H^{1,0, \ldots, 0}(\tilde{y}),\right. \\
& \left.\quad \ldots, H^{k_{1}, k_{2}, \ldots, k_{s}}(\tilde{x}) \cdot H^{k_{1}, k_{2}, \ldots, k_{s}}(\tilde{y}), \ldots\right) \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right) .
\end{aligned}
$$

The fact that $M_{\tilde{y}}$ is a homomorphism follows from the equalities

$$
\begin{gathered}
\forall \lambda \in \mathbb{C} \quad M_{\lambda \tilde{y}}\left(P_{n}\right)=P_{n} \circ \pi_{\lambda \tilde{y}}=P_{n} \circ \lambda \pi_{\tilde{y}}=\lambda^{n} P_{n} \circ \pi_{\tilde{y}}=\lambda^{n} M_{\tilde{y}}\left(P_{n}\right), \\
\qquad \begin{array}{c}
M_{\tilde{y}+\tilde{z}}\left(P_{n}\right)=P_{n} \circ \pi_{\tilde{y}+\tilde{z}}=P_{n} \circ\left(\pi_{\tilde{y}}+\pi_{\tilde{z}}\right) \\
=P_{n} \circ \pi_{\tilde{y}}+P_{n} \circ \pi_{\tilde{z}}=M_{\tilde{y}}\left(P_{n}\right)+M_{\tilde{z}}\left(P_{n}\right) .
\end{array}
\end{gathered}
$$

The continuity of the operator $M_{\tilde{y}}$ is a consequence of the inequality

$$
\left\|M_{\tilde{y}}\left(P_{n}\right)\right\|=\left\|P_{n} \circ \pi_{\tilde{y}}\right\| \leq\left\|P_{n}\right\| \cdot\|y\|^{n} .
$$

Thus, $M_{\tilde{y}}$ is a continuous homomorphism on $\mathcal{H}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{s}\right)$.
The proposition is proved.
In [12], the authors introduced the notion of radius function $R(\varphi)$ of a complex homomorphism $\varphi \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ as the infimum of all r such that φ is continuous on $A_{u v s}\left(r B_{\mathcal{X}_{\infty}^{s}}\right)$, where $A_{\text {uvs }}\left(r B_{\mathcal{X}_{\infty}^{s}}\right)$ is the algebra of all uniformly continuous block-symmetric analytic functions on the sphere $r B_{\mathcal{X}_{\infty}^{s}} \subset \mathcal{X}_{\infty}^{s}$ of radius r. It was proved that the quantity $R(\varphi)$ can be found by using the following formula:

$$
R(\varphi)=\underset{n \rightarrow \infty}{\lim \sup }\left\|\varphi_{n}\right\|^{\frac{1}{n}},
$$

where φ_{n} is the restriction of the functional φ to the subspace of n-homogeneous block-symmetric polynomials.

Proposition 3. For all $\theta \in \mathcal{H}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{s}\right)^{\prime}$ and any $\tilde{y} \in \mathcal{X}_{\infty}^{s}$, the radius function of the continuous homomorphism $\theta \circ M_{\tilde{y}}$ can be estimated as follows:

$$
\begin{equation*}
R\left(\theta \circ M_{\tilde{y}}\right) \leq R(\theta) \cdot\|\tilde{y}\| . \tag{1}
\end{equation*}
$$

Proof. We perform reasoning similar to that used in [6]. Let $\tilde{y} \in \mathcal{X}_{\infty}^{s}$. We denote by $\left(\theta \circ M_{\tilde{y}}\right)_{n}$ (resp., θ_{n}), the restriction of $\theta \circ M_{\tilde{y}}$ (resp., θ) to the subspace of n-homogeneous block-symmetric polynomials. We get

$$
\left\|\left(\theta \circ M_{\tilde{y}}\right)_{n}\right\|=\sup _{\| f \mid \leq 1}\left|\theta_{n}\left(\frac{M_{\tilde{y}}\left(f_{n}\right)}{\|\tilde{y}\|^{n}}\right)\right| \cdot\|\tilde{y}\|^{n} \leq\left\|\theta_{n}\right\| \cdot\|\tilde{y}\|^{n} .
$$

Thus,

$$
R\left(\theta \circ M_{\tilde{y}}\right) \leq \limsup _{n \rightarrow \infty}\left(\left\|\theta_{n}\right\| \cdot\|\tilde{y}\|^{n}\right)^{\frac{1}{n}}=R(\theta) \cdot\|\tilde{y}\| .
$$

The proposition is proved.

