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Abstract. Two kinds of membranes located on a fixed hyperplane S in

a Euclidean space are constructed for a symmetric α-stable process with

α ∈ (1, 2). The first one has the property of killing the process at the points of
the hyperplane with some given intensity (r(x))x∈S . This kind of membranes

can be called an elastic screen for the process, by analogy to that in the

theory of diffusion processes. The second one has the property of delaying
the process at the points of S with some given coefficient (p(x))x∈S . In

other words, the points of S, where p(x) > 0, are sticky for the process
constructed. We show that each one of the membranes is associated with

some initial-boundary value problem for pseudo-differential equations related

to a symmetric α-stable process.

1. Introduction

Let (x(t),Mt,Px) be a standard Markov process in a d-dimensional Euclidean
space Rd whose transition probability density g0 (with respect to the Lebesgue
measure on Rd) is given by the equality

g0(t, x, y) = (2π)−d
∫
Rd

exp{i(x− y, ξ)− ct|ξ|α} dξ, t > 0, x ∈ Rd, y ∈ Rd, (1.1)

where c > 0 and α ∈ (1, 2) are fixed parameters (see [4, Theorem 3.14]). This pro-
cess is called a symmetric (more precisely, rotationally invariant) α-stable process.
The generator of it is denoted by A and this is a pseudo-differential operator with
its symbol given by (−c|ξ|α)ξ∈Rd .

Let ν be a fixed unit vector in Rd and S denote the hyperplane in Rd orthogonal
to ν, that is S = {x ∈ Rd : (x, ν) = 0}. By Bν we denote a pseudo-differential
operator with the function (2ic|ξ|α−2(ξ, ν))ξ∈Rd as its symbol.

We will consider two kinds of transformations of the process (x(t))t≥0 (this is a
short notation for our process). The first one is connected with the Feynman-Kac
formula. Let (r(x))x∈S be a given bounded continuous function with non-negative
values. We show that there exists a W-functional (ηt(r))t≥0 of the process (x(t))t≥0
such that its characteristic is given by

Exηt(r) =

∫ t

0

dτ

∫
S

g0(τ, x, y)r(y) dσy, t ≥ 0, x ∈ Rd, (1.2)
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where the inner integral is a surface one.
As is well-known (see [4, Chapter 10]), there exists a standard Markov process

(x∗(t), M∗t ,P∗x, ζ) in Rd (ζ is the life time of the process) such that the equality

E∗x(ϕ(x∗(t))1Iζ>t) = Ex(ϕ(x(t)) exp{−ηt(r)}) (1.3)

is valid for t > 0, x ∈ Rd and ϕ ∈ Cb(Rd) (this is the notation for the Banach
space of all continuous bounded functions on Rd with real values and the norm
‖ϕ‖ = sup

x∈Rd
|ϕ(x)|). We show that the function (1.3) (denote it by u(t, x, ϕ), t ≥ 0,

x ∈ Rd, ϕ ∈ Cb(Rd)) is a solution to the following initial-boundary value problem.
Problem A. For a given ϕ ∈ Cb(Rd), a continuous function (u(t, x))t>0,x∈Rd is

being looked for such that it satisfies

(i) the equation
∂u

∂t
= Au in the region t > 0, x /∈ S;

(ii) the initial condition u(0+, x) = ϕ(x) for all x ∈ Rd;
(iii) the boundary condition

1

2
Bνu(t, ·)(x+)− 1

2
Bνu(t, ·)(x−) = r(x)u(t, x) for

all t > 0 and x ∈ S.

The symbol Bνu(t, ·)(x+) (respectively, Bνu(t, ·)(x−)) for t > 0 and x ∈ S
means the limit value of the function Bνu(t, ·)(z), as z approaches x along any
curve lying in a finite closed cone K in Rd with vertex at x such that K ⊂ {z ∈
Rd : (z, ν) > 0} ∪ {x} (respectively, K ⊂ {z ∈ Rd : (z, ν) < 0} ∪ {x}).

The second transformation is connected with some random change of time. Let
a continuous bounded function (p(x))x∈S with non-negative values be given. For
t ≥ 0, we put

ζt = inf{s ≥ 0 : s+ ηs(p) ≥ t}, x̂(t) = x(ζt), M̂t =Mζt .

