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OSYPCHUK M.M.

ON THE CROSSINGS NUMBER OF A HYPERPLANE BY A STABLE
RANDOM PROCESS

The numbers of crossings of a hyperplane by discrete approximations for trajectories of an
a-stable random process (with 1 < o < 2) and some processes related to it are investigated.
We consider an a-stable process is killed with some intensity on the hyperplane and a pseudo-
process that is formed from the a-stable process using its perturbation by a fractional derivative
operator with a multiplier like a delta-function on the hyperplane. In each of these cases, the
limit distribution of the crossing number of the hyperplane by some discret approximation of
the process is related to the distribution of its local time on this hyperplane. Integral equations
for characteristic functions of these distributions are constructed. Unique bounded solutions of
these equations can be constructed by the method of successive approximations.
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INTRODUCTION

Let (z(t), M;,P,) denote a standard Markov process on R? (d > 1). Consider a fixed
hyperplane S = {z € R?: (z,v) = r}, in R? and two open sets

D_={zeR": (z,v)<r}, Dy={zxeR: (v,v)>r},

where v € R? is a given unit vector and r € R is a given constant.

Our goal is to describe a changes number of the sets D_ and D, before a fixed time ¢ > 0
by the trajectories of the process (z(t))s>o started at fixed point x € R?.

Consider for m,n € N the random variable

@2 (-(5) - ()

where v(z,y) = Ip_(x)lp, (y) + Ap, (x)Ip_(y).
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The variable 5[(:2] equals to the number of crossings of the hyperplane S by the ordered
set, of points in R%: z(0), z(1/n),...,x([nt]/n).

We are going to find out a sequence of normalizing multipliers {c, : n > 1} such that
the limit distribution of the sequence {cng[(;?} :n > 1} exists and to describe it. It is obvious
that ¢, — 0, as n — oo.

The limit theorems of this type were initiated by I. I. Gikhman in connection with some
problems of mathematical statistics. I. I. Gikhman considered sequences of one-dimensional
Markov chains approaching a diffusion process with smooth local characteristics (see [1, 2]).

1 SOME AUXILIARY RESULTS

We will use the following corollary of one A. V. Skorokhod’s theorem (see [3, Th. 1]).

Lemma 1. A limit distribution of the sequence of random variables cnf’[(:t)] exists if and only

[(;Lt)] , where

) — gvn (I (g)) (@) = By <x(0),x (%)) |

and these limit distributions coincide, if only they exist.

(n)
[nt]”

For any fixed t > 0, € R%, n € N we consider the characteristic function

if a limit distribution exists for the variables c,n

So, we will consider the random variables c,n

un(t, z,0) = E, exp {iecnn[(")} , R

nt|

(n)
[nt]”

The next equation for the function u,(t, z,0)

of the random variable ¢,n

[nt]/n 4 _
up(t,z,0) =1+ n/ dT/ (1 — e’wc””n(y)) un(7,y,0)g <M’ x,y) dy (1)
0 R?

follows from the identity exp {d> ,—, ar} =1+> ", (1 —e %) exp {E;n:k aj} holds true for
each set of complex numbers aq, as, ..., a,, and each natural number m.
If the transition probability density of the process (z(t));>0 is given by the equality

g(t,x,y) = (27r)_d/ exp{i(\,y — x) — ct|\|*}d\, t>0, v € RY y € RY
Rd

for fixed parameters ¢ > 0 and « € (1,2], then the process (z(t));>0 is called rotationally
invariant a-stable random process. If a = 2, this process is the Brownian motion. In this
case, our problems have been addressed in many publications (see, for example, [4, 5] and
others). Therefore, we will not consider this case. So, we will further assume that 1 < o < 2,
although most of our results remain correct also for o = 2.

Consider the function f(t,z) = f; dr [ g(, 2, y) doy. It is a W-function for the process
(z(t))>0 satisfying the inequality f(t,z) < N-2-t'"1/* So, there exists a W-functional
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(I¢)1>0 of the process (z(t))i>o such that E,l; = f(¢,x) (see [8, Th. 6.6]). This functional is
called the local time on S for the process (z(t)):>o.
Using the following representation of the functional (I;):>¢:

l; = hm / dT/ (h,z(7),y) do, in mean-square,

and the Feynman-Kac formula, one can prove that the characteristic function of the random
value [y, that is v(t, z,0) = E, exp{ifl,}, satisfies the following equation

v(t,x,0) —1+29/ dT/ —1,z,y)v(r,y,0)do,. (2)

2 THE MAIN RESULTS

The first statement concerns to the rotationally invariant a-stable random process.