We now introduce the multiplicative convolution on $\mathcal{H}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{s}\right)^{\prime}$ by analogy with [6].

Definition 2. For any functions $f \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ and $\theta \in \mathcal{H}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{s}\right)^{\prime}$, the multiplicative convolution is $d e$ fined by the formula

$$
(\theta \diamond f)(\tilde{x})=\theta\left[M_{\tilde{x}}(f)\right] \quad \text { for every } \quad \tilde{x} \in \mathcal{X}_{\infty}^{s}
$$

Definition 3. For any $\phi, \theta \in \mathcal{H}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{s}\right)^{\prime}$, the multiplicative convolution is defined by the formula

$$
(\phi \diamond \theta)(f)=\phi(\theta \diamond f) \quad \text { for any } \quad f \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)
$$

Proposition 4. If $\phi, \theta \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$, then $\phi \diamond \theta \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$.

Proof. It follows from the multiplicativity of $M_{\tilde{y}}$ that $\phi \diamond \theta$ is a character.
The fact that $\phi \diamond \theta \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ follows from (1), i.e., from the inequality

$$
R(\phi \diamond \theta) \leq R(\phi) \cdot R(\theta)
$$

Hence, $\phi \diamond \theta \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$.
The proposition is proved.

Theorem 1. For any $\phi, \theta \in \mathcal{M}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{s}\right)$, the multiplicative convolution is commutative and associative. Moreover, this convolution satisfies the equality

$$
\begin{equation*}
(\phi \diamond \theta)\left(H^{k_{1}, \ldots, k_{s}}\right)=\phi\left(H^{k_{1}, \ldots, k_{s}}\right) \cdot \theta\left(H^{k_{1}, \ldots, k_{s}}\right) . \tag{2}
\end{equation*}
$$

Proof. Since every function $f \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ can be uniformly approximated on bounded sets by blocksymmetric polynomials that can be represented in the form of the algebraic combination of polynomials $H^{k_{1}, \ldots, k_{s}}$, it suffices to check the associativity and commutativity of multiplicative convolution for the polynomials $H^{k_{1}, \ldots, k_{s}}$.

First, we check equality (2). Indeed,

$$
\begin{aligned}
\left(\theta \diamond H^{k_{1}, \ldots, k_{s}}\right)(\tilde{x}) & =\theta\left(M_{\tilde{x}}\left(H^{k_{1}, \ldots, k_{s}}\right)\right) \\
& =\theta\left(H^{k_{1}, \ldots, k_{s}}(\tilde{x}) \cdot H^{k_{1}, \ldots, k_{s}}\right)=H^{k_{1}, \ldots, k_{s}}(\tilde{x}) \cdot \theta\left(H^{k_{1}, \ldots, k_{s}}\right) .
\end{aligned}
$$

This is why, we get

$$
\begin{aligned}
(\phi \diamond \theta)\left(H^{k_{1}, \ldots, k_{s}}\right) & =\phi\left(\theta \diamond H^{k_{1}, \ldots, k_{s}}\right) \\
& =\phi\left(H^{k_{1}, \ldots, k_{s}}(\tilde{x}) \cdot \theta\left(H^{k_{1}, \ldots, k_{s}}\right)\right)=\phi\left(H^{k_{1}, \ldots, k_{s}}\right) \cdot \theta\left(H^{k_{1}, \ldots, k_{s}}\right)
\end{aligned}
$$

The last inequality implies the associativity and commutativity of multiplicative convolution on the polynomials $H^{k_{1}, \ldots, k_{s}}$ and, hence, for any function $f \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$.

