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ON THE CROSSINGS NUMBER OF A HYPERPLANE BY A STABLE

RANDOM PROCESS

The numbers of crossings of a hyperplane by discrete approximations for trajectories of an

α-stable random process (with 1 < α < 2) and some processes related to it are investigated.

We consider an α-stable process is killed with some intensity on the hyperplane and a pseudo-

process that is formed from the α-stable process using its perturbation by a fractional derivative

operator with a multiplier like a delta-function on the hyperplane. In each of these cases, the

limit distribution of the crossing number of the hyperplane by some discret approximation of

the process is related to the distribution of its local time on this hyperplane. Integral equations

for characteristic functions of these distributions are constructed. Unique bounded solutions of

these equations can be constructed by the method of successive approximations.
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Introduction

Let (x(t),Mt,Px) denote a standard Markov process on Rd (d ≥ 1). Consider a �xed

hyperplane S = {x ∈ Rd : (x, ν) = r}, in Rd and two open sets

D− = {x ∈ Rd : (x, ν) < r}, D+ = {x ∈ Rd : (x, ν) > r},

where ν ∈ Rd is a given unit vector and r ∈ R is a given constant.

Our goal is to describe a changes number of the sets D− and D+ before a �xed time t > 0

by the trajectories of the process (x(t))t≥0 started at �xed point x ∈ Rd.

Consider for m,n ∈ N the random variable

ξ(n)
m =

m∑
k=1

v

(
x

(
k − 1

n

)
, x

(
k

n

))
,

where v(x, y) = 1ID−(x)1ID+(y) + 1ID+(x)1ID−(y).
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The variable ξ
(n)
[nt] equals to the number of crossings of the hyperplane S by the ordered

set of points in Rd: x(0), x(1/n),. . . ,x([nt]/n).

We are going to �nd out a sequence of normalizing multipliers {cn : n ≥ 1} such that

the limit distribution of the sequence {cnξ(n)
[nt] : n ≥ 1} exists and to describe it. It is obvious

that cn → 0, as n→∞.

The limit theorems of this type were initiated by I. I. Gikhman in connection with some

problems of mathematical statistics. I. I. Gikhman considered sequences of one-dimensional

Markov chains approaching a di�usion process with smooth local characteristics (see [1, 2]).

1 Some auxiliary results

We will use the following corollary of one A. V. Skorokhod's theorem (see [3, Th. 1]).

Lemma 1. A limit distribution of the sequence of random variables cnξ
(n)
[nt] exists if and only

if a limit distribution exists for the variables cnη
(n)
[nt], where

η(n)
m =

m∑
k=1

vn

(
x

(
k

n

))
, vn(x) = Exv

(
x(0), x

(
1

n

))
,

and these limit distributions coincide, if only they exist.

So, we will consider the random variables cnη
(n)
[nt].

For any �xed t > 0, x ∈ Rd, n ∈ N we consider the characteristic function

un(t, x, θ) = Ex exp
{
iθcnη

(n)
[nt]

}
, θ ∈ R

of the random variable cnη
(n)
[nt].

The next equation for the function un(t, x, θ)

un(t, x, θ) = 1 + n

∫ [nt]/n

0

dτ

∫
Rd

(
1− e−iθcnvn(y)

)
un(τ, y, θ)g

(
[nt]− [nτ ]

n
, x, y

)
dy (1)

follows from the identity exp {
∑m

k=1 ak} = 1 +
∑m

k=1 (1− e−ak) exp
{∑m

j=k aj

}
holds true for

each set of complex numbers a1, a2, . . . , am and each natural number m.

If the transition probability density of the process (x(t))t≥0 is given by the equality

g(t, x, y) = (2π)−d
∫
Rd

exp{i(λ, y − x)− ct|λ|α} dλ, t > 0, x ∈ Rd, y ∈ Rd,

for �xed parameters c > 0 and α ∈ (1, 2], then the process (x(t))t≥0 is called rotationally

invariant α-stable random process. If α = 2, this process is the Brownian motion. In this

case, our problems have been addressed in many publications (see, for example, [4, 5] and

others). Therefore, we will not consider this case. So, we will further assume that 1 < α < 2,

although most of our results remain correct also for α = 2.