It is well-known (see, for example, [4, Chapter 10]) that the process (x̂(t),M̂t,Px)
is also a standard Markov process in Rd. We show that the function

û(t, x, ϕ) = Exϕ(x̂(t)), t ≥ 0, x ∈ Rd, (1.4)

is a solution to the following problem.
Problem B. For a given ϕ ∈ Cb(Rd), a continuous function (u(t, x))t>0,x∈Rd is

being looked for such that it satisfies the condition (i), the initial condition (ii)
and the following boundary condition (for t > 0 and x ∈ S)

(iii’) p(x)
∂u

∂t
(t, x) =

1

2
Bνu(t, ·)(x+)− 1

2
Bνu(t, ·)(x−).

If α = 2 (and c = 1
2 ), then our process is a standard Brownian motion, and the

operator A coincides with 1
2∆ (∆ is the Laplace operator) and Bν coincides with

∂
∂ν (the derivative in the direction ν). The facts that in this case the functions
(1.3) and (1.4) solve Problems A and B, respectively, are well-known (some results
of the kind can be found in the books [4, 6] and also in [1, 2, 7] and many others).

The article is organized as follows. In Section 2 some auxiliary results are pre-
sented. Sections 3 and 4 are devoted to solving the Problems A and B, respectively.
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2. Single-layer potentials for a symmetric α-stable process and
the Feynman-Kac formula.

2.1. The function g0 defined by (1.1) is continuous in the region t > 0, x ∈ Rd
and y ∈ Rd. Moreover, it is uniformly continuous in any region of the form
(t, x, y) ∈ [γ,+∞) × Rd × Rd for γ > 0. As follows from [3], it satisfies the
inequality

g0(t, x, y) ≤ N t

(t1/α + |y − x|)d+α
, t > 0, x ∈ Rd, y ∈ Rd, (2.1)

where N is a positive constant. The inequalities of the kind in more general
situations including similar inequalities for (fractional) derivatives of g0 can be
found in [5].

2.2. Let ν ∈ Rd be a fixed unit vector and S be the hyperplane in Rd orthogonal
to ν. The following formula∫

S

ei(ξ,y)g0(t, x, y) dσy =
1

π

∫ ∞
0

e−ct(|ξ|
2+ρ2)α/2 cos(ρ(x, ν)) dρ (2.2)

holds true for all t > 0, x ∈ Rd and ξ ∈ S (see [8]). Combining (2.1) and (2.2) (for
ξ = 0),we arrive at the inequality∫

S

g0(t, x, y) dσy ≤ N
t

(t1/α + |(x, ν)|)1+α
(2.3)

valid for all t > 0 and x ∈ Rd with some positive constant N .

2.3. In accordance with the definition of Bν (see Section 1), the following equality
(for fixed t > 0 and y ∈ Rd)

Bνg0(t, ·, y)(x) =
2ic

(2π)d

∫
Rd

exp{i(x− y, ξ)− ct|ξ|α}|ξ|α−2(ξ, ν) dξ

is fulfilled for all x ∈ Rd. Integrating by parts leads us to the formula

Bνg0(t, ·, y)(x) =
2(y − x, ν)

αt
g0(t, x, y) (2.4)

2.4. Let (ψ(t, x))t≥0,x∈S be a continuous function with real values satisfying the
inequality |ψ(t, x)| ≤ Ct−β for all t > 0 and x ∈ S with some constants C > 0 and
β < 1. We put

V0(t, x) =

∫ t

0

dτ

∫
S

g0(t− τ, x, y)ψ(τ, y)) dσy, t > 0, x ∈ Rd. (2.5)

This function is well-defined, as the following estimations show

|V0(t, x)| ≤ C
∫ t

0

τ−β dτ

∫
S

g0(t− τ, x, y) dσy ≤ CN
∫ t

0

τ−β(t− τ)−1/α dτ =

= CN
Γ(1− β)Γ(1− 1/α)

Γ(2− β − 1/α)
t1−β−1/α.

Moreover, this function is continuous in the region t > 0 and x ∈ Rd. It is called
a single-layer potential.

The following properties of the function V0 are proved in [8].
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2.4.A. The function V0 is a solution of the equation
∂V0
∂t

= AV0 in the region

t > 0 and x /∈ S.

2.4.B. The following relations BνV0(t, ·)(x±) = ∓ψ(t, x) are held for all t > 0
and x ∈ S (the sense of the left hand side is explained in Section 1).

