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Abstract. A fundamental solution of the so-called third initial-boundary
value problem for one class of pseudo-differential equations is construc-
ted. Those equations are related to a symmetric α-stable stochastic pro-
cess and our constructions are inspired by some probabilistic ideas. How-
ever, we expound our results in a way completely independent of any
probabilistic notion. Only the last section of the paper is based on the
notion of a stochastic process and also a pseudo-process and it gives
some interpretation of our results in terms of stochastic analysis.
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1. Introduction

One of the most important notions in the theory of partial differential equa-
tions of parabolic and elliptic types is the notion of a single-layer potential.
The theorem on the jump of the (co-)normal derivative of such a potential
is a significant result of classical analysis. In particular, just this theorem al-
lows one to construct a solution to the second initial-boundary value problem
for the corresponding equation (see [4], Chapter V and also bibliographical
remarks to it).

In the paper [8] some analog to the theory of single-layer potentials
was constructed in the situation when, instead of differential, some class
of pseudo-differential equations was considered. The main theorem of [8] is
analogical to the classical one mentioned above and it is applied there for
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solving the second initial-boundary value problem for the equations under
consideration.

The aim of this paper is to construct a solution to the third1 initial-
boundary value problem for pseudo-differential equations of the same type as
in [8]. Those equations are related to stochastic processes known as symmetric
(more precisely — rotationally invariant) α-stable processes. It is natural that
our constructions were inspired with some probabilistic ideas. Nevertheless,
we expound our results in a form completely independent of any probabilistic
notions. Only the last section of this article can be considered as a probabilis-
tic interpretation of the matter of prior sections and in order to understand
it, one should be familiar with some notions of stochastic analysis such as
Markov processes, the Feynman-Kac formula, W-functionals, local times etc.

We consider here a model problem: the surface where the boundary
value conditions are to be given is supposed to be a hyperplane in a Euclidean
space. We formulate the main problem (Section 2) in such a way that there
are two versions of it called symmetric and asymmetric ones. Sections 4 and 5
are devoted to those versions, respectively. In Section 3 some known facts are
exposed that are necessary for understanding the subsequent considerations.
Finally, Section 6, as mentioned above, contains the probabilistic aspects of
the results obtained in Sections 4 and 5.

2. The main problem

2.1. The operator A

For given parameters α and c, 1 < α < 2, c > 0, let A denote a pseudo-
differential operator whose symbol is given by (−c|ξ|α)ξ∈Rd (a d-dimensional

Euclidean space is denoted by Rd). This operator acts on a function (ϕ(x))x∈Rd
being smooth enough and bounded along with its derivatives according to the
formula

Aϕ(x) =
c

κ

∫
Rd

[ϕ(x+ y)− ϕ(x)− (∇ϕ(x), y)]|y|−d−α dy, x ∈ Rd, (1)

where κ is the constant given by

κ =
−2π

d−1
2 Γ(2− α)Γ((α+ 1)/2) cos(πα/2)

α(α− 1)Γ((d+ α)/2)
.

In the limiting case of α = 2 the operator A coincides with c ·∆, where ∆ is
the Laplace operator.

1The terms: ”the first”, ”the second” and ”the third” (initial-)boundary value problems are

as widely used in the theory of differential equations as their synonyms: ”the Dirichlet”,

”the Neumann” and ”the Mixed” problems, respectively. One should be careful, when
making use of these terms in the theory of pseudo-differential equations. In our opinion,

there is a sufficient reason to consider the main problem of this article (see Section 2) as
some analogy to the third (or the Mixed) problem.
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2.2. The operator B

Let B denote a pseudo-differential operator whose symbol is given by the
Rd-valued function (2ic|ξ|α−2ξ)ξ∈Rd . The role of this operator in our theory
is similar to that of the gradient in classical theory. In particular, for a given
unit vector ν ∈ Rd, the function (2ic|ξ|α−2(ξ, ν))ξ∈Rd is the symbol of the
pseudo-differential operator (denoted by Bν) that is analogical to the partial
derivative in the direction ν.

If a function (ϕ(x))x∈Rd is bounded and satisfies the Lipschiz condition,
then

Bϕ(x) =
2c

ακ

∫
Rd

[ϕ(x+ y)− ϕ(x)]|y|−d−αy dy, x ∈ Rd, (2)

where κ is the constant defined above. We put g
(ν)
0 (t, x, y) = Bνg0(t, ·, y)(x),

t > 0, x ∈ Rd, y ∈ Rd. A very simple calculation (see [7]) leads us to the
equality

g
(ν)
0 (t, x, y) =

2(y − x, ν)

αt
g0(t, x, y), t > 0, x ∈ Rd, y ∈ Rd. (3)

Notice, that A = 1
2divB, so the role of the operator A is similar to that of

the Laplacian in the classical theory of potentials.

2.3. Formulating the main problem

Denote by Cb(Rd) the Banach space of all real-valued continuous bounded
functions (ϕ(x))x∈Rd with the norm ‖ϕ‖ = sup

x∈Rd
|ϕ(x)| and by C0(Rd) the

subspace of Cb(Rd) being the collection of all ϕ ∈ Cb(Rd) such that the set
{x ∈ Rd : |ϕ(x)| ≥ ε} is a compact in Rd for each ε > 0.

Let S be a hyperplane in Rd that is orthogonal to a fixed unit vector
ν ∈ Rd and let two continuous bounded functions (q(x))x∈S and (r(x))x∈S
with real and non-negative values, respectively, be given. As was mentioned
above, our aim is to construct the solution of the following initial-boundary
value problem.

For a given ϕ ∈ Cb(Rd), a continuous function U of the arguments t > 0
and x ∈ Rd is being looked for such that it satisfies

(i) the equation
∂U

∂t
= AU

in the region t > 0 and x /∈ S;
(ii) the initial condition

U(0+, x) = ϕ(x)

for all x ∈ Rd;
(iii) the boundary value condition

1 + q(x)

2
BνU(t, ·)(x+)− 1− q(x)

2
BνU(t, ·)(x−) = r(x)U(t, x)

for all t > 0 and x ∈ S.
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Notice, that the boundary value condition is formulated in a normalized
form: the sum of the coefficients on the left-hand side of (iii) is identically
equal to 1.

In the case of q(x) ≡ 0, we call the corresponding problem a symmetric
one and in accordance to that, the general problem is called an asymmetric
one. We construct fundamental solutions to them in Sections 4 and 5.

Another name of the general problem is the third initial-boundary value
problem. If r(x) ≡ 0, then it is nothing else but the second initial-boundary
value problem. Its solution was constructed in [8] for a general surface S.
In the case of S being a hyperplane, the fundamental solution to the cor-
responding problem was explicitly constructed in [7]. We briefly expose the
results from [7] in Subsection 3.5.