The theorem is proved.
For the elements $\tilde{x}, \tilde{y} \in \mathcal{X}_{\infty}^{s}$, the notion of symmetric shift $\tilde{x} \bullet \tilde{y}$ was introduced in [12] by the formula

$$
\tilde{x} \bullet \tilde{y}=\left(\left(\begin{array}{c}
x_{1}^{1} \\
x_{1}^{2} \\
\vdots \\
x_{1}^{s}
\end{array}\right),\left(\begin{array}{c}
y_{1}^{1} \\
y_{1}^{2} \\
\vdots \\
y_{1}^{s}
\end{array}\right), \ldots,\left(\begin{array}{c}
x_{i}^{1} \\
x_{i}^{2} \\
\vdots \\
x_{i}^{s}
\end{array}\right),\left(\begin{array}{c}
y_{i}^{1} \\
y_{i}^{2} \\
\vdots \\
y_{i}^{s}
\end{array}\right), \ldots\right) .
$$

Moreover, it was shown that $\tilde{x} \bullet \tilde{y} \in \mathcal{X}_{\infty}^{s}$.
In [12], for any $\phi, \theta \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$ and $f \in \mathcal{H}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$, the operation of symmetric convolution $\phi \star \theta$ was defined as follows:

$$
(\phi \star \theta)(f)=\phi(\theta \star f)=\phi\left(\tilde{y} \mapsto \theta\left(\mathcal{T}_{\tilde{y}}^{s}(f)\right)\right),
$$

where

$$
\mathcal{T}_{\tilde{y}}^{S}(f)(\tilde{x})=f(\tilde{x} \cdot \tilde{y}) .
$$

Proposition 5. For any $\varphi, \phi, \theta \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{s}\right)$, the following equality is true:

$$
\theta \diamond(\varphi \star \phi)=(\theta \diamond \varphi) \star(\theta \diamond \phi) .
$$

Proof. By using equality (2) and Theorem 3 [12], we obtain

$$
\begin{aligned}
((\theta \diamond \varphi) \star(\theta \diamond \phi))\left(H^{k_{1}, \ldots, k_{s}}\right) & =(\theta \diamond \varphi)\left(H^{k_{1}, \ldots, k_{s}}\right)+(\theta \diamond \phi)\left(H^{k_{1}, \ldots, k_{s}}\right) \\
& =\theta\left(H^{k_{1}, \ldots, k_{s}}\right) \cdot \varphi\left(H^{k_{1}, \ldots, k_{s}}\right)+\theta\left(H^{k_{1}, \ldots, k_{s}}\right) \cdot \phi\left(H^{k_{1}, \ldots, k_{s}}\right) \\
& =\theta\left(H^{k_{1}, \ldots, k_{s}}\right) \cdot\left(\varphi\left(H^{k_{1}, \ldots, k_{s}}\right)+\phi\left(H^{k_{1}, \ldots, k_{s}}\right)\right) \\
& =\theta\left(H^{k_{1}, \ldots, k_{s}}\right) \cdot(\varphi \star \phi)\left(H^{k_{1}, \ldots, k_{s}}\right) \\
& =(\theta \diamond(\varphi \star \phi))\left(H^{k_{1}, \ldots, k_{s}}\right) .
\end{aligned}
$$

The proposition is proved.
3. The Case of the Space $\mathcal{X}_{\infty}^{2}=\oplus_{\ell_{1}} \mathbb{C}^{2}$

Another algebraic basis of the algebra $\mathcal{P}_{v s}\left(\mathcal{X}_{\infty}^{2}\right)$ is formed by the polynomials

$$
R^{k_{1}, k_{2}}\left(x^{1}, x^{2}\right)=\sum_{\substack{i_{1}<\ldots<i_{1} \\ j_{1}<\ldots<j_{k_{2}} \\ i_{k} \not j_{l}}}^{\infty} x_{i_{1}}^{1} \ldots x_{i_{k 1}}^{1} x_{j_{1}}^{2} \ldots x_{j_{k_{2}}}^{2},
$$

where k_{1} and k_{2} are the numbers of elements $x_{i_{k}}^{1}$ and $x_{j_{\ell}}^{2}$, respectively [12].
Let $\mathbb{C}\left\{t_{1}, t_{2}\right\}$ be the space of all power series over \mathbb{C}^{2}. The representations

