УДК 546.882

ISSN 1729-4428

Л.П. Ромака¹, І.М. Романів¹, В.В. Ромака², М.Б. Коник¹, А.М. Горинь¹, Ю.В. Стадник¹

Ізотермічний переріз потрійної системи Но-Си-Sn при 670 К

¹Львівський національний університет ім. І.Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна, ²Національний університет "Львівська політехніка", вул. Устияновича, 5, 79013 Львів, Україна

Взаємодія компонентів у потрійній системі Ho- Cu- Sn досліджена за температури 670 K в повному концентраційному інтервалі методами рентгенівської дифракції і рентгеноспектрального аналізу. При 670 K в системі утворюються чотири тернарні сполуки: HoCuSn (структурний тип LiGaGe, просторова група $P6_3mc$), Ho₃Cu₄Sn₄ (структурний тип Gd₃Cu₄Ge₄, просторова група *Immm*), HoCu₅Sn (структурний тип CeCu₅Au, просторова група *Pnma*) і Ho_{1.9}Cu_{9.2}Sn_{2.8} (структурний тип Dy_{1.9}Cu_{9.2}Sn_{2.8}, просторова група $P6_3/mmc$). Встановлено утворення твердого розчину включення на основі бінарної сполуки HoSn₂ (структурний тип ZrSi₂) до вмісту 5 ат. % Cu.

Ключові слова: інтерметаліди; фазові діаграми; рентгенівська дифракція; кристалічна структура

Стаття поступила до редакції 22.05.2018; прийнята до друку 15.06.2018.

Вступ

Потрійні системи рідкісноземельних металів, купруму і стануму вивчені найбільш повно серед систем R-M-Sn (R- рідкісноземельний елемент, М-dелемент) [1-14] і характеризуються значною різноманітністю стехіометрій і кристалічних структур проміжних тернарних фаз. Аналіз раніше вивчених систем R-Cu-Sn з легкими і важкими рідкісноземельними елементами засвідчує значний вплив *f*-елемента на утворення, хімічні і структурні характеристики тернарних сполук. Сполуки RCu₁₋ xSn_2 тип CeNiSi₂) i RCu₉Sn₄ (структурний (структурний тип LaFe₉Si₄) [15, 16] є типовими для систем з легкими рідкісноземельними елементами, тоді як станіди RCuSn (структурні типи LiGaGe, CeCu₂ (Eu, Yb), AlB₂ (La)), R₃Cu₄Sn₄ (структурний тип Gd₃Cu₄Ge₄), R_{1.9}Cu_{9.2}Sn_{2.8} (структурний тип Dy_{1.9}Cu_{9.2}Sn_{2.8}) i RCu₅Sn (структурні типи CeCu₅Au, СеСи₆) реалізуються в більшості систем R–Cu–Sn [17, 18]. Попередні дослідження систем R-Cu-Sn з рідкісноземельними елементами підгрупи Ітрію (R = Y, Gd, Dy, Er, Lu) [1, 9-11, 14] засвідчили зменшення кількості тернарних сполук до трьох в системі Lu-Cu-Sn. Винятком є система Yb-Cu-Sn, в якій утворюються десять проміжних фаз при 673 К [13]. У випадку Yb структура і стехіометрія окремих сполук відрізняється іншими віл сполук 3 рідкісноземельними металами: $Yb_3Cu_6Sn_5$ (структурний тип $Dy_3Co_6Sn_5)$, Yb₃Cu₈Sn₄

(структурний тип Lu₃Co_{7.77}Sn₄), Yb₅Cu₁₁Sn₈ (власний структурний тип) [19], Yb₄Cu₂Sn₅ (власний структурний тип) [20]. В області високого вмісту Cu в системах R-Cu-Sn утворюються сполуки RCu₅Sn (за винятком фази "LuCu₅Sn" в системі Lu-Cu-Sn) і R_{1.9}Cu_{9.2}Sn_{2.8} (R = Y, Ce-Nd, Sm, Gd-Lu). Структура обох фаз є похідною від структурного типу CaCu₅ [21, 22].

Результати дослідження фазових рівноваг системи Но-Си-Sn при 670 К і кристалографічні характеристики тернарних сполук приведені в представленій роботі. Дані стосовно подвійної системи Но-Sn взяті з праць [23-27], для систем Но-Си і Cu-Sn – з праць [28, 29].