Finally, the problem (i) — (iii) with q(x) ≡ 0 and r(x) ≡ 0 coincides
with the Cauchy problem considered in Section 3.1.

3. Preliminaries

3.1. The case of q(x) ≡ 0 and r(x) ≡ 0

Consider the following Cauchy problem: for a given ϕ ∈ Cb(Rd), a contin-
uous function (u0(t, x))t>0,x∈Rd is being looked for such that it satisfies the
equation

∂u0
∂t

= Au0 (4)

in the region (t, x) ∈ (0,+∞)× Rd and the initial condition

u0(0+, x) = ϕ(x) (5)

for all x ∈ Rd.
It can be easily verified that the fundamental solution to this problem

is given by (t > 0, x ∈ Rd, y ∈ Rd)

g0(t, x, y) = (2π)−d
∫
Rd

exp {i(x− y, ξ)− ct|ξ|α} dξ. (6)

This means that the function g0 as a function of the arguments (t, x) ∈
(0,+∞)× Rd for fixed y ∈ Rd satisfies equation (4) and for any ϕ ∈ Cb(Rd)
the function

u0(t, x, ϕ) =

∫
Rd
g0(t, x, y)ϕ(y) dy, t > 0, x ∈ Rd, (7)

solves the problem (4), (5).
The maximum principle for equation (4) (see [3], Lemma 4.7) implies

the uniqueness of the solution in the class C0(Rd). One can easily observe
that for any t > 0, the function (7) belongs to C0(Rd) if only so does ϕ.

As a consequence of these facts, we have the following properties of the
function g0.

3.1.A. The values of the function g0 are positive.
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3.1.B. For all s > 0, t > 0, x ∈ Rd and y ∈ Rd the equality

g0(s+ t, x, y) =

∫
Rd
g0(s, x, z)g0(t, z, y) dz

holds true.

3.1.C. The equality

∫
Rd
g0(t, x, y) dy = 1 is valid for all t > 0 and x ∈ Rd.

Besides, the function g0 satisfies the inequality

g0(t, x, y) ≤ N t

(t1/α + |y − x|)d+α
, t > 0, x ∈ Rd, y ∈ Rd, (8)

where N is a positive constant (see [3], Chapter IV).

Let S be a hyperplane in Rd that is orthogonal to a fixed unit vector
ν ∈ Rd. We will have an opportunity to make use of the equality (the integral
on the left-hand side is a surface one)∫

S

ei(ξ,y)g0(t, x, y) dσy =
1

π

∫ ∞
0

e−ct(|ξ|
2+ρ2)α/2 cos(ρ(x, ν)) dρ (9)

valid for t > 0, x ∈ Rd and ξ ∈ S (see [8]). Combining (8) and (9), we have
the estimate ∫

S

g0(t, x, y) dσy ≤ N
t

(t1/α + |(x, ν)|)1+α
(10)

held true for t > 0 and x ∈ Rd with some constant N > 0.

3.2. Single-layer potentials

Let S be the same as above and let a continuous function (v(t, x))t>0,x∈S
with real values be given such that the inequality |v(t, x)| ≤ Ct−β holds true
for all t > 0 and x ∈ S with some constants C > 0 and β < 1. Define a
function V0 of the arguments t > 0 and x ∈ Rd by setting

V0(t, x) =

∫ t

0

dτ

∫
S

g0(t− τ, x, y)v(τ, y) dσy. (11)

Inequality (10) implies the following estimate for V0

|V0(t, x)| ≤ CN
Γ(1− β)Γ

(
1− 1

α

)
)

Γ
(
2− 1

α − β
) t1−β−

1
α , t > 0, x ∈ Rd.

It shows that the function V0 is not only well-defined, but also is continuous
with respect to the arguments t > 0 and x ∈ Rd. This function is called the
single-layer potential (with “the mass v distributed on (0,+∞)× S”).
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3.3. The function BνV0

Let a hyperplane S and a continuous function (v(t, x))t>0,x∈S be the same
as in Section 3.2. We now prove the relation

BνV0(t, ·)(x) =

∫ t

0

dτ

∫
S

g
(ν)
0 (t− τ, x, y)v(τ, y) dσy (12)

valid for t > 0 and x /∈ S.
First, we observe that the function on the right-hand side of (12) (de-

note it by V
(ν)
0 (t, x) for t > 0 and x ∈ Rd) is well-defined. It is clear that

V
(ν)
0 (t, x) = 0 for t > 0 and x ∈ S, since g

(ν)
0 (t − τ, x, y) = 0 for x ∈ S and

y ∈ S in accordance to (3). If x /∈ S, then (3) and (8) imply the inequality

|g(ν)0 (t− τ, x, y)| ≤ 2

α
N

|(x, ν)|
[(t− τ)1/α + ((x, ν)2 + |y − x̃|2)1/2]d+α

, y ∈ S,

where x̃ = x− ν(x, ν) (x̃ is the orthogonal projection of x on S). Therefore

|V (ν)
0 (t, x)| ≤

≤ 2

α
CN

∫ t

0

τ−β dτ

∫
S

dσy
[(t− τ)1/α + ((x, ν)2 + |y − x̃|2)1/2]d+α−1

≤

≤ 2

α(1− β)
CN |(x, ν)|−αt1−β

∫
Rd−1

dz

(1 + |z|2)(d+α−1)/2

and the function V
(ν)
0 is indeed well-defined.

It remains to show that the function
(
V0(t,x+y)−V0(t,x)

|y|d+α (y, ν)
)
y∈Rd

is inte-

grable over Rd and that BνV0(t, ·)(x) = V
(ν)
0 (t, x) for t > 0 and x /∈ S. Taking

into account the estimate for V0, we arrive at the conclusion that it is suffi-
cient to verify that the integral (we use the notation Bδ = {y ∈ Rd : |y| ≤ δ})∫

Bδ

|V0(t, x+ y)− V0(t, x)||y|−d−α+1dy, x /∈ S, (13)

is finite for a positive δ being small enough.
We choose 0 < δ < 1

2 |(x, ν)| (x /∈ S is a fixed point). The well-known
theorem of analysis allows one to write down the equality

g0(t− τ, x+ y, z)− g0(t− τ, x, z) = (∇g0(t− τ, ·, z)(x∗), y),

where x∗ = x + θy for some θ ∈ (0, 1). According to Kochubei’s inequality
(see [3], Lemma 4.1)

|∇g0(t− τ, ·, z)(x∗)| ≤ N t− τ
[(t− τ)1/α + |z − x∗|]d+α+1

.

