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Abstract. A semigroup of linear operators on the space of all continuous bounded
functions given on a d-dimensional Euclidean space Rd is constructed such that its

generator can be written in the following form A+(a(·),B), where A is the generator

of a symmetric stable process in Rd with the exponent α ∈ (1, 2], B is the operator
that is determined by the equality A = c div(B) (c > 0 is a given parameter), and

a given Rd-valued function a ∈ Lp(Rd) for some p > d + α (the case of p = +∞
is not exclusion). However, there is no Markov process in Rd corresponding to this
semigroup because it does not preserve the property of a function to take on only

non-negative values. We construct a solution of the Cauchy problem for the parabolic

equation ∂u
∂t

= (A + (a(·),B))u.

Introduction

A d-dimensional symmetric stable process (α-stable process) is a Markov process in
Rd with its transition probability density given by

g(t, x, y) =
1

(2π)d

∫
Rd

exp {i(y − x, ξ)− c t|ξ|α} dξ, t > 0, x ∈ Rd, y ∈ Rd

(parameters c > 0 and α ∈ (1, 2] will be fixed throughout this article). As is well known,
the generator A of this process is a pseudo-differential operator, whose symbol is given
by the expression (−c|λ|α)λ∈Rd .The parameter α is called the exponent of this process.

A Wiener process is a particular case of a symmetric stable process, if we put α = 2 and
c = 1/2. Its generator is the Laplace operator (with the multiplier 1/2). The perturbation
of this operator by means of the operator (a,∇), where (a(x))x∈Rd is some Rd-valued
function, ∇ is the Hamilton operator (gradient) and (·, ·) denotes the scalar product in
Rd, allows us to construct the diffusion process with the drift vector a. A great deal of
publications considered perturbations under some more or less general assumptions on
the function a (see, for example, [5] and the references therein).

This article is devoted to the perturbing a symmetric stable process with α ∈ (1, 2)
in a similar way. In our situation the operator B, with its symbol (i|λ|α−2λ)λ∈Rd , is
an analogue to the gradient. The role of this operator in the theory of potentials for
symmetric stable processes is discussed in the paper [9].

Symmetric stable processes were perturbed by terms of the type (a,∇) under various
assumptions on the function a in many papers (see, for example, [2, 4, 10, 11]). The
perturbation of stable processes with delta-function in coefficient is constructed in [6, 8].
The operator B used in perturbations of stable processes in the papers [6, 7, 8].

This paper is organized as follows. In the next section we present the basic concepts
and preliminary results. Section 2 contains the construction of the stable process pertur-
bation and the investigation of some its properties. And the final Section 3 is devoted to
the Cauchy problem for the pseudo-differential equation of parabolic type with operator
A + (a,B) on the spatial variable.
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1. Notation and auxiliary results

Let Fγ (γ > 0) be the class of functions ϕ(x) defined on Rd with values in R, which are

the Fourier transforms ϕ(x) =

∫
Rd
ei(x,λ)Φ(λ) dλ and such that the functions |λ|γΦ(λ)

are absolutely integrable on Rd.
Recall that the operator A acting on the functions ϕ ∈ Fα according to the following

rule Aϕ(x) = −c
∫
Rd
|λ|αei(x,λ)Φ(λ) dλ and the equality Bϕ(x) =

∫
Rd
i|λ|α−2λei(x,λ)Φ(λ) dλ

is true for functions ϕ ∈ Fα−1. It is easy to see that the equality A = c div(B) holds on
Fα−1, where div is the divergence operator.

Let (a(x))x∈Rd be a some given Rd-valued measurable function.

Definition 1.1. A function (G(t, x, y))t>0,x∈Rd,y∈Rd is called a result of perturbing the
transition probability density g(t, x, y), if it is a solution of the following equation

(1) G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)(a(z),BzG(τ, z, y)) dz.

The subscript of operator B (here and in what follows) means that it acts on a function
of several variables in the indicated variable.