Remark 2.1. Relation 2.4.B are some analogy to the well-known theorem on the
jump of the (co-)normal derivative of a single-layer potential in the classical theory
of potentials. The term analogous to the so-called direct value of the derivative
vanishes in 2.4.B, since Bνg0(t, ·, y)(x) = 0 for y ∈ S and x ∈ S (see (2.4)).

2.5. Let (v(x))x∈Rd be a continuous bounded function with real values. We put
for ϕ ∈ Cb(Rd), t > 0 and x ∈ Rd

Q(t, x, ϕ) = Ex
(
ϕ(x(t)) exp

{∫ t

0

v(x(τ)) dτ

})
.

The well-known Feynman-Kac formula asserts that Q satisfies the equation

∂Q

∂t
= AQ+ v(x)Q

in the region (t, x) ∈ (0,+∞) × Rd and the initial condition Q(0+, x, ϕ) = ϕ(x)
for all x ∈ Rd.

An intermediate stage of this result is the following integral equation for Q

Q(t, x, ϕ) =

∫
Rd
g0(t, x, y)ϕ(y) dy +

∫ t

0

dτ

∫
Rd
g0(t− τ, x, y)Q(τ, y, ϕ)v(y) dy,

where t > 0, x ∈ Rd.

3. Solving Problem A

3.1. Let the hyperplane S and the bounded continuous function (r(x))x∈S be such
as above. One can easily verify that the function

ft(x) =

∫ t

0

dτ

∫
S

g0(t− τ, x, y)r(y) dσy

is a W-function for the process (x(t))t≥0 (see [4, Chapter 6, §3]) satisfying the
inequality

ft(x) ≤ N‖r‖ α

α− 1
t1−1/α

for all t ≥ 0 and x ∈ Rd (see (2.4)), where ‖r‖ = sup
x∈S

r(x). Therefore, according

to Theorem 6.6 from [4], there exists a W-functional (ηt(r))t≥0 of the process
(x(t))t≥0 such that Exηt(r) = ft(x) for all t ≥ 0 and x ∈ Rd.

For r0(x) ≡ 1 we put ηt = ηt(r0), t ≥ 0. The functional (ηt)t≥0 is called the

local time on S for the process (x(t))t≥0. It is evident that ηt(r) =

∫ t

0

r(x(s)) dηs,

t ≥ 0.



ON CONSTRUCTING SOME MEMBRANES FOR A SYMMETRIC α-STABLE PROCESS 5

3.2. We now approximate the functional (ηt(r))t≥0 by somewhat simpler ones. For

h > 0, we define a function (vh(x))x∈Rd by setting vh(x) =

∫
S

g0(h, x, y)r(y) dσy,

x ∈ Rd, and a functional (η
(h)
t (r))t≥0 by the equality η

(h)
t (r) =

∫ t

0

vh(x(s)) ds,

t ≥ 0.
The function vh for fixed h > 0 is continuous and bounded, so the W-functional

(η
(h)
t (r))t≥0 is well-defined. Its characteristic is given by

f
(h)
t (x) = Exη(h)t (r) =

∫ t

0

dτ

∫
Rd
g0(τ, x, y)vh(y) dy =

=

∫ t+h

h

dτ

∫
S

g0(τ, x, y)r(y) dσy.

Hence,

Exη(h)t (r)−Exηt(r) =

∫ t+h

t

dτ

∫
S

g0(τ, x, y)r(y) dσy−
∫ h

0

dτ

∫
S

g0(τ, x, y)r(y) dσy.

Taking into account (2.4), we arrive at the inequality

sup
0≤t≤T

sup
x∈Rd

|Exη(h)t (r)− Exηt(r)| ≤ N‖r‖
α

α− 1

[
h1−1/α+

+ sup
0≤t≤T

(
(t+ h)1−1/α − t1−1/α

)]
valid for all T > 0 and h > 0. Denote by qT (h) the expression on the right-hand
side of this inequality. Obviously, qT (h) → 0, as h → 0+, for any fixed T > 0.
According to Lemma 6.5 from [4], the following inequality

Ex(η
(h)
t (r)− ηt(r))2 ≤ 2(f

(h)
t (x) + ft(x))qT (h)

holds true for all t ∈ [0, T ] and x ∈ Rd. Since for those (t, x) we have

f
(h)
t (x) ≤ N‖r‖ α

α− 1
(T + h)1−1/α; ft(x) ≤ N‖r‖ α

α− 1
T 1−1/α,

we can assert that the inequality

Ex(η
(h)
t (r)− ηt(r))2 ≤ 4N‖r‖ α

α− 1
(T + h0)1−1/αqT (h) (3.1)

is fulfilled for all t ∈ [0, T ], x ∈ Rd and h ∈ (0, h0] (T > 0 and h0 > 0 are arbitrary
fixed numbers).