Since |z − x∗| > 1
2 |z − x| =

1
2

(
|z − x̃|2 + (x, ν)2

)1/2
for z ∈ S and∫

S

|∇g0(t− τ, ·, z)(x∗)| dσz ≤N(t− τ)

∫
Rd−1

2d+α+1 dz

(|z|2 + (x, ν)2)(d+α+1)/2
=

=const · (t− τ)|(x, ν)|−α−2,
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the following estimate∫
Bδ

|V0(t, x+ y)− V0(t, x)||y|−d−α|(y, ν)| dy ≤

≤const · |(x, ν)|−α−2
∫ t

0

τ−β(t− τ) dτ

∫
Bδ

|y|−d−α+2dy

is held. This estimate shows that the integral (13) is finite. On the other
hand, it shows that the order of integrating in BνV0(t, ·)(x) can be changed
and this completes the proof of (12).

Similar arguments allow one to assert that the function (V0(t, x))t>0,x∈Rd
satisfies equation (4) in the region t > 0 and x /∈ S (see [8] for details).

3.4. The jump of the function BνV0

The function V
(ν)
0 defined by (12) is continuous with respect to t > 0 and

x /∈ S and it has jumps at the points of S described by the following particular
case of the general theorem (see [8]):

the relations

lim
z→x±

∫ t

0

dτ

∫
S

g
(ν)
0 (t− τ, z, y)v(τ, y) dσy = ∓v(t, x) (14)

hold true for all t > 0 and x ∈ S, where z → x+ (respectively, z → x−)
means that z approaches x along any curve lying in a finite closed cone K in
Rd with vertex at x such that K ⊂ {z ∈ Rd : (z, ν) > 0} ∪ {x} (respectively,
K ⊂ {z ∈ Rd : (z, ν) < 0} ∪ {x}). The so-called direct value of BνV0(t, ·)(x)

for t > 0 and x ∈ S vanishes in (14) because of g
(ν)
0 (t, x, y) = 0 for t > 0,

x ∈ S and y ∈ S (see (3)). The dual formula for (14) is as follows

lim
z→y±

∫ t

0

dτ

∫
S

v(t− τ, x)g
(ν)
0 (τ, x, z) dσx = ±v(t, y) (15)

for t > 0 and y ∈ S.

The proof of (14) is based on the following reason. Consider the integral

I(t, z) =

∫ t

0

dτ

∫
S

g
(ν)
0 (τ, z, y) dσy, t > 0, z /∈ S.

According to (9), we have

I(t, z) = −2(z, ν)

πα

∫ t

0

dτ

τ

∫ ∞
0

e−cτρ
α

cos(ρ(z, ν)) dρ.

Integrating by parts, we obtain for t > 0 and z /∈ S

I(t, z) = −2c

π

∫ t

0

dτ

∫ ∞
0

ραe−cτρ
α sin(ρ(z, ν))

ρ
dρ =

= − lim
δ→0+

2

π

∫ ∞
0

e−cδρ
α sin(ρ(z, ν))

ρ
dρ+

2

π

∫ ∞
0

e−ctρ
α sin(ρ(z, ν))

ρ
dρ.
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Hence, the following formula

I(t, z) = − sign(z, ν) +
2

π

∫ ∞
0

e−ctρ
α sin(ρ(z, ν))

ρ
dρ

holds true for t > 0 and z /∈ S. Equality (14) is a simple consequence of this
formula (see [7], [8] for details).

3.5. The fundamental solution in the case of r(x) ≡ 0

We put for t > 0, x ∈ Rd and y ∈ Rd

G0(t, x, y) = g0(t, x, y) +

∫ t

0

dτ

∫
S

g0(t− τ, x, z)g(ν)0 (τ, z, y)q(z) dσz (16)

and first of all show that the integrals in (16) are well-defined. It is evident

for y ∈ S because of the equality g
(ν)
0 (τ, z, y) = 0 for z ∈ S and y ∈ S (see

(3)); so, we have G0(t, x, y) = g0(t, x, y) for t > 0, x ∈ Rd and y ∈ S. Further,
as follows from (3) and (8), the inequality

|g(ν)0 (τ, z, y)| ≤ 2

α
N

|(y, ν)|
(τ1/α + |y − z|)d+α

is held for τ > 0, z ∈ S and y ∈ Rd. Since |y − z| = (|ỹ − z|2 + (y, ν)2)1/2 ≥
|(y, ν)| for z ∈ S and y ∈ Rd (we remind that ỹ = y − ν(y, ν) for y ∈ Rd),
the estimate |g(ν)0 (τ, z, y)| ≤ 2

αN |(y, ν)|−d−α+1 is valid for τ > 0, z ∈ S and

y ∈ Rd \ S. It implies the inequalities∣∣∣∣∫
S

g0(t− τ, x, z)g(ν)0 (τ, z, y)q(z) dσz

∣∣∣∣ ≤
≤ 2

α
‖q‖N |(y, ν)|−d−α+1

∫
S

g0(t− τ, x, z) dσz ≤

≤ 2

α
‖q‖N2|(y, ν)|−d−α+1(t− τ)−1/α

that are fulfilled for 0 < τ < t, x ∈ Rd and y ∈ Rd \S, where ‖q‖ = sup
x∈S
|q(x)|

and the evident consequence of (10)∫
S

g0(t− τ, x, z) dσz ≤ N(t− τ)−1/α

has been used.

We have just proved that the function G0 is defined correctly. Moreover,
it is a continuous function of the arguments t > 0, x ∈ Rd and y ∈ Rd \ S.
As the relations (15) show, G0 has jumps at the points y ∈ S and they are
described as follows

G0(t, x, y±) = (1± q(y))g0(t, x, y), t > 0, x ∈ Rd, y ∈ S. (17)

Let us now show that, as a function of the third argument, G0 is ab-
solutely integrable over Rd. Some very simple calculations allow us to write
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down the formula∫
Rd
|(y, ν)|g0(τ, z, y) dy =

2c1/α

π
Γ

(
1− 1

α

)
τ1/α, τ > 0, z ∈ S,

and the inequality (more precise than written above)∫
S

g0(t− τ, x, z) dσz ≤
Γ(1/α)

παc1/α
(t− τ)−1/α, 0 < τ < t, x ∈ Rd.

Hence,∫
Rd
|G0(t, x, y)| dy ≤

≤ 1 +
4c1/α‖q‖
πα

Γ

(
1− 1

α

)∫ t

0

τ
1
α−1 dτ

∫
S

g0(t− τ, x, z) dσz ≤ 1 +
4‖q‖

α2 sin2 π
α

which means the integrability desired.
As a consequence, we have the inequality∣∣∣∣∫

Rd
G0(t, x, y)ϕ(y) dy

∣∣∣∣ ≤
(

1 +
4‖q‖

α2 sin2 π
α

)
‖ϕ‖ (18)

valid for all t > 0, x ∈ Rd and ϕ ∈ Cb(Rd).