We will construct the solution of equality (1) in the form

(2) G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)V (τ, z, y)|a(z)| dz,

where the function V (t, x, y) satisfies the equation

(3) V (t, x, y) = V0(t, x, y) +

∫ t

0

dτ

∫
Rd
V0(t− τ, x, z)V (τ, z, y)|a(z)| dz

and

(4) V0(t, x, y) = (Bxg(t, x, y), e(x)) =
1

c α

(y − x, e(x))

t
g(t, x, y).

Here we use a function (e(x))x∈Rd defined by the equality e(x) = 1
|a(x)|a(x) for x ∈ Rd

such that |a(x)| 6= 0 and an arbitrary value (with preservation of the measurability)
otherwise.

Equation (3) can be solved by the method of successive approximations, namely its
solution will be found in the form

(5) V (t, x, y) =

∞∑
k=0

Vk(t, x, y),

where V0(t, x, y) is defined by equality (4) and for k ≥ 1 the following equality

Vk(t, x, y) =

∫ t

0

dτ

∫
Rd
V0(t− τ, x, z)Vk−1(τ, z, y)|a(z)| dz

is valid.
We will use some inequalities that are proved in the article [3].
The first inequality is

(6) g(t, x, y) ≤ N t

(t1/α + |y − x|)d+α
,

where N > 0 is a constant, t > 0, x ∈ Rd, y ∈ Rd.
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The following inequality will be used in various situations∫ t

0

dτ

∫
Rd

(t− τ)β/α

((t− τ)1/α + |z − x|)d+α+k
τγ/α

(τ1/α + |y − z|)d+α+l
dz ≤

≤ C
[
B

(
β − k
α

, 1 +
γ

α

)
t
β+γ−k
α

1

(t1/α + |y − x|)d+α+l
+

+ B

(
1 +

β

α
,
γ − l
α

)
t
β+γ−l
α

1

(t1/α + |y − x|)d+α+k

]
,

(7)

that is true for some constants β, γ, k, l, satisfying the conditions: −α < k < β,
−α < l < γ, and C > 0 which depends only on d, α, k and l. Here B(·, ·) is Euler beta
function.

We shall also use below the following result (see, for example, [3]). Denote by Cb(D)
the space of all continuous bounded real-valued functions on the set D. Let ϕ ∈ Cb(Rd)
and (f(t, x))t≥0,x∈Rd be a continuous function bounded on each domain of the form

DT = [0, T ] × Rd for T < +∞. We suppose that the function f is Hölder continuous
(with an arbitrary coefficient from the interval (0, 1)) in the argument x locally uniformly
with respect to t. Then the unique bounded solution of the Cauchy problem

(8)

{
∂u(t,x)
∂t = Axu(t, x) + f(t, x), t > 0, x ∈ Rd,

lim
t→0+

u(t, x) = ϕ(x), x ∈ Rd

can be written as follows

u(t, x) =

∫
Rd
g(t, x, y)ϕ(y) dy +

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)f(τ, z) dz.

2. The perturbation

In this section we will prove existence of the perturbation (in the sense of Definition
1.1) by operator B with the function a satisfies some integrability condition. A few
properties of this perturbation will be established below.

Theorem 2.1. Let the function (a(x))x∈Rd satisfies the following condition: a ∈ Lp(Rd)
with p > d+ α (maybe, p = +∞).

Then the perturbation G(t, x, y) (see Definition 1.1) exists and possesses the following
properties

(i) It satisfies the Kolmogorov-Chapman equation∫
Rd
G(t, x, z)G(s, z, y) dz = G(t+ s, x, y), t > 0, s > 0, x ∈ Rd, y ∈ Rd;

(ii) It is absolutely integrable and

∫
Rd
G(t, x, y) dy ≡ 1.