$$
\begin{aligned}
& \mathcal{R}(\varphi)\left(t_{1}, t_{2}\right)=\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} \varphi\left(R^{k_{1}, k_{2}}\right), \\
& \mathcal{H}(\varphi)\left(t_{1}, t_{2}\right)=\sum_{\substack{n=1 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} \varphi\left(H^{k_{1}, k_{2}}\right)
\end{aligned}
$$

acting from $\mathcal{M}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{2}\right)$ into $\mathbb{C}\left\{t_{1}, t_{2}\right\}$ were considered in [12]. In particular, it was shown that the set

$$
\left\{R(\varphi)\left(t_{1}, t_{2}\right): \varphi \in \mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{2}\right)\right\}
$$

is the set of functions of exponential type.

Note that, for any $\left(a_{1}, a_{2}\right) \in \mathbb{C}^{2}$ and the vector

$$
\left(a^{1}, a^{2}\right)=\left(\binom{a_{1}}{a_{2}},\binom{0}{0}, \ldots,\binom{0}{0}, \ldots\right)
$$

we get

$$
\begin{aligned}
&\left(\delta_{\left(a^{1}, a^{2}\right)} \diamond \sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} R^{k_{1}, k_{2}}\right)\left(x^{1}, x^{2}\right) \\
&=M_{\left(x^{1}, x^{2}\right)}\left(\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} R^{k_{1}, k_{2}}\right)\left(a^{1}, a^{2}\right) \\
&=\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1} t_{2}^{k_{2}} R^{k_{1}, k_{2}}\left(\left(x^{1}, x^{2}\right) \diamond\left(a^{1}, a^{2}\right)\right)} \\
&=\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1} 1} t_{2}^{k_{2}} R^{k_{1}, k_{2}}\left(\binom{x_{1}^{1} a_{1}}{x_{1}^{2} a_{2}},\binom{x_{2}^{1} a_{1}}{x_{2}^{2} a_{2}}, \ldots,\binom{x_{i}^{1} a_{1}}{x_{i}^{2} a_{2}}, \ldots\right) \\
&=\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1} k_{2}^{k_{2}} a_{1}^{k_{1}} a_{2}^{k_{2}} R^{k_{1}, k_{2}}\left(x^{1}, x^{2}\right) .}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathcal{R}\left(\varphi \diamond \delta_{\left(a^{1}, a^{2}\right)}\right) & =\varphi\left(\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} a_{1}^{k_{1}} a_{2}^{k_{2}} R^{k_{1}, k_{2}}\right) \\
& =\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} a_{1}^{k_{1}} a_{2}^{k_{2}} \varphi\left(R^{k_{1}, k_{2}}\right) .
\end{aligned}
$$

It follows from Theorem 3 [12] that

$$
\delta_{\left(a^{1}, a^{2}\right)} \star \delta_{\left(b^{1}, b^{2}\right)}=\delta_{\left(\binom{a_{1}}{a_{2}},\binom{b_{1}}{b_{2}},\binom{0}{0}, \ldots,\binom{0}{0}, \ldots\right)}
$$

By using Proposition 5 and Theorem 4 [12], we obtain

$$
\begin{aligned}
& \mathcal{R}\left(\varphi \diamond \boldsymbol{\delta}_{\left.\binom{a_{1}}{a_{2}},\binom{b_{1}}{b_{2}},\binom{0}{0} \ldots,\binom{0}{0}, \ldots\right)}\right)\left(t_{1}, t_{2}\right) \\
& =\mathcal{R}\left(\left(\varphi \diamond \delta_{\left(a^{1}, a^{2}\right)}\right) \star\left(\varphi \diamond \delta_{\left(b^{1}, b^{2}\right)}\right)\right)\left(t_{1}, t_{2}\right) \\
& =\mathcal{R}\left(\varphi \diamond \delta_{\left(a^{1}, a^{2}\right)}\right)\left(t_{1}, t_{2}\right) \cdot \mathcal{R}\left(\varphi \diamond \delta_{\left(b^{1}, b^{2}\right)}\right)\left(t_{1}, t_{2}\right) \\
& =\sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} a_{1}^{k_{1}} a_{2}^{k_{2}} \varphi\left(R^{k_{1}, k_{2}}\right) \cdot \sum_{\substack{n=0 \\
k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}} b_{1}^{k_{1}} b_{2}^{k_{2}} \varphi\left(R^{k_{1}, k_{2}}\right) .
\end{aligned}
$$