Since

∫
Rd
g
(ν)
0 (t, x, y) dy ≡ 0, we have the identity∫

Rd
G0(t, x, y) dy ≡ 1. (19)

Besides, the function G0 satisfies the equation (compare with 3.1.B
above)

G0(s+ t, x, y) =

∫
Rd
G0(s, x, z)G0(t, z, y) dz (20)

for all s > 0, t > 0, x ∈ Rd and y ∈ Rd. The proof of this equality consists of
very simple calculations (we omit them) based on the formula (s > 0, t > 0,
x ∈ Rd and y ∈ Rd)∫

Rd
g
(ν)
0 (s, x, z)g0(t, z, y) dz = g

(ν)
0 (s+ t, x, y),

the validity of which can be verified immediately.
In one-dimensional case the function G0 is given by

G0(t, x, y) = g0(t, x, y) +
2qy

α

∫ t

0

g0(t− τ, x, 0)g0(τ, 0, y)
dτ

τ
(21)

for t > 0, x ∈ R1 and y ∈ R1. As was shown in [6], this function takes on not
only non-negative values but also negative ones (if q 6= 0). The same concerns
the function G0 in the case of d ≥ 2 (and q(x) ≡/ 0).

It can be now verified that the function G0 is the fundamental solution
to the problem (i) — (iii) in the case of r(x) ≡ 0. First, for fixed y /∈ S
it satisfies equation (4) in the region (t, x) ∈ (0,+∞) × (Rd \ S). If y ∈ S,
then G0(t, x, y) = g0(t, x, y) and consequently, that equation is satisfied by
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the function (G0(t, x, y))t>0,x∈Rd in the whole region (t, x) ∈ (0,+∞) × Rd.
Second, for a given ϕ ∈ Cb(Rd), we put

U0(t, x, ϕ) =

∫
Rd
ϕ(y)G0(t, x, y) dy, t > 0, x ∈ Rd.

This function can be written as follows (the function u0 is defined by (7))

U0(t, x, ϕ) = u0(t, x, ϕ) +

∫ t

0

dτ

∫
S

g0(t− τ, x, y)u
(ν)
0 (τ, y, ϕ)q(y) dσy, (22)

where

u
(ν)
0 (τ, y, ϕ) =

∫
Rd
g
(ν)
0 (τ, y, z)ϕ(z) dz = Bνu0(τ, ·, ϕ)(y), τ > 0, y ∈ S.

As follows from [7], the function U0 satisfies the conditions (i) and (ii). Ap-
plying now the operator Bν to both sides of (22) and using relations (14),
we arrive at the following equalities

BνU0(t, ·, ϕ)(x±) = (1∓ q(x))u
(ν)
0 (t, x, ϕ).

Hence, the function U0 satisfies the boundary value condition (iii) for r(x) ≡ 0.

4. The fundamental solution of the symmetric problem

In this section the function q is supposed to be identically equal to zero and
the bounded continuous function (r(x))x∈S with non-negative values remains
to be given. Our aim is to construct the fundamental solution to the problem
(i) — (iii) in this case.

4.1. The equations of perturbations

Notice that for any ϕ ∈ Cb(Rd) the function (u0(t, x, ϕ))t>0,x∈Rd defined by
(7) constitutes a semigroup

u0(s+ t, x, ϕ) = u0(s, x, u0(t, ·, ϕ)), s > 0, t > 0, x ∈ Rd,

with the operator A serving as the generator of this semigroup. It is not
difficult to guess that in order to obtain the semigroup connected with the
problem (i) — (iii) (for q(x) ≡ 0), one should additively perturb the generator
A by an operator whose action on a given function consists in multiplying
it by the function (r(x)δS(x))x∈Rd , where δS is a generalized function on Rd
determined by the relation

〈δS , ψ〉 =

∫
S

ψ(x) dσ (23)

valid for an arbitrary test function (ψ(x))x∈Rd . According to the perturba-
tions theory (see [5]), such a perturbed semigroup must be determined by the
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kernel g(t, x, y), t > 0, x ∈ Rd, y ∈ Rd, satisfying each one of the following
pair of equations

g(t, x, y) = g0(t, x, y)−
∫ t

0

dτ

∫
S

g0(t− τ, x, z)g(τ, z, y)r(z) dσz,

g(t, x, y) = g0(t, x, y)−
∫ t

0

dτ

∫
S

g(t− τ, x, z)g0(τ, z, y)r(z) dσz.

(24)

We now construct the solution to these equations. Some approximating pro-
cedure will be described after that.

4.2. Solving equations (24)

The method of successive approximations will be used for consructing a so-
lution to (24). For t > 0, x ∈ Rd, y ∈ Rd and k = 1, 2, . . . , we put

gk(t, x, y) =

∫ t

0

dτ

∫
S

g0(t− τ, x, z)gk−1(τ, z, y)r(z) dσz.

By induction on k one can verify that

gk(t, x, y) =

∫ t

0

dτ

∫
S

gk−1(t− τ, x, z)g0(τ, z, y)r(z) dσz.

We need some proper estimates for gk, in order to assert that the sum of the
series

g(t, x, y) =

∞∑
k=0

(−1)kgk(t, x, y) (25)

solves each one of equations (24).
Our plan is as follows. We will establish the estimates desired in the

region t > 0, x ∈ S and y ∈ S and therefore, we will have got the solution to
equations (24) in that region. As follows from those equations, the function g
is uniquely determined by its values in the region t > 0, x ∈ S and y ∈ S (even
only in the region t > 0, x ∈ S+ and y ∈ S+, where S+ = {z ∈ S : r(x) > 0}).

To avoid some trivial remarks, we consider the case of d = 1 separately.
In this case equations (24) can be rewritten as follows

g(t, x, y) = g0(t, x, y)− r
∫ t

0

g0(t− τ, x, 0)g(τ, 0, y) dτ,

g(t, x, y) = g0(t, x, y)− r
∫ t

0

g(t− τ, x, 0)g0(τ, 0, y) dτ.

(26)

where r is a non-negative number. By induction on k, we obtain (θ = 1− 1
α )

gk(t, 0, 0) =
(αc1/α sin π

α )−k−1

Γ((k + 1)θ)
t−

1
α+kθ, t > 0, k = 0, 1, . . .

Therefore,

g(t, 0, 0) =

∞∑
k=0

(−r)k
(αc1/α sin π

α )−k−1

Γ((k + 1)θ)
t−

1
α+kθ.
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Having already had g(t, 0, 0), we find out g(t, x, 0) from the first equation in
(26)

g(t, x, 0) = g0(t, x, 0)− r
∫ t

0

g0(t− τ, x, 0)g(τ, 0, 0) dτ

and after that, the function g(t, x, y) is expressed from the second equation
in (26)

g(t, x, y) = g0(t, x, y)− r
∫ t

0

g(t− τ, x, 0)g0(τ, 0, y) dτ.