Theorem 1. The Iimit distribution with respect to the measure P, of the random variables
sequence n 1“/0‘5 for fixed t > 0 and x € R has the characteristic function (u(t, z, 0))gcr,
which is the unique bounded solution of the integral equation

¢
u(t,x,0) =1+ i%é’/ dT/ g(t — 1,2, y)u(t,y,0) doy,
0 s

where » = %F(l —1/a). This distribution coincides with the distribution of the multiplied
by s local time on the hyperplane S of the process (x(t)):>o-

Next, let a continuous bounded function (r(z)).es with non-negative values be given.
Consider the function (G(t,%,9))t>0zerdyere Which is a solution of to each one of the fol-
lowing equations

G(t,x,y) = g(t,z,y) / dT/ —71,2,2)G(T, 2,y)r(2) do,
G(t,z,y) = g(t,x,y) — /0 dT/SG(t —1,2,2)9(7, 2,y)r(2) do,.

The function G is the transition probability density of the process (x(t)):>o killed on the
hyperplane S at some stopping time ¢ (see [6]). The function (7(x)).cs is the killing intensity
of the process (z(t))i>o. It is clear that

P.(C > = [ Gltay) y—l—/dr/ (.2, y)r(y) do,.

Theorem 2. The Ijmit distribution with respect to the measure P, of the random variables
sequence n 1“/0‘5 for fixed t > 0 and x € R has the characteristic function (u(t, z, 0))gcr,
which is the unique bounded solution of the integral equation

u(t,z,0) —1-1-2%9/ dT/ —1,z,y)u(t,y,0) doy,,

where » = %F(l — 1/a). It is the distribution of the multiplied by s local time on the
hyperplane S for the process (z(t)):>o killed at the stopping time (.
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And the last, let a continuous bounded function (¢(x)).ecs be given. Introduce an operator
B, determined by its symbol (¢[£|* 2(, 2¢v))¢ega. Define the function (G (¢, 2,Y))i>0.cerd yerd
by the following formula

G(t,z,y) = g(t,x,y) / dT/ —71,2,2)B,g(7,-,y)(2)q(z) do.

This function is “a transition probability density” of some pseudo-process with a mem-
brane on the hyperplane S (see [7]). The generator of this pseudo-process can be written in
the following form: A+ ¢(z)ds(x)B,, where A is the generator of the process (z(t));>o (that
is a pseudo-differential operator whose symbol is given by the function (—c[£|*)¢cga)-

Cousider the function (u(t,z,0));>0zcrd ger defined by the equality

n—oo
[nt] 1
. 0 —14+1/a s -
nh_)n;o /Rd .. /Rd kl_Ilexp {2971 Un(xk)} G <n,xk_1,xk) dxy,,

where 7o = x and 0,(z) = E U (2(0),2 (1)) = Jeav(z,9)G (£, 2,y) dy. This function is

n

u(t,x,0) = lim E, exp {i@n‘”l/an[(:t)]} def

“the characteristic function” of the the random variables sequence n~'*1/ °‘§ limit “distri-
bution” for fixed t > 0 and z € R

Here we use quotes with notions that apply to the pseudo-process, similar to the ordinary
random process. These notions must be understood in some special way described above.

Theorem 3. The function (u(t,x,0))ser for fixed t > 0 and x € R? is the unique bounded
solution of the integral equation

ult,z,6) _1+m9/ dT/ — 2 y)u(r,y,0)(1 - () doy,
where »x = %I‘(l —1/a).

3 PROOF OF THE MAIN RESULTS

The proofs of these results are executed according to the same scheme. Consider the first
result (i.e. it is for the rotationally invariant a-stable random process).
First of all, one can prove two technical lemmas. The first one prompts us that we must

—1+1/a

choose ¢, = n . And the second one allows to pass from equation (1) to some simpler

one.
Lemma 2. Let the real-valued function (¢(x)),cre be such that sup fsp lo(x)| do < oo,
pER

where S, = {z € R? : (z,v) = p}, and there exist the nontangentional limits ¢(x—) and
o(x+) from the side of D_ and D, in each point x € S.
Then the following relation (with » = Eo|(z(1),v)| = #F(l —1/a))

lim n'/® /]Rd vn(z)p(x) de = %/ Ply=) + oyt) do

n—00 g 2
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is hold true. In addition, the inequality |n'/* [L,v,(x)p(x)dz| < Zsup [, |¢(x)|do is ful-
pER P
filled.