Consider the function f(t, x) =
∫ t

0
dτ
∫
S
g(τ, x, y) dσy. It is a W-function for the process

(x(t))t≥0 satisfying the inequality f(t, x) ≤ N α
α−1

t1−1/α. So, there exists a W-functional
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(lt)t≥0 of the process (x(t))t≥0 such that Exlt = f(t, x) (see [8, Th. 6.6]). This functional is

called the local time on S for the process (x(t))t≥0.

Using the following representation of the functional (lt)t≥0:

lt = lim
h→0+

∫ t

0

dτ

∫
S

g(h, x(τ), y) dσy in mean-square,

and the Feynman-Kac formula, one can prove that the characteristic function of the random

value lt, that is v(t, x, θ) = Ex exp{iθlt}, satis�es the following equation

v(t, x, θ) = 1 + iθ

∫ t

0

dτ

∫
S

g(t− τ, x, y)v(τ, y, θ) dσy. (2)

2 The main results

The �rst statement concerns to the rotationally invariant α-stable random process.

Theorem 1. The limit distribution with respect to the measure Px of the random variables

sequence n−1+1/αξ
(n)
[nt] for �xed t > 0 and x ∈ Rd has the characteristic function (u(t, x, θ))θ∈R,

which is the unique bounded solution of the integral equation

u(t, x, θ) = 1 + iκθ
∫ t

0

dτ

∫
S

g(t− τ, x, y)u(τ, y, θ) dσy,

where κ = 2c1/α

π
Γ(1−1/α). This distribution coincides with the distribution of the multiplied

by κ local time on the hyperplane S of the process (x(t))t≥0.

Next, let a continuous bounded function (r(x))x∈S with non-negative values be given.

Consider the function (G(t, x, y))t>0,x∈Rd,y∈Rd which is a solution of to each one of the fol-

lowing equations

G(t, x, y) = g(t, x, y)−
∫ t

0

dτ

∫
S

g(t− τ, x, z)G(τ, z, y)r(z) dσz,

G(t, x, y) = g(t, x, y)−
∫ t

0

dτ

∫
S

G(t− τ, x, z)g(τ, z, y)r(z) dσz.

The function G is the transition probability density of the process (x(t))t≥0 killed on the

hyperplane S at some stopping time ζ (see [6]). The function (r(x))x∈S is the killing intensity

of the process (x(t))t≥0. It is clear that

Px({ζ > t}) =

∫
Rd
G(t, x, y) dy = 1−

∫ t

0

dτ

∫
S

G(τ, x, y)r(y) dσy.

Theorem 2. The limit distribution with respect to the measure Px of the random variables

sequence n−1+1/αξ
(n)
[nt] for �xed t > 0 and x ∈ Rd has the characteristic function (u(t, x, θ))θ∈R,

which is the unique bounded solution of the integral equation

u(t, x, θ) = 1 + iκθ
∫ t

0

dτ

∫
S

G(t− τ, x, y)u(τ, y, θ) dσy,

where κ = 2c1/α

π
Γ(1 − 1/α). It is the distribution of the multiplied by κ local time on the

hyperplane S for the process (x(t))t≥0 killed at the stopping time ζ.
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And the last, let a continuous bounded function (q(x))x∈S be given. Introduce an operator

Bν determined by its symbol (i|ξ|α−2(ξ, 2cν))ξ∈Rd . De�ne the function (G(t, x, y))t>0,x∈Rd,y∈Rd

by the following formula

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

g(t− τ, x, z)Bνg(τ, ·, y)(z)q(z) dσz.