If we put

g̃0(λ, x, y) =

∫ ∞
0

e−λtg0(t, x, y) dt, g̃(λ, x, y) =

∫ ∞
0

e−λtg(t, x, y) dt

for λ > 0, x ∈ R1 and y ∈ R1, then we arrive at the formula

g̃(λ, x, y) = g̃0(λ, x, y)− g̃0(λ, x, 0)g̃0(λ, 0, y)

g̃(λ, 0, 0)
+

+
1

1 + rg̃0(λ, 0, 0)

g̃0(λ, x, 0)g̃0(λ, 0, y)

g̃(λ, 0, 0)
.

(27)

Some interesting consequences of this formula are discussed in our paper
“On some Markov processes related to a symmetric α-stable process” to be
published soon.

We now return to equation (24) supposing d ≥ 2.

Lemma 1. If d ≥ 2 then the following estimate

gk(t, x, y) ≤ (4C)k(Γ(θ))kNk+1‖r‖k

Γ(2 + kθ)

tkθ+1

(t1/α + |y − x|)d+α
(28)

holds true for all t > 0, x ∈ S, y ∈ S and k = 0, 1, 2, . . . , where N is the

constant from (8), θ = 1− 1
α , ‖r‖ = sup

x∈S
r(x), C = 2d+α

∫
Rd−1

dz

(1 + |z|)d+α
.

Proof. We use the method of mathematical induction on k. Inequality (28)
for k = 0 coincides with (8) and is true. Suppose now that it is true for some
k ≥ 0. We have to estimate the following integral for t > 0, x ∈ S and y ∈ S

I =

∫ t

0

dτ

∫
S

t− τ
[(t− τ)1/α + |z − x|]d+α

τkθ+1

[τ1/α + |y − z|]d+α
dσz. (29)

Our reasoning is similar to that given by A. N. Kochubei in [3] (see also [9]).
We put for t > 0, x ∈ S and y ∈ S

Π1 = {(τ, z) : τ ∈ (0, t/2), z ∈ S}, Π2 = {(τ, z) : τ ∈ (t/2, t), z ∈ S},

Π11 = {(τ, z) ∈ Π1 : τ1/α + |y − z| ≤ 1

2
(t1/α + |y − x|)}, Π12 = Π1 \Π11,

Π21 = {(τ, z) ∈ Π2 : (t− τ)1/α + |z − x| ≤ 1

2
(t1/α + |y − x|)},

Π22 = Π2 \Π21.
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For l ∈ {1, 2} and m ∈ {1, 2}, denote by Ilm the integral with the same
integrand as in (29) and the domain of integration (τ, z) ∈ Πlm. Then

I =
2∑
l=1

2∑
m=1

Ilm.

For (τ, z) ∈ Π11, we have

(t− τ)1/α + |z− x| ≥ t1/α− τ1/α + |y− x| − |z− y| ≥ 1

2
(t1/α + |y− x|) (30)

since the inequality (u − v)ρ ≥ uρ − vρ is true for 0 < v < u/2 and ρ < 1.
Consequently,

I11 ≤
2d+α

(t1/α + |y − x|)d+α

∫ t

0

(t− τ)τkθ+1 dτ

∫
S

dσz
(τ1/α + |y − z|)d+α

=

=
Ct(k+1)θ+1

(t1/α + |y − x|)d+α
B((k + 1)θ, 2),

where C is defined above and B(·, ·) is Euler’s beta-function.

If (τ, z) ∈ Π12, then the inequality τ1/α + |y − z| > 1
2 (t1/α + |y − x|) is

fulfilled and it implies the estimate

I12 ≤
2d+α

(t1/α + |y − x|)d+α

∫ t

0

(t− τ)τkθ+1 dτ

∫
S

dσz
((t− τ)1/α + |z − x|)d+α

=

=
Ct(k+1)θ+1

(t1/α + |y − x|)d+α
B(θ, 2 + kθ).

Now in the region (τ, z) ∈ Π21 the inequality (see (30))

τ1/α + |y − z| ≥ t1/α − (t− τ)1/α + |y − x| − |z − x| ≥ 1

2
(t1/α + |y − x|)

is valid and we have

I21 ≤
Ct(k+1)θ+1

(t1/α + |y − x|)d+α
B(θ, 2 + kθ).

Finally, if (τ, z) ∈ Π22, then (t− τ)1/α + |z− x| > 1
2 (t1/α + |y− x|), and

we have

I22 ≤
Ct(k+1)θ+1

(t1/α + |y − x|)d+α
B((k + 1)θ, 2).

Taking into account the evident inequality B(θ, 2+kθ) ≥ B((k+1)θ, 2)
valid for all k = 0, 1, 2, . . . and 0 < θ < 1, we arrive at the estimate

I ≤ 4Ct(k+1)θ+1

(t1/α + |y − x|)d+α
B(2 + kθ, θ),

that implies (28). The lemma has been proved. �

As follows from the lemma, the sum of the series (25) in the region t > 0,
x ∈ S and y ∈ S is a continuous function g(t, x, y) satisfying equation (24) in
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that region. Moreover, for any T < +∞ there exists a positive constant LT
such that the inequality

|g(t, x, y)| ≤ LT
t

(t1/α + |y − x|)d+α
(31)

is held for all t ∈ (0, T ], x ∈ S and y ∈ S. Using this result and the second
equation in (24), we can extend the function g to the region t > 0, x ∈ S
and y ∈ Rd. The fact that this extended function possesses the property (31)
follows from the estimates similar to those proved Lemma 1 (for k = 0).
After that, with the help of the first equation in (24), the function g can
be extended to the whole region t > 0, x ∈ Rd, y ∈ Rd and this extended
function g will satisfy inequality (31) for all t ∈ (0, T ], x ∈ Rd and y ∈ Rd
with some positive constant LT being finite for T < +∞.

Notice that the solution to each one of equations (24) possessing the
property (31) is unique. This assertion follows immediately from Lemma 1,
since the estimate (28) is fulfilled for the difference between any two solutions
of the kind.

4.3. The approximating procedure

We now approximate the generalized function (r(x)δS(x))x∈Rd by the regular
functions (vh(x))x∈Rd , as h→ 0+, where

vh(x) =

∫
S

g0(h, x, y)r(y) dσy, x ∈ Rd, h > 0.

It is an easy exercise to verify that the relation

lim
h→0+

∫
Rd
vh(x)ϕ(x) dx =

∫
S

r(x)ϕ(x) dσ (32)

is true for any continuous compactly supported function ϕ. In other words
lim
h→0+

vh(x) = r(x)δS(x).