3.3. For t > 0, x ∈ Rd and ϕ ∈ Cb(Rd), we put

u(h)(t, x, ϕ) = Ex
(
ϕ(x(t))e−η

(h)
t (r)

)
, u(t, x, ϕ) = Ex

(
ϕ(x(t))e−ηt(r)

)
.

Proposition 3.1. There exists a sequence (hn)n≥1 such that hn → 0, as n→ +∞,
and

lim
n→+∞

u(hn)(t, x, ϕ) = u(t, x, ϕ)

uniformly with respect to x ∈ Rd and locally uniformly with respect to t ∈ [0,+∞).
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Proof. Since |e−a − e−b| ≤ |a− b| for all a ≥ 0 and b ≥ 0, we can write down the
chain of inequalities (for an arbitrary T > 0)

|u(h)(t, x, ϕ)− u(t, x, ϕ)| ≤ ‖ϕ‖Ex|η(h)t (r)− ηt(r)| ≤

≤ ‖ϕ‖
[
Ex(η

(h)
t (r)− ηt(r))2

]1/2
≤ KT (h0)(qT (h))1/2‖ϕ‖

valid for all (t, x) ∈ [0, T ]×Rd and h ∈ (0, h0], where KT (h0) is a constant finite for
T < +∞. To complete the proof one should make use of the diagonal method. �

3.4. The function u(h) (for a fixed ϕ ∈ Cb(Rd)) is a unique bounded solution to
the integral equation (see Section 2.5)

u(h)(t, x, ϕ) =

∫
Rd
g0(t, x, y)ϕ(y) dy −

∫ t

0

dτ

∫
Rd
g0(t− τ, x, y)u(h)(τ, y, ϕ)vh(y) dy.

(3.2)
It is an easy exercise to verify that the relation

lim
h→0+

∫
Rd
ψ(y)vh(y) dy =

∫
S

ψ(y)r(y) dσy (3.3)

is fulfilled for any continuous function (ψ(y))y∈Rd such that

∫
Rd
|ψ(y)| dy < +∞.

Proposition 3.2. For a given ϕ ∈ Cb(Rd), the function (u(t, x, ϕ))t≥0,x∈Rd is a
unique bounded solution of the equation

u(t, x, ϕ) =

∫
Rd
g0(t, x, y)ϕ(y) dy−

∫ t

0

dτ

∫
S

g0(t− τ, x, y)u(τ, y, ϕ)r(y) dσy. (3.4)

Proof. In order to pass to the limit, as hn → 0, in equation (3.2) (written for
h = hn), one should observe that

lim
n→+∞

∫ t

0

dτ

∫
Rd
g0(t− τ, x, y)u(τ, y, ϕ)vhn(y) dy =

=

∫ t

0

dτ

∫
S

g0(t− τ, x, y)u(τ, y, ϕ)r(y) dσy

according to (3.3). Besides,∫ t

0

dτ

∫
Rd
g0(t− τ, x, y)vh(y) dy = f

(h)
t (x) ≤ N‖r‖ α

α− 1
(T + h)1−1/α,

as was established in Section 3.2. Taking into account Proposition 3.1, we arrive
at equation (3.4) for the function u.

A solution to the equation (3.4) can be constructed by the method of successive
approximations. If we put

u0(t, x, ϕ) =

∫
Rd
g0(t, x, y)ϕ(y) dy, t > 0, x ∈ Rd, ϕ ∈ Cb(Rd),

and for k ≥ 1

uk(t, x, ϕ) =

∫ t

0

dτ

∫
S

g0(t− τ, x, y)uk−1(τ, y, ϕ)r(y) dσy,
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then by induction on k, we can easily obtain the following estimate

|uk(t, x, ϕ)| ≤ ‖ϕ‖‖r‖k(
c1/αα sin π

α

)k tk(1−1/α)

Γ(k(1− 1/α) + 1)
(3.5)

held true for all t > 0, x ∈ Rd, ϕ ∈ Cb(Rd) and k = 0, 1, 2, . . . . As a consequence
of (3.5), we have that the series

∞∑
k=0

(−1)kuk(t, x, ϕ) (3.6)

is a continuous solution of (3.4) satisfying the condition sup
t∈[0,T ]

sup
x∈Rd

|u(t, x, ϕ)| <∞

for any T > 0. Another consequence of (3.5) is that such a solution is unique.
Therefore, the function u can be represented by the series (3.6). The proposition
is proved. �

3.5. We now can formulate the main result of Section 3

Theorem 3.3. For a fixed ϕ ∈ Cb(Rd) the function

u(t, x, ϕ) = Ex
(
ϕ(x(t))e−ηt(r)

)
, t ≥ 0, x ∈ Rd,

solves the Problem A.