Proof. Formulas (4), (6), and (7) allows us to write down the inequality

(9) |V0(t, x, y)| ≤ N

cα

1

(t1/α + |y − x|)d+α−1

Then the following inequality is true for all k ∈ N and t > 0, x ∈ Rd, y ∈ Rd

|Vk(t, x, y)| ≤ N

cα

∫ t

0

dτ

∫
Rd

1

((t− τ)1/α + |z − x|)d+α−1
|Vk−1(τ, z, y)||a(z)| dz
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Using inequality (7) one can show by induction on k that the function Vk for k =
0, 1, 2, . . . satisfies the inequality

|Vk(t, x, y)| ≤ ‖a‖kp
(
N

cα

)k+1

CkνRk
tk

ρ
α

(t1/α + |y − x|)d+α−1
≤

≤ ‖a‖kp
(
N

cα

)k+1

CkνRk t
(kρ−d+1) 1

α−1,

where ν = 1− 1

p
, ρ = 1− d

p
, R0 = 1, Rk = Rk−1

(
B

(
p− d− α
α(p− 1)

, 1 + (k − 1)
p− d

α(p− 1)

)
+

+B

(
1,
p− d− α
α(p− 1)

+ (k − 1)
p− d

α(p− 1)

))1− 1
p

(or limits of these expressions when p tends

to infinity, if p = +∞).
Therefore, the series on the right hand side of (5) converges uniformly in x ∈ Rd,

y ∈ Rd and locally uniformly in t > 0. Thus, the function V given by this equality is a
solution of equation (3). In addition, the following inequality

(10) |V (t, x, y)| ≤ CT
1

(t1/α + |y − x|)d+α−1

has been proved for x ∈ Rd, y ∈ Rd and 0 < t ≤ T , where CT is a positive constant that,
maybe, depends on T > 0.

Remark 2.1. The function V (t, x, y) is the unique solution of equation (3) in the class of
functions that satisfy inequality (10).

Finally, since the equality (BxG(t, x, y), e(x)) = V (t, x, y) holds, the function

(11) G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)V (τ, z, y)|a(z)| dz,

is the perturbation of the transition probability density of the α-stable process.
Here we have used the following statement.

Lemma 2.1. The equality Bx

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)V (τ, z, y)|a(z)| dz =

=

∫ t

0

dτ

∫
Rd

Bxg(t− τ, x, z)V (τ, z, y)|a(z)| dz is true.

The proof of this lemma is based on the following representation of the operator B:

Bϕ(x) =
1

κ

∫
Rd

ϕ(x+ y)− ϕ(x)

|y|d+α
y dy for a bounded differentiable function (ϕ(x))x∈Rd ,

where κ = −
2π

d−1
2 Γ(2− α)Γ

(
α+1
2

)
cos πα2

(α− 1)Γ
(
d+α
2

) .

Proof. Let us consider a set of operators {Bε : ε > 0} that act on a continuously
differentiable bounded function (ϕ(x))x∈Rd according to the following rule

Bεϕ(x) =
1

κ

∫
|u|≥ε

ϕ(x+ u)− ϕ(x)

|u|d+α
y dy.

It is clear that lim
ε→0+

Bεϕ(x) = Bϕ(x) for all x ∈ Rd and described above functions ϕ.
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Inequalities (6) and (10) allow us to assert that∣∣∣∣ u

|u|d+α
(g(t− τ, x+ u, z)− g(t− τ, x, z))V (τ, z, y)|a(z)|

∣∣∣∣ ≤
≤ const

|u|d+α−1

(
t− τ

((t− τ)1/α + |z − x− u|)d+α
+

t− τ
((t− τ)1/α + |z − x|)d+α

)
×

× 1

(τ1/α + |y − z|)d+α−1
.

It is easy to see that the right hand side of this inequality is an integrable function with
respect to (u, τ, z) on the set {|u| ≥ ε} × (0; t) × Rd for all t > 0 and x ∈ Rd, y ∈ Rd.
Here we used formula (7). Therefore, we obtain the following equality

Bε
x

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)V (τ, z, y)|a(z)| dz =

=

∫ t

0

dτ

∫
Rd

Bε
xg(t− τ, x, z)V (τ, z, y)|a(z)| dz,

(12)

using Fubini’s theorem.