Let a measurable function (1(t,%));>0.ere be such that — sup  |¢(t, )| < oo for any
te[0,T],z€RY
T > 0. Consider its transformation W, for n € N given by

t
W(t,0) =n/* [ dr [ et - rag)dy, 10,2 R
0 R4

Lemma 3. For given numbers ¢ > 0, L > 0, T' > 0, there exists a number 6 > 0 such that
the inequality |V, (', 2") — WU, (t,x)| < € is held for all t € [0,T], ' € [0,T], z € R, 2’ € RY,

n € N and all measurable functions ¢ with the property — sup  |¢(t,z)| < L if only the
te[0,T],z€R4
inequality |t —t'| + |z — 2’| < ¢ is fulfilled.

Next, using Lemma 3 one can easily prove that solutions of equation (1) for the charac-

teristic function wu, (¢, x,0) of n=1+Y/ an[(:t)} and solutions of the following equation

ur (t,x 9)—1+20n1/a/ dT/d U (7,y,0)9(t — 7,2, y) dy
R

satisfy the relation lim, ., sup sup sup |u,(t,z,0) — u’(t,x,0)] = 0 for any T" > 0,

2eRA 0<I<T 01<0<0;
O, e R (k=1,2), 0; < 6.

As the corollary of Lemma 2 one can say that the characteristic function (u(t,x,0))ser
(t and z are fixed) of the limit distribution with respect to the measure P, for the sequence
of the random variables n~'*1/ “5[:2] (and n~1+1/ 0‘7][ K also) satisfies the following equation

u(t,z,0) —1+29%/ dT/ —1,z,y)u(t,y,0)do, (3)

A solution of equation (3) can be constructed by the method of successive approximations,
that is we have u(t,z,0) = Y oo u)(t, x,0)(i03)*, where vV (t,z,0) = 1, uP(t,2,0) =
fg dr [4g(t — T, z, y)u*V (1, y,0) do,.

This follows from the estimation [u® (¢, z,0)| < C* F((Fl(f?;) th# | getting by the induction,

where C' > 0 is some constant, 3 =1— 1/a.
The solution of equation (3) is unique in the class of bounded functions, because the
difference between each two solutions of equation (3) satisfies the following equation

w(t,z,0) 29%/ dT/ —1,z,y)w(r,y,0)do,.

. .. (COI (B
and we have inequalities |w(t, x,0)| < F(T;/B)tkﬁ for each k € N.

Comparing equations (3) and (2) we get that the distribution of s, and the limit distri-
bution of n—1+1/a§[(§2] (with respect to the measure IP,) are equal.
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JloctiizKeHO 9nciia MePeTHHIB TinepIIONuHN JUCKPETHUMY HADJINKEHHSIME TPACKTOPIH a-
crifikoro Bunaakosoro mporecy (1 < a < 2) Ta JesKux 1mMoB’s3aHuX 3 HUM mpolecis. Posrisgna-
TOTbCS (-CTIMKHUI BUIIAIKOBUI MpoIiec 3 yOUBAHHAM 3 TAHOIO iHTEHCHBHICTIO Ha, TilepPILTOIITHI
Ta IICEBIOINPOIIEC, YTBOPEHUH 3 (-CTIHKOTO BUIIAKOBOIO IIpOIecy 30yPEeHHAM HOro Omeparopom
JIpOoOOBOT TIOXiAHOI 3 MHOKHUKOM THITY JI€IbTa-(PYHKINI HA TiMepIIomuHi. B KOXKHOMY 3 mux
BUMAKIB TPAHUIHUN PO3MO/ILT KiTHbKOCTI IEPETUHIB TMEePIJIONINHN JETKOI0 JUCKPETHOIO alrpo-
KCHUMAIIIEI0 MPOIECy IMOB’si3aHmii 3 PO3MOIIIOM HOTO JIOKAJBHOIO YacCy Ha, Iiif TiMepIjIoN(uHi.
Tlo6ynoBani inTerpasibHi PiBHAHHS JJid XapaKTEPUCTHIHUX (DYHKIHH MUX PO3MOALTIB. €auHi
obMerkeHi PO3B’A3KH [UX PIBHAHb MOXKHA O/IEPXKATH METOIOM IIOCJIiIOBHUX HAOJINKEHD.