Proof. The first item on the right hand side of (3.4) satisfies the equation (i) in
the whole region t > 0 and x ∈ Rd. It also satisfies the initial condition (ii). The
second item on the right-hand side of (3.4) is a single-layer potential. According
to 2.4.A, it satisfies (i) and its initial value vanishes. The relations 2.4.B imply
now the equalities

Bνu(t, ·, ϕ)(x±) =
2

αt

∫
Rd

(y, ν)ϕ(y)g0(t, x, y) dy ± r(x)u(t, x, ϕ)

valid for t > 0 and x ∈ S, and the condition (iii) follows from these relations
immediately. The theorem has been proved. �

3.6. If d = 1, then S = {0} and r = r(0) is a non-negative number. The equation
for the function u in this case can be written as follows

u(t, x, ϕ) =

∫
R1

g0(t, x, y)ϕ(y) dy − r
∫ t

0

g0(t− τ, x, 0)u(τ, 0, ϕ) dτ. (3.7)

Denote by ũ and g̃0 the Laplace transformations of the functions u and g0,
respectively (λ > 0)

ũ(λ, x, ϕ) =

∫ ∞
0

u(t, x, ϕ)e−λt dt, g̃0(λ, x, y) =

∫ ∞
0

g0(t, x, y)e−λt dt.

Then (3.7) implies the equality

ũ(λ, x, ϕ) =

∫
R1

[
g̃0(λ, x, y)− rg̃0(λ, x, 0)g̃0(λ, 0, y)

1 + rg̃0(λ, 0, 0)

]
ϕ(y) dy,
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where g̃0(λ, 0, 0) =
[
c1/αα sin π

α

]−1
λ1/α−1. It means that the resolvent kernel

g̃∗(λ, x, y) of the process (x∗(t))t≥0 (see Section 1) is given by

g̃∗(λ, x, y) = g̃0(λ, x, y)− rg̃0(λ, x, 0)g̃0(λ, 0, y)

1 + rg̃0(λ, 0, 0)

for λ > 0, x ∈ R1 and y ∈ R1. One can obtain from this equality, in particular, the
Laplace transform for the distribution function of ζ (the life time of the process
(x∗(t))t≥0)

E∗xe−λζ =
rg̃0(λ, x, 0)

1 + rg̃0(λ, 0, 0)
, x ∈ R1, λ > 0.

4. Solving Problem B

4.1. We are now given by a continuous bounded function (p(x))x∈S with non-

negative values. Consider the Markov process (x̂(t),M̂t,Px) defined in Section 1.
The resolvent operator for this process can be calculated in the following way (see
[6, Chapter II, §6])

Ex
∫ ∞
0

e−λtϕ(x̂(t)) dt = Ex
∫ ∞
0

e−λtϕ(x(ζt)) dt =

= Ex
∫ ∞
0

e−λ(t+ηt(p))ϕ(x(t)) dt+ Ex
∫ ∞
0

e−λ(t+ηt(p))ϕ(x(t)) dηt(p),

(4.1)

where x ∈ Rd, λ > 0, ϕ ∈ Cb(Rd) (we have taken into account that the equality
ζt = t′ implies t = t′ + ηt′(p)).

4.2. If we put

Qλ(t, x, ϕ) = Ex(ϕ(x(t))e−ληt(p)), t > 0, λ > 0, x ∈ Rd, ϕ ∈ Cb(Rd),

then in accordance with Section 3, we have the following equation for Qλ

Qλ(t, x, ϕ) =

∫
Rd
g0(t, x, y)ϕ(y) dy − λ

∫ t

0

dτ

∫
S

g0(t− τ, x, y)Qλ(τ, y, ϕ)p(y) dσy.