Inequalities (6), (7) and |Bxg(t, x, y)| ≤ const

(t1/α + |y − x|)d+α−1
allow us to assert that

the integral

∫ t

0

dτ

∫
Rd

Bxg(t − τ, x, z)V (τ, z, y)|a(z)| dz exists. Now we have to pass to

the limit as ε→ 0+ in equality (12) to complete the proof of lemma. �

Let us prove that the function G(t, x, y) satisfies the Kolmogorov-Chapman equation

(13) G(t+ s, x, y) =

∫
Rd
G(s, x, z)G(t, z, y) dz

for all s > 0, t > 0, x ∈ Rd, y ∈ Rd. Note, that the function g(t, x, y) satisfies equation
(13).

Put U(s, x, ϕ) =

∫
Rd
G(s, x, y)ϕ(y) dy, u(s, x, ϕ) =

∫
Rd
g(s, x, y)ϕ(y) dy, and

W (s, x, ϕ) =

∫
Rd
V (s, x, y)ϕ(y) dy, where ϕ ∈ Cb(Rd).

Note, that the function W (t, x, ϕ) is the unique solution of the following equation

(14) W (t, x, ϕ) = W0(t, x, ϕ) +

∫ t

0

dτ

∫
Rd
V0(t− τ, x, z)W (τ, z, ϕ)|a(z)| dz,

where W0(s, x, ϕ) =

∫
Rd
V0(s, x, y)ϕ(y) dy.

Then the function U(s, x, ϕ) can be given by the equality (see (11))

U(t, x, ϕ) = u(t, x, ϕ) +

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)W (τ, z, ϕ)|a(z)| dz

Now, let us find the function U(t+ s, x, ϕ). We have

U(t+ s, x, ϕ) = u(t+ s, x, ϕ) +

∫ t+s

0

dτ

∫
Rd
g(t+ s− τ, x, z)W (τ, z, ϕ)|a(z)| dz =

=

∫
Rd
g(s, x, y)u(t, y, ϕ) dy +

∫
Rd
g(s, x, y) dy

∫ t

0

dτ

∫
Rd
g(t− τ, y, z)W (τ, z, ϕ)|a(z)| dz+

+

∫ s+t

t

dτ

∫
Rd
g(t+ s− τ, x, z)W (τ, z, ϕ)|a(z)| dz =

=

∫
Rd
g(s, x, y)U(t, y, ϕ) dy +

∫ s

0

dτ

∫
Rd
g(s− τ, x, z)W (t+ τ, z, ϕ)|a(z)| dz.
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Therefore, the function Wt(s, x, ϕ) = W (t+ s, x, ϕ) satisfies equation (14), where the
function ϕ is replaced by U(t, ·, ϕ). Then W (t + s, x, ϕ) = W (s, x, U(t, ·, ϕ)) and we
arrive at the equality U(t+ s, x, ϕ) = U(s, x, U(t, ·, ϕ)) or, what is the same,∫

Rd
G(t+ s, x, y)ϕ(y) dy =

∫
Rd
G(s, x, z)

∫
Rd
G(t, z, y)ϕ(y) dy dz =

=

∫
Rd
ϕ(y) dy

∫
Rd
G(s, x, z)G(t, z, y) dz.

Then relation (13) is proved because the function ϕ is an arbitrary bounded continuous
one.

Next, we get

∫
Rd
G(t, x, y) dy ≡ 1 from (2) and (3), because the equalities∫

Rd
g(t, x, y) dy = 1 and

∫
Rd
V0(t, x, y) dy =

(
Bx

∫
Rd
g(t, x, y) dy, e(x)

)
= 0

for all t > 0, x ∈ Rd are obvious, and the uniqueness of the solution of equation (3) leads

us to the identity

∫
Rd
V (t, x, y) dy ≡ 0. �

Remark 2.2. The family of operators (Tt)t>0 defined for any bounded continuous function

ϕ on Rd by the equality Ttϕ(x) =

∫
Rd
G(t, x, y)ϕ(y) dy, t > 0, x ∈ Rd, indeed con-

stitutes a semigroup generated by the operator A + (a(x),B). But, there is no Markov
process in Rd corresponding to this semigroup because it does not preserve the property
of a function to take on only non-negative values (see, for example, [1]).

