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We find out an explicit formula for the distribution of a rotationally invariant o.-stable process at that moment of
time, when it hits a given hyperplane for the first time. The case of 1< a. < 2 is considered.
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Introduction. Let (x(¢), M;,P,) be a standard Markov process in a d-dimensional Euclidean
space R, whose transition probability density g relative to the Lebesgue measure in R? is given
by the integral

gt x,y)=2ny [ expli(x-y,&)-ct[E["}dE, t>0, xeR’, yeR, (1)
R(l

where ¢>0 and oe (0,2] are given parameters (we use Dynkin’s notation from [1]; Theo-
rem 3.14 there guarantees the existence of a standard Markov process with its transition pro-
bability density given by (1)). This process is called a rotationally invariant o-stable process. In
the case of =2 (and ¢=1/2), it is nothing else but a standard Brownian motion in R? . We will
suppose throughout this paper that d > 2.

Let ve R? be a fixed unit vector and S be a hyperplane in R? orthogonal to v:
S={xe R?:(x,v)=0}. Denote, by 1, the hitting time of S for the process (x () > (thisis
a short notation for our process), that is, T=inf{t >0:x(¢) €S} (as usual, we put T=+ in
the caseof {t>0:x(t)eS}=9).

Assuming that 1< o <2, we show that, forall A>0 and xe R? , the formula
Eo e z‘fcos(px”“ ) 4o @

Ty 1+ cp®*
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—1

17 d .

holds true, where K=[;J‘1 paJ = acl/® sin(m/o). This formula implies the identity
o 1+cp

P.({t<+})=1. Hence, the random vector x(t) in § is well-defined. We show that the dis-

tribution of x(t) with respect to the probability measure P, for xe R\ S is absolutely

continuous relative to the Lebesgue measure in S, and the corresponding density denoted by

ny(x, y) for xe R\ S and ye€ S is given by the equality

r((d+a)/2-1) | (e, v) [

, 3
n VP (@ 1)/2) [ e v) |y =2 ] et v

Tc()(x’y):

where ¥ =x-v(x,V) is the orthogonal projection of x on §.

Note that the expression in (3) does not depend on ¢ >0, that can be easily foreseen.

In the case of a.=2, the right-hand side of (3) is the density of a (d —1)-dimensional Cauchy
distribution; this result for the Brownian motion (x(¢)),~ can be easily derived from the fact
that the processes (¥ (t)-x(0)),. o and ((x(¢),v)—(x(0),V)), - are then independent with re-
spect to the probability measure P, , xe R?. So, in what follows, we will suppose that 1<o<2.

Our result goes along with the results of many of the old articles, for example, [2—4], as
well as more modern ones, for example, [5, 6]. The authors of those articles dealt with the first
hit of the interior/exterior of a given ball for an a-stable process in R? , while our result concerns
the first hit of a (d —1)-dimensional surface in R? (a hyperplane). The hitting time 1 introduced
above coincides with the instant of time, when the one-dimensional process ((x(¢),V)),~ ¢ hits
the origin. For this process, the moment 7 is the point of continuity.

The main result of this paper is proved in Section 2. Some auxiliary results are expounded in
Section 1.

1. Preliminaries.

1.1. One auxiliary result. Note that S is a (d —1)-dimensional subspace of R?, so that
R? = SxR'. We denote the Lebesgue measure in S by the same symbol as that in R? . For a given
function (o)) the integral J(p(y)dy can be considered as a surface integral of ¢ over .

S
Lemma . For t >0, xe R? ,and e S, the equality

eRd’

oo

fg(t, x, y)ei(y’ &)dy =& ol J'e—Ct(\éFﬂLPz)ap cos(p(a,v))dp (4)
T
S 0

holds.
Proof. Formula (1) implies that the equality

[ ] expli, ©)+ipGlg (¢, x, y +Lv)dydg = expli(E, &) +ip(x, v)—ct (1€ [* +p*)*?}
SR!

is valid forall £>0, xe R?, pe R! and &e S. Integrating both sides of this equality with res-
pect to pe [-M, M], where M >0 is an arbitrary number, we get
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_ in(MC M
J [je““)g(t, x, y+§v>dy} %dc =/ @9 [exper (&2 +p*)**jcos(p(x, v))dp. (5)
RILS 0

Note that, for fixed £ >0, xe R? ,and e S, the function

( | e“%@)g(t,x,wc\»)dyJ
CER1

N

is continuous and absolutely integrable over R!. Therefore, according to the Fourier integral
formula (see [7], Ch. 11, § 8), we can write down the relation (¢ >0, xe R?, £ §)

lim J‘ei(y’é)g(t, x,y+Llv)dy Md@=ﬁjei(y’é)g(ﬁ x,y)dy.
Me+ooR1 S C S

Now, passing to the limit in (5), as M — +e, we get formula (4). The lemma has been proved.
Remark. A proof of formula (4) different from that given above can be found in our paper [8].
1.2. The resolvent kernel. The following estimate is a simple consequence of Theorem 2.1 in [9].
Forall >0, xe R? ,and ye R4 , the inequality

t

+ly-x

holds true with some constant N >0 . Similar estimations in much more general situations includ-
ing the estimates for (fractional) derivatives of g were established in [10], Ch. IV and V.