In a more general form, we can write

$$
\left.\mathcal{R}\left(\varphi \diamond \delta_{\left(\binom{x_{1}^{1}}{x_{1}^{2}}, \ldots,\binom{x_{m}^{1}}{x_{m}^{2}},\binom{0}{0}, \ldots\right)}\right)\right)\left(t_{1}, t_{2}\right)=\prod_{\ell=1}^{m} \sum_{\substack{n=0 \\ k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}}\left(x_{\ell}^{1}\right)^{k_{1}}\left(x_{\ell}^{2}\right)^{k_{2}} \varphi\left(R^{k_{1}, k_{2}}\right) .
$$

Since the sequence

$$
\left(\delta^{\left(\binom{x_{2}^{1}}{x_{1}^{2}}, \ldots,\binom{x_{m}^{1}}{x_{m}^{2}},\binom{0}{0}, \ldots\right)}\right)_{m}
$$

is pointwise convergent to

$$
\boldsymbol{\delta}^{(}\left(\binom{x_{1}^{1}}{x_{1}^{2}}, \ldots,\binom{x_{m}^{1}}{x_{m}^{2}}, \ldots\right)
$$

in $\mathcal{M}_{\text {bvs }}\left(\mathcal{X}_{\infty}^{2}\right)$, the sequence
is pointwise convergent to

$$
\varphi \diamond \delta_{\left(\binom{x_{1}^{1}}{x_{1}^{2}}, \ldots,\binom{x_{n}^{1}}{x_{m}^{2}}, \ldots\right) .}
$$

Therefore,

$$
\mathcal{R}\left(\varphi \diamond \delta_{\left(x^{1}, x^{2}\right)}\right)\left(t_{1}, t_{2}\right)=\prod_{\ell=1}^{\infty} \sum_{\substack{n=0 \\ k_{1}+k_{2}=n}}^{\infty} t_{1}^{k_{1}} t_{2}^{k_{2}}\left(x_{\ell}^{1}\right)^{k_{1}}\left(x_{\ell}^{2}\right)^{k_{2}} \varphi\left(R^{k_{1}, k_{2}}\right)
$$

for any

$$
\left(x^{1}, x^{2}\right)=\left(\binom{x_{1}^{1}}{x_{1}^{2}}, \ldots,\binom{x_{m}^{1}}{x_{m}^{2}}, \ldots w\right) \in \mathcal{X}_{\infty}^{2}
$$

In [12], we constructed a family $\left(\phi_{(k, \ell)}:(k, \ell) \in \mathbb{C}^{2}\right)$ of elements of the set $\mathcal{M}_{b v s}\left(\mathcal{X}_{\infty}^{2}\right)$ such that

$$
\phi_{(k, \ell)}\left(H^{1,0}\right)=k, \quad \phi_{(k, \ell)}\left(H^{0,1}\right)=\ell, \quad \text { and } \quad \phi_{(k, \ell)}\left(H^{k_{1}, k_{2}}\right)=0 \quad \forall k_{1}, k_{2}>1
$$

It was also shown that

$$
\mathcal{R}\left(\phi_{(k, \ell)}\right)\left(t_{1}, t_{2}\right)=e^{k t_{1}+\ell t_{2}} .
$$

It is easy to see that

$$
\begin{gathered}
\left(\phi_{(k, \ell)} \diamond \varphi\right)\left(H^{1,0}\right)=k \varphi\left(H^{1,0}\right), \\
\left(\phi_{(k, \ell)} \diamond \varphi\right)\left(H^{0,1}\right)=\ell \varphi\left(H^{0,1}\right), \\
\left(\phi_{(k, \ell)} \diamond \varphi\right)\left(H^{k_{1}, k_{2}}\right)=0 \quad \forall k_{1}, k_{2}>1, \\
\mathcal{R}\left(\phi_{(k, \ell)} \diamond \varphi\right)\left(t_{1}, t_{2}\right)=e^{k \varphi\left(H^{1,0}\right) t_{1}+\ell \varphi\left(H^{0,1}\right) t_{2}} .
\end{gathered}
$$

Thus, the operation of multiplicative convolution with functionals $\phi_{(k, \ell)}$ acts as a shift on the elements $\mathcal{R}\left(\phi_{(k, \ell)}\right)\left(t_{1}, t_{2}\right)$.