I. Методика дослідження

Зразки для дослідження виготовляли методом електродугового плавлення шихти вихідних компонентів (вміст основного компонента не менше 99,9 мас. %) в атмосфері очищеного аргону (з геттером) титановим на мідному водоохолоджуваному поді. Втрати вихідної шихти після плавки не перевищували 1 %. Термічна обробка полягала системи Ho-Cu-Sn сплавів y гомогенізуючому відпалі при 670 К в евакуйованих кварцових ампулах впродовж місяця. Після відпалу сплави гартували в холодній воді без розбивання ампули. Температура гомогенізуючого відпалювання

Рис. 1. Ізотермічний переріз системи Но-Си-Sn при 670 К.

Рис. 2. Фотографії мікроструктур сплавів системи Ho-Cu-Sn (нумерація сплавів згідно табл. 1): *a*) 4. $Ho_{30}Cu_{55}Sn_{15}$ (HoCuSn–світлосіра фаза, HoCu_{5-x}Sn_x –сіра фаза, HoCu₂–темна фаза); *b*) 5. $Ho_{40}Cu_{40}Sn_{20}$ (HoCuSn–світла фаза, Ho₅Sn₃–сіра фаза, HoCu₂–темна фаза); *b*) 7. $Ho_{30}Cu_{44}Sn_{26}$ (HoCuSn–світла фаза, HoCu_{5-x}Sn_x–темна фаза); *b*) 7. $Ho_{30}Cu_{44}Sn_{26}$ (HoCuSn–світла фаза, HoCu_{5-x}Sn_x–сіра фаза, HoCu_{5-x}Sn_x–сіра фаза, Cu₅Sn₄–сіра фаза, Sn–темна фаза); *b*) 14. $Ho_{30}Cu_{15}Sn_{55}$ (Ho₃Cu₄Sn₄–сіра фаза, HoSn₂–світла фаза, Ho₁₁Sn₁₀-темна фаза);*b*) 6. $Ho_{15}Cu_{60}Sn_{25}$ (Ho_{1.9}Cu_{9.2}Sn_{2.8}–сіра фаза, HoCuSn–світлосіра, Cu₃Sn–темна фаза).

Таблиця 1

	Фазовий склад окремих сплавів системи Ho-Cu-Sn									
№	Склад	сплаву								
	Но	Cu	Sn	1 фаза	2 фаза	3 фаза				
1	17	78	5	HoCu _{5-x} Sn _x a = 0,7048(2) нм						
2	40	53	7	HoCu ₂ a = 0,4277(4) нм b = 0,6758(3) нм c = 0,7269(5) нм	НоСи a = 0,3444(3) нм	${ m Ho_5Sn_3} \ a=0,8844(4)$ нм $c=0,6452(4)$ нм				
3	17	68	15	HoCu ₅ Sn a = 0,8189(4) нм b = 0,4960(4) нм c = 1,0568(6) нм	$Ho_{1,9}Cu_{9,2}Sn_{2,8}$ a = 0,5055(4) нм c = 2,0580(6) нм	НоСиSn a = 0,4470(3) нм c = 0,7155(5) нм				
4	30	55	15	НоСиSn a = 0,4471(3) нм c = 0,7153(5) нм	HoCu _{5-x} Sn _x a = 0,7038(3) нм	НоС u_2 a = 0,4277(3) нм b = 0,6759(4) нм c = 0,7270(5) нм				
5	40	40	20	НоCuSn a = 0,4472(3) нм c = 0,7153(4) нм	Ho_5Sn_3 a = 0,8843(4) нм c = 0,6453(3) нм	НоС u_2 a = 0,4278(4) нм b = 0,6757(5) нм c = 0,7270(5) нм				
6	15	65	25	Но _{1,9} Си _{9,2} Sn _{2,8} a = 0,5054(3) нм c = 2,0580(5) нм	НоСиSn a = 0,4470(3) нм c = 0,7153(4) нм	Cu ₃ Sn (не визначені)				
7	30	44	26	НоСиSn a = 0,4470(3) нм c = 0,7152(3) нм	HoCu _{5-x} Sn _x a = 0,7047(2) нм					
8	25	55	20	НоСuSn a = 0,4473(3) нм c = 0,7155(3) нм	НоСи ₅ a = 0,7046(2) нм	НоСи₅Sn (сліди)				
9	15	55	30	$Ho_3Cu_4Sn_4$ a = 0,4421(3) нм b = 0,6940(6) нм c = 1,4549(8) нм	Cu_3Sn a = 0,4317(3) нм b = 0,5486(4) нм c = 0,4737(4) нм	HoCuSn (сліди)				
10	50	13	37	НоСиSn a = 0,4470(3) нм c = 0,7154(4) нм	${ m Ho_5Sn_3}$ a=0,8845(4) нм c=0,6457(4) нм	Ho_5Sn_4 a = 0,7961(4) нм b = 1,5300(7) нм c = 0,8053(4) нм				
11	12	50	38	${ m Ho_3Cu_4Sn_4}$ a=0,4420(4) нм b=0,6936(5) нм c=1,4548(8) нм	Cu_5Sn_4 a = 1,1015(6) нм b = 0,7273(4) нм c = 0,9817(5) нм b = 98,79	Cu ₃ Sn (сліди)				
12	45	10	45	НоСиSn a = 0,4471(3) нм c = 0,7153(5) нм	${ m Ho_{11}Sn_{10}} \ a=1,1519(5)$ нм $c=1,6788(5)$ нм					
13	20	33	47	$Ho_3Cu_4Sn_4$ a = 0,4419(3) нм b = 0,6938(6) нм c = 1,4545(8) нм	Cu_5Sn_4 a = 1,1014(7) нм b = 0,7274(4) нм c = 0,9819(6) нм b = 98,81(1)	Sn a = 0,5808(4) нм c = 0,3177(5) нм				
14	40	10	50	НоСиSn a = 0,4474(2) нм c = 0,7156(3) нм	HoSn ₂ a = 0,4389(3) нм b = 1,6188(5) нм c = 0,4294(4) нм	Ho ₁₁ Sn ₁₀ (не визначені)				
15	30	15	55	$Ho_3Cu_4Sn_4$ a = 0,4419(3) нм b = 0,6938(6) нм c = 1,4547(8) нм	HoSn ₂ a = 0,4393(3) нм b = 1,6193(5) нм c = 0,4297(4) нм					