Let u(h)(t, x, ϕ), h > 0, t > 0, x ∈ Rd, ϕ ∈ Cb(Rd), be the solution of
the following problem

∂u(h)

∂t
= Au(h) − vh(x)u(h), t > 0, x ∈ Rd

u(h)(0+, x, ϕ) = ϕ(x), x ∈ Rd.
(33)

As follows from the perturbations theory, the solution of this problem must
solve the following integral equation

u(h)(t, x, ϕ) = u0(t, x, ϕ)−
∫ t

0

dτ

∫
Rd
g0(t−τ, x, y)u(h)(τ, y, ϕ)vh(y) dy. (34)

The method of successive approximations allows one to construct a solution

to this equation. We put u
(h)
0 (t, x, ϕ) = u0(t, x, ϕ) (see (7)) and for k ≥ 1

u
(h)
k (t, x, ϕ) =

∫ t

0

dτ

∫
Rd
g0(t− τ, x, y)u

(h)
k−1(τ, y, ϕ)vh(y) dy.
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As follows from (10) and 3.1.B,∫
Rd
g0(t− τ, x, y)vh(y) dy =

∫
S

g0(t− τ + h, x, z)r(z) dσz ≤

≤ ‖r‖N(t− τ + h)−1/α ≤ ‖r‖N(t− τ)−1/α
(35)

Making use of this estimate, by induction on k, one can easily arrive at the
following inequality

|u(h)k (t, x, ϕ)| ≤ ‖ϕ‖(N‖r‖Γ(θ))k

Γ(kθ + 1)
tkθ, t > 0, x ∈ Rd, h > 0, k = 0, 1, . . . ,

where θ = 1− 1
α , as above. Therefore, the sum

u(h)(t, x, ϕ) =

∞∑
k=0

(−1)ku
(h)
k (t, x, ϕ)

is a solution to equation (34) satisfying the condition

sup
(t,x)∈[0,T ]×Rd

|u(h)(t, x, ϕ)| < +∞

for any T < +∞. Such a solution is unique.
The maximum principle for the equation in (33) allows one to assert

that the values of the function u(h) are non-negative if only the values of ϕ
are so.

Now, we are going to pass to the limit, as h→ 0+, in equation (34). In
order to do this, we make use of the following auxiliary result.

Let a measurable complex-valued function (ψ(t, x))t≥0,x∈Rd be such that
sup

(t,x)∈[0,T ]×Rd
|ψ(t, x)| < +∞ for any T < +∞. Consider its transformation

ψh for h > 0 given by

ψh(t, x) =

∫ t

0

dτ

∫
Rd
g0(t− τ, x, y)ψ(τ, y)vh(y) dy, t > 0, x ∈ Rd.

We assert that this transformation is compact in the following sense (as above,
we use the notation BR = {y ∈ Rd : |y| ≤ R} for R > 0 and BcR = Rd \BR).

Lemma 2. For given numbers ε > 0, L > 0, T > 0 and R > 0, there exists a
number δ > 0 such that the inequality

|ψh(t′, x′)− ψh(t, x)| < ε

is held for all h > 0, t ∈ [0, T ], t′ ∈ [0, T ], x ∈ BR, x′ ∈ BR and all measurable
function (ψ(t, x))t≥0,x∈Rd with the property sup

(t,x)∈[0,T ]×Rd
|ψ(t, x)| ≤ L, if only

the inequality |t′ − t|+ |x′ − x| < δ is fulfilled.

Proof. For t < t′, x ∈ Rd and x′ ∈ Rd, we represent the difference ψh(t′, x′)−
ψh(t, x) as the sum of two terms I1 and I2, where

I1 =

∫ t

0

dτ

∫
Rd

[g0(t′ − τ, x′, y)− g0(t− τ, x, y)]ψ(τ, y)vh(y) dy,
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I2 =

∫ t′

t

dτ

∫
Rd
g0(t′ − τ, x′, y)ψ(τ, y)vh(y) dy.

Inequality (35) implies the estimates

|I2| ≤ L
∫ t′

t

dτ

∫
Rd
g0(t′ − τ, x′, y)vh(y) dy ≤ L‖r‖N

θ
(t′ − t)θ

and therefore I2 → 0, as t′ − t → 0 uniformly with respect to h > 0
and x′ ∈ Rd. The same reason is applicable to estimating the integral (for
0 < γ < t < t′ ≤ T and x′ ∈ Rd)∣∣∣∣∫ t

t−γ
dτ

∫
Rd
g0(t′ − τ, x′, y)ψ(τ, y)vh(y) dy

∣∣∣∣ ≤
≤ L‖r‖

∫ γ

0

dτ

∫
S

g0(t′ − t+ τ + h, x′, y) dσy ≤ L‖r‖N
γθ

θ
.

This means that I1 = I
′

1 + I
′′

2 , where

I
′

1 = 1I{t>γ}

∫ t−γ

0

dτ

∫
Rd

[g0(t′ − τ, x′, y)− g0(t− τ, x, y)]ψ(τ, y)vh(y) dy,

|I
′′

1 | ≤ const[(t′ − t)θ + γθ]

(the const depends only on L, N , ‖r‖, c and α). So, the quantity I
′′

1 becomes
small enough if t′ − t and γ > 0 are chosen to be sufficiently small.

In order to estimate I
′

1 for fixed γ > 0, one should make use of the uni-
form continuity of the function g0 given by (6) with respect to the arguments
(t, x, y) ∈ [γ,+∞)× Rd × Rd for any γ > 0. It only has to be taken into ac-
count that the function vh may be not integrable over the whole Rd for d ≥ 2
(it will be the case if the function (r(y))y∈S is not integrable over S). In the
case of d = 1, we have vh(y) = r · g0(h, y, 0) for y ∈ R1 (see considerations

prior to Lemma 1 and

∫
R1

vh(y) dy = r ≥ 0. The assertion of Lemma 2 for

d = 1 can be thus strengthened (see Lemma 3 below).
So, we suppose that d ≥ 2 and put

J
(h)
Q (τ, x) =

∫
BcQ

g0(τ, x, y)vh(y) dy

for h > 0, Q > 0, τ ∈ (0, T ] and x ∈ Rd. Using inequality (8), we can write
down for x ∈ BR and Q > R

J
(h)
Q (τ, x) ≤N

∫
BcQ

τ

(τ1/α + |y − x|)d+α
vh(y) dy ≤

≤N
∫
Rd

τ

(τ1/α + |y − x|/2 + (Q−R)/2)d+α
vh(y) dy

According to (10), we have

vh(y) ≤ N‖r‖ h

(h1/α + |(y, ν)|)α+1
, y ∈ Rd. (36)
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Therefore,

J
(h)
Q (τ, x) ≤

≤ N2‖r‖
∫ +∞

−∞

h dρ

(h1/α + |ρ|)α+1

∫
{(y,ν)=ρ}

τ dσy
(τ1/α + |y − x|/2 + (Q−R)/2)d+α

(37)

Taking into account that for y ∈ {z ∈ Rd : (z, ν) = ρ} and x ∈ Rd, the
inequality |y−x| ≥ |ỹ−x̃| (we remind that z̃ means the orthogonal projection
of z on S) is valid, we arrive at the inequalities

J
(h)
Q (τ, x) ≤

≤ N2‖r‖
∫ +∞

−∞

dρ

(1 + |ρ|)α+1

∫
Rd−1

τ dz

(τ1/α + |z|/2 + (Q−R)/2)d+α
≤

≤ 2d+α+1

α
N2‖r‖τ(Q−R)−α−1

∫
Rd−1

dz

(1 + |z|)d+α
.