Now, we observe that, for any a > 0, the integral -[ t(ti/ * 4+ @)@+ g is finite (remember that
0 o
d>2 and ae (1,2)). Hence, according to estimate (6), the function g(A, x, y) = Je_Mg(t, x, y)dt,

0
A>0, xeR?, ye R?, is well-defined (it has a singularity at the points x =y ). It is called
the resolvent kernel for our process.

As a simple consequence of Lemma 1, we have the formula

i(4,6) ~ i@ 1T cos(p(x,v))
€ g(k’ X, y)dy_e - o dp (7)
! “£k+6(|§2+pz) /2

valid forall A>0, xe Rd, and e §.
1.3. The local time on S . The following relations are simple consequences of (4)

oo oo

[t v, y)dy = [ cos(p(x, V) dp< ~ |
S T Ty ToC

e—Ctpadp — 1_‘(1/1(/1;1) t—1/0( . (8)

¢

Therefore, jdejg (0, x,y)dy < const-£17Y* According to Theorem 6.6 from [1], there exists an
0 S

additive continuous homogeneous functional (n,),( of the process (x(¢)),~ such that its
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t
values are non-negative, and the equality E n, =Jdejg(6, x,y)dy is valid for all ¢ >0 and
0

xe R?. This functional is called the local time on S for the process (x(£)); -
Denote by ¢,(x) for t >0 and xe€ R? the left-hand side of (8). For fixed />0, the function

¢

(q4(x)),_pa is continuous and bounded. So, the functional T]E-h):J“]h (x(s))ds, t >0 , of the
0

process (x(t));>¢ is well-defined. As was shown in [11], the relation hm E (n(h) n, Y2 =0

holds true. It is clear that g, (x) = 85(x), as h—0+, where §;is a generahzed function on

R?, whose action on a test function (9(x)) _pa is given by (8¢, @) = j(p(x)dx )
S
We have thus arrived at the conclusion that the trajectories of (n,),- are increasing at
those moments ¢ of time, for which x(¢)e S, and those trajectories are continuous.

Now, one can easﬂy verify that, for any continuous bounded function ((p(x)) the

Rd ’
Stieltjes integral J@(x(s))dns is well-defined for ¢ >0, and the equality E, j(p(x(s))dns =

= jd 9_[ g(0,x, y)o(y)dy holds true forall t >0 and x e R% Asa consequence, we have the relation

E.Je™Mo(x(s))dn, =& x, y)o(y)dy 9)
0 S

valid forall >0, xe R?, and any continuous bounded function (¢@(x))
2. The distribution of x(T).
2.1. The stopping time T is finite P, -a.s. For A>0, xe R? and Ec S, we put u(h, x, &)=

xeR4 "

=E, J‘e_he’.(x(t)’g) dm, . Since m, =0 for ¢ <1, one can write down
0

u()\l’ x, a) — Ex J‘e—ktei(x(t),é) dnt — Exe—k’t 1{T<+°o} er [J‘e—lt‘f'i(xa')y&) dnt J,
T 0

where (0,), . is the semigroup of shift operators associated with (x(¢)),~( (see [1], Ch. 3).
Making use of the property of our process to be a strong Markovian one, we get

u(h, x, &)= Exe_M 1{1:<+o<>} Ex(t) [J.e—lHi(x(l')y ¥ dnt ]: E"e—M1{r<+w}u(}”’ x(1),8).
0

We now put m, (x,A)=E, (e_MlA(x(‘c))l{T<+m}) for A>0, xe R? and any measurable
set AcS. Then the previous relation can be rewritten in the form u(A, x,E_,)=J.u(k, y,&)x
x m (x,dy), L>0, xeRd, EeS. S
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On the other hand, according to Lemma 1 and formulae (7) and (9), we have the relation

u(, x, &)zlei(’z’é)j cos(g)(x, VZ))(W dp valid forall A>0, xe Rd,and EeS.
T o Atc(p +|&%)

We have thus proved the following assertion.
Lemma 2. Forall >0, xe R? ,and e S, the equality

' T d (e T cos(p(a,v))
el(]/v&) T (x, dy) p — el(x,&) dp (10)
! £k+6(p2+|é|2)°‘/2 £x+c<p2+|&|2>°‘/2

holds true.
Now, put £=0 in (10). Taking into account that J.nk(x, dy)= ]_[er_M for A>0 and xe R?
N