REFERENCES

1. R. Alencar, R. Aron, P. Galindo, and A. Zagorodnyuk, "Algebras of symmetric holomorphic functions on ℓ_{p},"Bull. London Math. Soc., 35, No. 1, 55-64 (2003).
2. R. M. Aron, B. J. Cole, and T. W. Gamelin, "Spectra of algebras of analytic functions on a Banach space," J. Reine Angew. Math., 1991, No. 415, 51-93 (1991).
3. R. M. Aron, J. Falcó, and M. Maestre, "Separation theorems for group invariant polynomials," J. Geom. Anal., 28, No. 1, 393-404 (2018).
4. R. M. Aron, P. Galindo, D. Garcia, and M. Maestre, "Regularity and algebras of analytic functions in infinite dimensions," Trans. Amer. Math. Soc., 348, No. 2, 543-559 (1996).
5. R. Aron, P. Galindo, D. Pinasco, and I. Zalduendo, "Group-symmetric holomorphic functions on a Banach space," Bull. London Math. Soc., 48, No. 5, 779-796 (2016).
6. I. Chernega, P. Galindo, and A. Zagorodnyuk, "A multiplicative convolution on the spectra of algebras of symmetric analytic functions," Rev. Mat. Complut., 27, No. 2, 575-585 (2014).
7. I. Chernega, P. Galindo, and A. Zagorodnyuk, "Some algebras of symmetric analytic functions and their spectra," Proc. Edinburgh Math. Soc., 55, No. 1, 125-142 (2012).
8. I. Chernega, P. Galindo, and A. Zagorodnyuk, "The convolution operation on the spectra of algebras of symmetric analytic functions," J. Math. Anal. Appl., 395, No. 2, 569-577 (2012).
9. R. Diaz and E. Pariguan, "Quantum product of symmetric functions," Int. J. Math. Math. Sci., 2015, Article ID 476926 (2015).
10. P. Galindo, T. Vasylyshyn, and A. Zagorodnyuk, "The algebra of symmetric analytic functions on L_{∞}," Proc. Roy. Soc. Edinburgh $A, \mathbf{1 4 7}$, No. 4, 743-761 (2017).
11. V. V. Kravtsiv and A. V. Zagorodnyuk, "On algebraic bases of algebras of block-symmetric polynomials on Banach spaces," Mat. Stud., 37, No. 1, 109-112 (2012).
12. V. V. Kravtsiv and A. V. Zagorodnyuk, "Representation of spectra of algebras of block-symmetric analytic functions of bounded type," Karpat. Mat. Publ., 8, No. 2, 263-271 (2016).
13. V. Kravtsiv, T. Vasylyshyn, and A. Zagorodnyuk, "On algebraic basis of the algebra of symmetric polynomials on $\ell_{p}\left(\mathbb{C}^{n}\right)$," J. Funct. Spaces, 2017, Article ID 4947925 (2017).
14. M. H. Rosas, "Specializations of MacMahon symmetric functions and the polynomial algebra," Discrete Math., 246, No. 1-3, 285-293 (2002).
15. T. V. Vasylyshyn, "Metric on the spectrum of the algebra of entire symmetric functions of bounded type on the complex L_{∞}," Karpat. Mat. Publ., 9, No. 2, 198-201 (2017).
16. A. Zagorodnyuk, "Spectra of algebras of analytic functions and polynomials on Banach spaces," Contemp. Math., 435, 381-394 (2007).
17. A. Zagorodnyuk, "Spectra of algebras of entire functions on Banach spaces," Proc. Amer. Math. Soc., 134, No. 9, 2559-2569 (2006).