We have thus proved that uniformly with respect to h > 0 and (t, x) ∈
[0, T ]×BR, the relation∫ t

0

J
(h)
Q (τ, x) dτ → 0, as Q→ +∞,

holds true. It remains now to show that for fixed γ > 0 and Q > 0 the integral

1I{t>γ}

∫ t−γ

0

dτ

∫
BQ

[g0(t′ − τ, x′, y)− g0(t− τ, x, y)]ψ(τ, y)vh(y) dy

becomes small enough if the points (t′, x′) ∈ [0, T ]×BR and (t, x) ∈ [0, T ]×BR
are chosen to be sufficiently close each to other one. It was mentioned above
that the function g0 is uniformly continuous on the set [γ,+∞) × Rd × Rd,
hence, the assertion desired will be established if we show that

sup
h>0

∫
BQ

vh(y) dy < +∞

for fixed Q > 0. Using (36), one can write down the inequality∫
BQ

vh(y) dy ≤ N‖r‖
∫ Q

−Q

h dρ

(h1/α + |ρ|)α+1

∫
BQ∩{(y,ν)=ρ}

dσy.

It is clear that ∫
BQ∩{(y,ν)=ρ}

dσy ≤
π(d−1)/2

Γ((d+ 1)/2)
Qd−1.

Therefore, ∫
BQ

vh(y) dy ≤ 2π(d−1)/2

αΓ((d+ 1)/2)
N‖r‖Qd−1. (38)
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This completes the proof of the lemma in the case of d ≥ 2. As was noticed
above, in the case of d = 1 the following strengthened version of Lemma 2
has been proved.

Lemma 3. If d = 1, then for given numbers ε > 0, L > 0 and T > 0 there
exists a number δ > 0 such that the inequality

|ψh(t′, x′)− ψh(t, x)| < ε

is held for all h > 0, t ∈ [0, T ], t′ ∈ [0, T ], x ∈ R1, x′ ∈ R1 and all measurable
function (ψ(t, x))t≥0,x∈R1 with the property sup

(t,x)∈[0,T ]×R1

|ψ(t, x)| ≤ L, if only

the inequality |t′ − t|+ |x′ − x| < δ is fulfilled.

�

Now we can pass to the limit, as h → 0+, in equation (34). First of
all, using the diagonal method, we can choose a sequence hn → 0+ in such
a way that u(hn)(t, x, ϕ) converges to a function u(t, x, ϕ) locally uniformly
with respect to t ≥ 0 and x ∈ Rd. Then (32) implies the following equation
for the limiting function u

u(t, x, ϕ) = u0(t, x, ϕ)−
∫ t

0

∫
S

g0(t− τ, x, y)u(τ, y, ϕ)r(y) dσy. (39)

Notice, that the estimates for u
(h)
k , k = 0, 1, 2, . . . , were uniform with

respect to h > 0. So, the limit equation, that is equation (39), can be
solved in the same way as the equation for u(h) has been solved. Accord-
ingly, we can conclude that the solution to (39) possessing the property

sup
(t,x)∈[0,T ]×Rd

|u(t, x, ϕ)| < +∞ for any T < +∞ is unique. It means, first,

that lim
h→0+

u(h)(t, x, ϕ) = u(t, x, ϕ) and, second, that the values of the func-

tion (u(t, x, ϕ))t≥0,x∈Rd are non-negative if ϕ(x) ≥ 0 for all x ∈ Rd.
Now, let us observe that equation (39) can be obtained by multiplying

the first one of equations (24) by ϕ(y) (ϕ ∈ Cb(Rd)) and integrating both
sides of it with respect to y ∈ Rd. This means that for ϕ ∈ Cb(Rd)

u(t, x, ϕ) =

∫
Rd
g(t, x, y)ϕ(y) dy, t > 0, x ∈ Rd. (40)

As a consequence, we have that the function g takes on only non-negative
values.

It follows from equation (39) and Subsections 3.3, 3.4 that for any ϕ ∈
Cb(Rd) the function (u(t, x, ϕ))t>0,x∈Rd satisfies the conditions (i) and (ii).
Besides, the equalities

Bνu(t, ·, ϕ)(x±) = u
(ν)
0 (t, x, ϕ)± r(x)u(t, x, ϕ)

are valid for t > 0 and x ∈ S. Therefore,

1

2
Bνu(t, ·, ϕ)(x+)− 1

2
Bνu(t, ·, ϕ)(x−) = r(x)u(t, x, ϕ), t > 0, x ∈ S.
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It remains to prove that for a fixed y ∈ Rd the function (g(t, x, y))t>0,x∈Rd
satisfies the equation (4) in the region t > 0, x /∈ S. This is now a non-difficult
exercise left for a reader.

We have thus proved the following assertion.

Theorem 1. The function g constructed as the sum (25) is the fundamental
solution to the symmetric initial-boundary value problem.

5. The fundamental solution of the asymmetric problem

5.1. The equations of perturbations

Our starting point is now the function G0(t, x, y), t > 0, x ∈ Rd and y ∈ Rd.
By the analogy to equations (24), we first write down those equations with
the function g0 being replaced by G0. The function to be found is denoted
by G. Taking into account (17) and the fact

lim
h→0+

∫
Rd
G0(t, x, y)vh(y) dy =

∫
S

g0(t, x, y)r(y) dσy,

we arrive at the following pair of equations

G(t, x, y) = G0(t, x, y)−
∫ t

0

dτ

∫
S

g0(t− τ, x, z)G(τ, z, y)r(z) dσz,

G(t, x, y) = G0(t, x, y)−
∫ t

0

dτ

∫
S

G(t− τ, x, z)G0(τ, z, y)r(z) dσz.