(we believe that ™% =0 on the set {T=+eo}), we get E e = VAR ljwd p, where k

Ty A+cp®
is the constant defined in Introduction. Formula (2) is a simple consequence of this equality.
Letting A — 0+ in (2), we arrive at the conclusion that P, ({t<+e})=1. So, in the definition
of m, , we can omit the indicator 1.,
2.2. An explicit formula for the distribution of x(z). Let us return to formula (10). Put-
ting my(x,A) = ;}H&M (x,A)=P,({x(t)e A}) for xe€ R? and any measurable Ac S, we ob-

tain the relation

JED 1 (2 d _ i@ . [cos(plEl(x,V)) 1
! o (x,dy) 1£ Lrty P (11

1
. T dp 2 T(0/2)
alid for all xe R? and Ee S, where ¥, =| | ———= | =——"-"""2 .
v sedw ! {£(1+p2)a/2 ] Jr T((a—1)/2)

We are now going to find out an explicit formula for the density of the measure m;(x,-)

with respect to the Lebesgue measure in §. Denote this density by m, (x, y) for xe R\ S
and ye€ S . Our task now is to derive formula (3) from relation (11).
The integral on the right-hand side of (11) can be written as follows

oo

JCOS(plél(x,v))d _Jr(E] v he?
0 (1+p2)(x/2 2(0‘_1)/21"(&/2)

Ko r([E 1))

in accordance with formula (18) of § 16, Ch. IIT in [7], where

oo

K(x 1(@):% J. e—CCOSht—If(OL—D/Q dt (Rec >O)

2
—oo

is a modified Bessel function of the second type and the order (oe—1)/2 (see, for example, [12]).
18 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2018. Ne 12



On the distribution of a rotationally invariant a.-stable process at the hitting time of a given hyperplane

We have thus obtained the equality

[0, (x,dy) = 202 g | @D2| (, vy (D2
! r((0—1)/2)

valid forall xe R\ S and £S5 .

The properties of the function K,_ 5 (see [12], Ch.7) provide the function on the right-hand
side of (12) to be absolutely integrable with respect to & over § . Therefore, the density m,(x, y)
for xe R? \§ and ye S does exist, and it can be written as an inverse Fourier transform

e!(%:9) Kaa (1G]] (x v (12)

1 9BG-m)/2 | (2, V) |(0<—1)/2
endt T(a-1)/2)

o (%, y) = [ O[O Koy (Bl [ vIDdE. (13)

N

Let d > 2. Denote by B,(z) a ball in R%* of radius r and center ze R?™!, and by 0B, (z)
its boundary. Using the well-known Catalan formula, one can write down the relation

o (2m) =D/
PUC Ay 5 Jas (r|I-yl), r>0 (the integral on the left-hand
(r|E=y 27
9B, (0) y
side here is a surface one), where J,(§) is a Bessel function of the order u: J,(§)=

w1
= % J;(l —0% )2 cos(L0)dO (Rep > —1/2)). Hence, we get the following relation

1 2(3—0()/2 | (.X', V) |(O(—1)/2
@)Y | § -y |92 T ((0-1)/2)

TCO(XVZ/):

X[ ORI (V) ) Jaa (| T =y .
0 ? ’

In accordance with formula (39) of 7.14.2 in [12], we have

oo

[P 16V ) S ([ =y e =
0

_ @la-y D2 2| @ v DT ((d+0)/2-1)
(x-y |2 +(x, V)2 )(d+oc)/2_1 )

It is not a difficult exercise to verify that these formulae are also valid in the case of d =2. A
very simple calculation allows us to formulate now the following statement.
Theorem. Forall xe R*\ S and ye S, the formula

r((d+a)/2-1) | (e, v) [

T (%, y)= n(d_1)/2r(((1—1)/2) |: ](d+a)/2—1

(e, v+ |y -zl
holds true.
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[TPO PO3MOALT POTAIIMTHO THBAPIAHTHOTO o-CTIMKOTO ITPOIECY
B MOMEHT ITEPHINX BIABIIMH HUM 3AJAHOI TTHEPILJIOIIMHN

Mnu 3Hax0aMMO SBHY (DOPMYITY 711 PO3IOINTY POTAIifHO iHBapiaHTHOTO O-CTiKOTO TIPOIleCYy B MOMEHT Jacy,
KOJIY BiH BIIEpIIle HABiYEThCS 0 3a1aHOi rinepriomunu. Posrisimaerbes Bunanok 1 < o < 2.
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O PACHPEJIETEHNN POTAIIMOHHO MHBAPUAHTHOTO o- YCTOMYMBOTO ITPOIIECCA
B MOMEHT ITEPBOTO IIOITAIAHUA ETO HA SATAHHY1O TUITEPIINTIOCKOCTD

Haxomum siBHYI0 (hopMyJry JiJIst pactpeiesieH st POTAIIMOHHO HHBAPUAHTHOTO Of-YCTOWYMBOTO MPOIIECCA B MOMEHT
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