This function is �a transition probability density� of some pseudo-process with a mem-

brane on the hyperplane S (see [7]). The generator of this pseudo-process can be written in

the following form: A+ q(x)δS(x)Bν , where A is the generator of the process (x(t))t≥0 (that

is a pseudo-di�erential operator whose symbol is given by the function (−c|ξ|α)ξ∈Rd).

Consider the function (u(t, x, θ))t≥0,x∈Rd,θ∈R de�ned by the equality

u(t, x, θ) = lim
n→∞

Êx exp
{
iθn−1+1/αη

(n)
[nt]

}
def
=

lim
n→∞

∫
Rd
. . .

∫
Rd

[nt]∏
k=1

exp
{
iθn−1+1/αv̂n(xk)

}
G

(
1

n
, xk−1, xk

)
dxk,

where x0 = x and v̂n(x) = Êxv
(
x(0), x

(
1
n

)) def
=
∫
Rd v(x, y)G

(
1
n
, x, y

)
dy. This function is

�the characteristic function� of the the random variables sequence n−1+1/αξ
(n)
[nt] limit �distri-

bution� for �xed t > 0 and x ∈ Rd.

Here we use quotes with notions that apply to the pseudo-process, similar to the ordinary

random process. These notions must be understood in some special way described above.

Theorem 3. The function (u(t, x, θ))θ∈R for �xed t > 0 and x ∈ Rd is the unique bounded

solution of the integral equation

u(t, x, θ) = 1 + iκθ
∫ t

0

dτ

∫
S

g(t− τ, x, y)u(τ, y, θ)(1− q2(y)) dσy,

where κ = 2c1/α

π
Γ(1− 1/α).

3 Proof of the main results

The proofs of these results are executed according to the same scheme. Consider the �rst

result (i.e. it is for the rotationally invariant α-stable random process).

First of all, one can prove two technical lemmas. The �rst one prompts us that we must

choose cn = n−1+1/α. And the second one allows to pass from equation (1) to some simpler

one.

Lemma 2. Let the real-valued function (ϕ(x))x∈Rd be such that sup
ρ∈R

∫
Sρ
|ϕ(x)| dσ < ∞,

where Sρ = {x ∈ Rd : (x, ν) = ρ}, and there exist the nontangentional limits ϕ(x−) and

ϕ(x+) from the side of D− and D+ in each point x ∈ S.
Then the following relation (with κ = E0|(x(1), ν)| = 2c1/α

π
Γ(1− 1/α))

lim
n→∞

n1/α

∫
Rd
vn(x)ϕ(x) dx = κ

∫
S

ϕ(y−) + ϕ(y+)

2
dσ
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is hold true. In addition, the inequality
∣∣n1/α

∫
Rd vn(x)ϕ(x) dx

∣∣ ≤ κ
2

sup
ρ∈R

∫
Sρ
|ϕ(x)| dσ is ful-

�lled.

Let a measurable function (ψ(t, x))t≥0,x∈Rd be such that sup
t∈[0,T ],x∈Rd

|ψ(t, x)| < ∞ for any

T > 0. Consider its transformation Ψn for n ∈ N given by

Ψn(t, x) = n1/α

∫ t

0

dτ

∫
Rd
vn(y)ψ(τ, y)g(t− τ, x, y) dy, t > 0, x ∈ Rd.

Lemma 3. For given numbers ε > 0, L > 0, T > 0, there exists a number δ > 0 such that

the inequality |Ψn(t′, x′)−Ψn(t, x)| < ε is held for all t ∈ [0, T ], t′ ∈ [0, T ], x ∈ Rd, x′ ∈ Rd,

n ∈ N and all measurable functions ψ with the property sup
t∈[0,T ],x∈Rd

|ψ(t, x)| ≤ L if only the

inequality |t− t′|+ |x− x′| < δ is ful�lled.