(41)

For t > 0, x ∈ Rd and y ∈ S, we have G0(t, x, y) = g0(t, x, y), and the first
equation can be rewritten in this case as follows

G(t, x, y) = g0(t, x, y)−
∫ t

0

dτ

∫
S

g0(t− τ, x, z)G(τ, z, y)r(z) dσz. (42)

This implies the equality G(t, x, y) = g(t, x, y) for t > 0, x ∈ Rd and y ∈ S.
From the second equation we obtain the following formula for G

G(t, x, y) = G0(t, x, y)−
∫ t

0

dτ

∫
S

g(t− τ, x, z)G0(τ, z, y)r(z) dσz (43)

that is held true for all t > 0, x ∈ Rd and y ∈ Rd. It gives the representation
for the function G in terms of G0 and g constructed above. The dual repre-
sentation can be obtained from (43) and the second equation in (24) by very
simple calculations

G(t, x, y) = g(t, x, y) +

∫ t

0

dτ

∫
S

g(t− τ, x, z)g(ν)0 (τ, z, y)q(z) dσz. (44)

The equality G(t, x, y±) = (1 ± q(y))g(t, x, y) valid for t > 0, x ∈ Rd and
y ∈ S is a consequence of (44).
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5.2. The initial-boundary value problem

For t > 0, x ∈ Rd and a given function ϕ ∈ Cb(Rd), we put

U(t, x, ϕ) =

∫
Rd
G(t, x, y)ϕ(y) dy.

Theorem 2. The function U is a solution to the initial-boundary value problem
(i) — (iii).

Proof. Multiplying both sides of (42) by ϕ(y) and integrating with respect
to y ∈ Rd, we get the following equation for the function U

U(t, x, ϕ) = U0(t, x, ϕ)−
∫ t

0

dτ

∫
S

g0(t− τ, x, z)U(τ, z, ϕ)r(z) dσz. (45)

As was shown in Subsection 3.5, the function U0 satisfies the conditions
(i), (ii) and the boundary condition (iii) with r(x) ≡ 0. We put for t > 0 and
x ∈ Rd

V (t, x, ϕ) =

∫ t

0

dτ

∫
S

g0(t− τ, x, z)U(τ, z, ϕ)r(z) dσz.

This is a simple-layer potential. It satisfies the condition (i) and the initial
condition V (0+, x, ϕ) ≡ 0. It follows from Subsection 3.4 that V possesses
the property

BνV (t, ·, ϕ)(x±) = ∓r(x)U(t, x, ϕ)

for t > 0 and x ∈ S. This completes the proof of the theorem. �

Remark. The function G defined by (43) or (44) is the fundamental solution
of the problem (i) — (iii).

6. The probabilistic interpretation

6.1. The symmetric α-stable process

The function g0 is the transition probability density of a standard Markov
process in Rd in the sense of [2], Theorem 3.14. Denote that process by
(x(t),Mt,Px) or somewhat shorter (x(t))t≥0. It is called a symmetric α-
stable process. The function ft(x), t ≥ 0, x ∈ Rd, defined by

ft(x) =

∫ t

0

dτ

∫
S

g0(τ, x, y)r(y) dσy

is a W-function for this process satisfying the condition sup
x∈Rd

ft(x) → 0, as

t → 0+ (see (10)). According to Theorem 6.6 from [2], there exists a W-
functional (ηt(r))t≥0 of the process (x(t))t≥0 such that ft(x) = Exηt(r) for
all t > 0 and x ∈ Rd. Let r0(x) ≡ 1 and ηt = ηt(r0), t ≥ 0. The functional
(ηt)t≥0 is called the local time on S for the process (x(t))t≥0. It is clear that

ηt(r) =

∫ t

0

r(x(s)) dηs, t ≥ 0.
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For h > 0, we put

η
(h)
t (r) =

∫ t

0

vh(x(s)) ds, t ≥ 0,

where vh is defined in Subsection 4.3. A very simple calculation shows that

Exη(h)t (r) =

∫ t+h

h

dτ

∫
S

g0(τ, x, y)r(y) dσy, t ≥ 0, h > 0, x ∈ Rd.

This implies the estimate∣∣∣Exη(h)t (r)− Exηt(r)
∣∣∣ ≤ ‖r‖N [(t+ h)1−1/α − t1−1/α + h1−1/α

]
valid for t ≥ 0, x ∈ Rd, h > 0. Applying Theorem 6.4 from [2] leads us to the
relation

lim
h→0+

η
(h)
t (r) = ηt(r) (46)

that takes place in the sense of mean square convergence. The function u and
u(h) introduced in Section 4 have the following probabilistic sense

u(h)(t, x, ϕ) = Ex
(
ϕ(x(t))e−η

(h)
t (r)

)
, u(t, x, ϕ) = Ex

(
ϕ(x(t))e−ηt(r)

)
.

Relation (46) implies the pointwise convergence

u(t, x, ϕ) = lim
h→0+

u(h)(t, x, ϕ). (47)

The fact that the function u(h) is a solution to equation (34) is a consequence
of the Feynman-Kac formula. Lemma 2 allows one to assert that the conver-
gence in (47) is locally uniform with respect to t ≥ 0 and x ∈ Rd (if d = 1
that convergence is uniform with respect to x ∈ R1, see Lemma 3). Finally,
we have the following probabilistic representation for the function u

u(t, x, ϕ) =

∫
Rd
g(t, x, y)ϕ(y) dy = Ex

(
ϕ(x(t))e−ηt(r)

)
(48)

that holds true for t > 0, x ∈ Rd and ϕ ∈ Cb(Rd).
Further, the function g constructed in Section 4 is the transition prob-

ability density of the process (x(t))t≥0 killed at some stopping time ζ. It is
clear that

Px({ζ > t}) =

∫
Rd
g(t, x, y) dy, t > 0, x ∈ Rd.

From the second equation in (24), we conclude

Px({ζ > t}) = 1−
∫ t

0

dτ

∫
S

g(τ, x, y)r(y) dσy.

Therefore, the density of the distribution function of ζ is given by

− d

dt
Px({ζ > t}) =

∫
S

g(t, x, y)r(y) dσy

It is curious to find out the conditions imposed on the function (r(x))x∈S
under which Px({ζ < +∞}) = 1 for all x ∈ Rd.
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In the case of d = 1, formula (27) gives the resolvent kernel for the
process with its transition probability density given by g.

6.2. The pseudo-process

As was mentioned in Section 2, the function G0 cannot be transition proba-
bility density of any Markov process. But it can be considered as that for a
pseudo-process (y(t))t≥0 in the sense of [1] and the function G constructed
in Section 5 must be connected with that pseudo-process by an analogy to
(48), that is

U(t, x, ϕ) =

∫
Rd
G(t, x, y)ϕ(y) dy = Êx

(
ϕ(y(t))e−η̂t(r)

)
, t > 0, x ∈ Rd,

where Êx denotes “expectation” with respect to the pseudo-process and
(η̂t(r))t≥0 denotes some “additive functional of the pseudo-process (y(t))t≥0”.
In particular,

Êxe−η̂t(r) =

∫
Rd
G(t, x, y) dy = 1−

∫ t

0

dτ

∫
S

g(τ, x, z)r(z) dσz,

as follows from (43). In other words, the distribution function of η̂t(r) is the
same as that of ηt(r).
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