3. The Cauchy problem

First, let the function a be smooth enough. For the simplicity we suppose that a ∈
C∞0 (Rd) (this is the space of all Rd-valued infinitely differentiable functions on Rd with
compact support). Thus, the function

U(t, x) =

∫
Rd
ϕ(y)G(t, x, y) dy =

=

∫
Rd
ϕ(y)g(t, x, y) dy +

∫ t

0

dτ

∫
Rd
g(t− τ, x, y)

∫
Rd
V (τ, y, z)ϕ(z) dz|a(y)| dy

is the unique (in the class of functions that tends to zero at infinity) solution of the

Cauchy problem (8) with f(t, x) = |a(x)|
∫
Rd
V (t, x, z)ϕ(z) dz.

Now we note that V (t, x, y) = (BxG(t, x, y), e(x)). Then

f(t, x) =

∫
Rd

(BxG(t, x, z), a(x))ϕ(z) dz = (a(x),BxU(t, x))

and the function U(t, x) is a solution of the Cauchy problem

(15)

{
∂u(t,x)
∂t = Axu(t, x) + (a(x),Bxu(t, x)), t > 0, x ∈ Rd,

lim
t→0+

u(t, x) = ϕ(x), x ∈ Rd

for an arbitrary continuous bounded function (ϕ(x))x∈Rd .
The next statement will allow us to construct a generalized solution of the Cauchy

problem.

Theorem 3.1. Let a and ã be given functions that satisfy the conditions of Theorem
2.1. Denote by G and G̃ the solutions of (1) corresponding to the functions a and ã,
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respectively. Then the inequality

|G(t, x, y)− G̃(t, x, y)| ≤HT ‖a− ã‖p
t1−

d
αp

(t
1
α + |y − x|)d+α−1

(or |G(t, x, y)− G̃(t, x, y)| ≤HT ‖a− ã‖∞
t

(t
1
α + |y − x|)d+α−1

, if p = +∞)

is held on each domain (0, T ] × Rd × Rd for T < +∞, where the positive constant HT

depends on c, α, ‖a‖p, ‖ã‖p and T .

Proof. We will consider the case of finite values of p. The case p = +∞ is similar to this
one.

It is easy to see that

(16) G(t, x, y)− G̃(t, x, y) =

∫ t

0

dτ

∫
Rd
g(t− τ, x, z)W (τ, z, y) dz,

where W (τ, z, y) = V (τ, z, y)|a(z)| − Ṽ (τ, z, y)|ã(z)| and the functions V and Ṽ are
solutions of equation (3) with the functions a and ã, respectively. We can write down
the following equality

W (t, x, y) = W0(t, x, y) + |a(x)|
∫ t

0

dτ

∫
Rd
V0(t− τ, x, z)W (τ, z, y) dz+

+

∫ t

0

dτ

∫
Rd
W0(t− τ, x, z)Ṽ (τ, z, y)|ã(z)| dz,

(17)

taking into account equality (3), where W0(t, x, y) = (Bxg(t, x, y), a(x)− ã(x)).
Let us estimate the first and the third items on the right-hand side of equality (17).

The following inequality

|W0(t, x, y)| ≤ |Bxg(t, x, y)||a(x)− ã(x)| ≤ N

cα

|a(x)− ã(x)|
(t1/α + |y − x|)d+α−1

is easily derived from formulas (4) and (9) for x ∈ Rd, y ∈ Rd, t > 0. Using inequalities
(7), (10) and the previous inequality one can show that for x ∈ Rd, y ∈ Rd, t ∈ (0, T ]
and every T > 0∣∣∣∣∫ t