Next, using Lemma 3 one can easily prove that solutions of equation (1) for the charac-

teristic function un(t, x, θ) of n−1+1/αη
(n)
[nt] and solutions of the following equation

u∗n(t, x, θ) = 1 + iθn1/α

∫ t

0

dτ

∫
Rd
vn(y)u∗n(τ, y, θ)g(t− τ, x, y) dy

satisfy the relation limn→∞ sup
x∈Rd

sup
0<t≤T

sup
θ1≤θ≤θ2

|un(t, x, θ) − u∗n(t, x, θ)| = 0 for any T > 0,

θk ∈ R (k = 1, 2), θ1 < θ2.

As the corollary of Lemma 2 one can say that the characteristic function (u(t, x, θ))θ∈R
(t and x are �xed) of the limit distribution with respect to the measure Px for the sequence
of the random variables n−1+1/αξ

(n)
[nt] (and n

−1+1/αη
(n)
[nt] also) satis�es the following equation

u(t, x, θ) = 1 + iθκ
∫ t

0

dτ

∫
S

g(t− τ, x, y)u(τ, y, θ) dσy (3)

A solution of equation (3) can be constructed by the method of successive approximations,

that is we have u(t, x, θ) =
∑∞

k=0 u
(k)(t, x, θ)(iθκ)k, where u(0)(t, x, θ) ≡ 1, u(k)(t, x, θ) =∫ t

0
dτ
∫
S
g(t− τ, x, y)u(k−1)(τ, y, θ) dσy.

This follows from the estimation |u(k)(t, x, θ)| ≤ Ck (Γ(β))k

Γ(1+kβ)
tkβ, getting by the induction,

where C > 0 is some constant, β = 1− 1/α.

The solution of equation (3) is unique in the class of bounded functions, because the

di�erence between each two solutions of equation (3) satis�es the following equation

w(t, x, θ) = iθκ
∫ t

0

dτ

∫
S

g(t− τ, x, y)w(τ, y, θ) dσy.

and we have inequalities |w(t, x, θ)| ≤ (CθκΓ(β))k

Γ(1+kβ)
tkβ for each k ∈ N.

Comparing equations (3) and (2) we get that the distribution of κlt and the limit distri-

bution of n−1+1/αξ
(n)
[nt] (with respect to the measure Px) are equal.
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Äîñëiäæåíî ÷èñëà ïåðåòèíiâ ãiïåðïëîùèíè äèñêðåòíèìè íàáëèæåííÿìè òðàåêòîðié α-

ñòiéêîãî âèïàäêîâîãî ïðîöåñó (1 < α < 2) òà äåÿêèõ ïîâ'ÿçàíèõ ç íèì ïðîöåñiâ. Ðîçãëÿäà-

þòüñÿ α-ñòiéêèé âèïàäêîâèé ïðîöåñ ç óáèâàííÿì ç äàíîþ iíòåíñèâíiñòþ íà ãiïåðïëîùèíi

òà ïñåâäîïðîöåñ, óòâîðåíèé ç α-ñòiéêîãî âèïàäêîâîãî ïðîöåñó çáóðåííÿì éîãî îïåðàòîðîì

äðîáîâî¨ ïîõiäíî¨ ç ìíîæíèêîì òèïó äåëüòà-ôóíêöi¨ íà ãiïåðïëîùèíi. Â êîæíîìó ç öèõ

âèïàäêiâ ãðàíè÷íèé ðîçïîäië êiëüêîñòi ïåðåòèíiâ ãiïåðïëîùèíè äåÿêîþ äèñêðåòíîþ àïðî-

êñèìàöi¹þ ïðîöåñó ïîâ'ÿçàíèé ç ðîçïîäiëîì éîãî ëîêàëüíîãî ÷àñó íà öié ãiïåðïëîùèíi.

Ïîáóäîâàíi iíòåãðàëüíi ðiâíÿííÿ äëÿ õàðàêòåðèñòè÷íèõ ôóíêöié öèõ ðîçïîäiëiâ. �äèíi

îáìåæåíi ðîçâ'ÿçêè öèõ ðiâíÿíü ìîæíà îäåðæàòè ìåòîäîì ïîñëiäîâíèõ íàáëèæåíü.