Multiplying both sides of this equation by e−λt and integrating with respect to t
over (0,+∞), we get the equation

U1(λ, x, ϕ) =

∫
Rd
g̃0(λ, x, y)ϕ(y) dy − λ

∫
S

g̃0(λ, x, y)U1(λ, y, ϕ)p(y) dσy, (4.2)

where g̃0(λ, x, y) =

∫ ∞
0

g0(t, x, y)e−λt dt and

U1(λ, x, ϕ) =

∫ ∞
0

Qλ(t, x, y)e−λt dt = Ex
∫ ∞
0

e−λ(t+ηt(p))ϕ(x(t)) dt.



ON CONSTRUCTING SOME MEMBRANES FOR A SYMMETRIC α-STABLE PROCESS 9

4.3. To calculate the second item on the right hand side of (4.1), we observe that

Ex
∫ ∞
0

e−λ(t+ηt(p))ϕ(x(t)) dηt(p) = lim
h→0+

Ex
∫ ∞
0

e−λ(t+ηt(p))ϕ(x(t))vh(x(t)) dt,

where this time vh(x) =

∫
S

g0(h, x, y)p(y) dσy, h > 0, x ∈ Rd. According to

Section 4.2, we have

Ex
∫ ∞
0

e−λ(t+ηt(p))ϕ(x(t))vh(x(t)) dt = U1(λ, x, ϕ · vh).

It is a very simple conclusion that for λ > 0, x ∈ Rd and ϕ ∈ Cb(Rd), the relation
lim
h→0+

U1(λ, x, ϕ·vh) = U2(λ, x, ϕ) fulfilled, where U2 is the solution to the equation

U2(λ, x, ϕ) =

∫
S

g̃0(λ, x, y)ϕ(y)p(y) dσy−λ
∫
S

g̃0(λ, x, y)U2(λ, y, ϕ)p(y) dσy, (4.3)

4.4. As a consequence of 2.4.B, we have the following relations

Bν

(∫
S

g̃0(λ, ·, y)ψ̃(λ, y) dσy

)
(x±) = ∓ψ̃(λ, x)

valid for λ > 0, x ∈ S and any continuous function (ψ(t, x))t≥0,x∈S such as in
Section 2.4. These relations imply the following ones (x ∈ S, λ > 0)

BνU1(λ, ·, ϕ)(x±) =

∫
Rd

Bν g̃0(λ, ·, y)(x)ϕ(y) dy ± λp(x)U1(λ, x, ϕ),

BνU2(λ, ·, ϕ)(x±) = ∓p(x)ϕ(x)± λp(x)U2(λ, x, ϕ).

4.5. We put U(λ, x, ϕ) = U1(λ, x, ϕ) + U2(λ, x, ϕ). Then

Ex
∫ ∞
0

e−λtϕ(x̂(t)) dt = U(λ, x, ϕ).

It follows from the equations (4.2), (4.3) that the function U satisfies the equation

AU = λU − ϕ(x)

in the region x /∈ S. Besides, it satisfies the boundary condition (λ > 0, x ∈ S)

1

2
BνU(λ, ·, ϕ)(x+)− 1

2
BνU(λ, ·, ϕ)(x−) = p(x)(λU(λ, x, ϕ)− ϕ(x)).

We have thus proved the following assertion

Theorem 4.1. The function

Û(t, x, ϕ) = Exϕ(x̂(t)), t > 0, x ∈ Rd

solves the Problem B.
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4.6. If d = 1, then

Ex
∫ ∞
0

e−λtϕ(x̂(t)) dt =
p g̃0(λ, x, 0)

1 + λ p g̃0(λ, 0, 0)
ϕ(0)+

+

∫
R1

[
g̃0(λ, x, y)− λ p g̃0(λ, x, 0)g̃0(λ, 0, y)

1 + λ p g̃0(λ, 0, 0)

]
ϕ(y) dy

for all λ > 0, x ∈ R1 and ϕ ∈ Cb(R1), where p = p(0) is a non-negative number.
In the case of p→ +∞ the point x = 0 becomes an absorbing one. In this case

Ex
∫ ∞
0

e−λtϕ(x̂∞(t)) dt =
g̃0(λ, x, 0)

λ g̃0(λ, 0, 0)
ϕ(0)+

+

∫
R1

[
g̃0(λ, x, y)− g̃0(λ, x, 0)g̃0(λ, 0, y)

g̃0(λ, 0, 0)

]
ϕ(y) dy.
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