0

dτ

∫
Rd
W0(t− τ, x, z)Ṽ (τ, z, y)|ã(z)| dz

∣∣∣∣ ≤ KT |a(x)− ã(x)| t1/α

(t1/α + |y − x|)d+α−1
,

where KT is some positive constant, which depends on T , maybe.
Thus, we can write down the following inequality

|W (t, x, y)| ≤ QT
|a(x)− ã(x)|

(t1/α + |y − x|)d+α−1
+

+
N

cα

∫ t

0

dτ

∫
Rd

|W (τ, z, y)|
((t− τ)1/α + |z − x|)d+α−1

dz

(18)

that holds true for x ∈ Rd, y ∈ Rd, t ∈ (0, T ] and every T > 0, where QT > 0 is some
constant, which maybe depends on T .

Iterating inequality (18) we obtain for x ∈ Rd, y ∈ Rd, t ∈ (0, T ] and every T > 0

(19) |W (t, x, y)| ≤
∞∑
k=0

Rk(t, x, y),

where R0(t, x, y) = QT
|a(x)− ã(x)|

(t1/α + |y − x|)d+α−1
and for k ≥ 1 the following recurrence

relation Rk(t, x, y) =
N

cα

∫ t

0

dτ

∫
Rd

Rk−1(τ, z, y)

((t− τ)1/α + |z − x|)d+α−1
dz holds.
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Using Hölder’s inequality and inequality (7) one can show by induction on k that the
function Rk for k = 1, 2, . . . satisfies the inequalities

0 ≤ Rk(t, x, y) ≤ QT
(
N

cα

)k
Ck−1/p

(
2B

(
1,
p− d− α
α(p− 1)

))1−1/p

×

×
(
B

(
1

α
, 1 +

p− d
αp

)
+B

(
1, 1 +

2p− d
αp

))
× . . .

×
(
B

(
1

α
, 1 +

(k − 1)p− d
αp

)
+B

(
1, 1 +

kp− d
αp

))
×

× t(kp−d)/(αp)

(t1/α + |y − x|)d+α−1
‖a− ã‖p.

Hence, we conclude that the series in inequality (19) converges uniformly in x ∈ Rd,
y ∈ Rd and locally uniformly in t > 0. Therefore, the following inequality

|W (t, x, y)| ≤MT
‖a− ã‖p

(t1/α + |y − x|)d+α−1
t
p−d
αp +QT

|a(x)− ã(x)|
(t1/α + |y − x|)d+α−1

holds for x ∈ Rd, y ∈ Rd, t ∈ (0, T ] and every T > 0, where MT and QT are some
positive constants, which maybe depend on T .

Some not difficult calculations using formulas (6),(7), (16) and Hölder’s inequality
lead us to the assertion of the theorem. �

Corollary 3.1. Let ϕ ∈ Cb(Rd) and G, G̃ be as in Theorem 2.1. Put

U(t, x) =

∫
Rd
G(t, x, y)ϕ(y) dy, Ũ(t, x) =

∫
Rd
G̃(t, x, y)ϕ(y) dy.

Then the following inequality |U(t, x) − Ũ(t, x)| ≤ LT supy |ϕ(y)|‖a − ã‖p is held for

x ∈ Rd, 0 < t ≤ T . Here LT is some positive constant, that maybe depends of T .

Now, let a(x) be a given Rd-valued function on Rd satisfying the condition ‖a‖p <∞
for some p > d + α. Then there exists a sequence of functions an ∈ C∞0 (Rd), such that
‖an−a‖p → 0 as n→∞. According to Corollary 3.1, we can defined the function U(t, x)
by the equality U(t, x) = limn→∞ Un(t, x), where Un(t, x) is the solution of the Cauchy
problem (15) corresponding to the function an. The statement of Theorem 3.1 means

that U(t, x) =

∫
Rd
G(t, x, y)ϕ(y) dy, where G(t, x, y) is the perturbation (corresponding

to the function a) of the transition probability density of the symmetric stable process
(see Definition 1.1). We say exactly in this sense that the function U(t, x) is a generalized
solution of the Cauchy problem (15).
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