Таблиця 2

Кристалографічні характеристики бінарних сполук системи Ho-Sn (670 K)										
Сполука	Просторова	Структурний тип	Періоди гратки, нм							
Сполука	група	Структурний тип	а	b	С					
HoSn ₃	Amm2	GdSn _{2.75}	0,4338(3)	0,4389(3)	2,1756(7)					
Ho_2Sn_5	Pmmn	Er ₂ Ge ₅	0,4305(1)	0,4385(5)	1,8903(1)					
HoSn ₂	Cmcm	ZrSi ₂	0,4382(2)	1,6193(3)	0,4290(2)					
$Ho_{11}Sn_{10}$	I4/mmm	Ho ₁₁ Ge ₁₀	1,1526(5)		1,6768(6)					
Ho_5Sn_4	Pnma	Sm ₅ Ge ₄	0,7963(3)	1,5302(5)	0,8053(2)					
Ho ₅ Sn ₃	P6 ₃ /mcm	Mn ₅ Si ₃	0,8846(2)		0,6453(3)					

Таблиця 3

Кристалографічні характеристики тернарних сполук системи Ho-Cu-Sn

Сполука	Просторова	Структурний	Періоди гратки, нм			
Chonyku	група	ТИП	а	b	С	
HoCu ₅ Sn	Pnma	CeCu ₅ Au	0,81889(7)	0,49599(4)	0,50652(8)	
Ho _{1.9} Cu _{9.2} Sn _{2.8}	P6 ₃ /mmc	Dy _{1.9} Cu _{9.2} Sn _{2.8}	0,5056(3)	-	2,0581(6)	
HoCuSn	$P6_3mc$	LiGaGe	0,4474(2)	-	0,7155(3)	
$Ho_3Cu_4Sn_4$	Immm	Gd ₃ Cu ₄ Ge ₄	0,44197(1)	0,69065(1)	1,45799(3)	

Таблиця 4

Координати атомів та ізотропні параметри атомного зміщення сполуки HoCu₅Sn $(R_p = 0.0358, R_{up} = 0.0565, R_l = 0.0448)$

$(n_p = 0.0550, n_{w_p} = 0.0505, n_1 = 0.0110)$									
Атом	ПСТ	x/a	y/b	z/c	$B_{i30} \cdot 10^2 (\text{HM}^2)$				
Но	4 <i>c</i>	0.2530(2)	0,25	0,5630(1)	1,49(3)				
Cu1	8 <i>d</i>	0.0688(2)	0,4997(3)	0,3110(2)	1,07(4)				
Cu2	4 <i>c</i>	0.0597(3)	0,25	0,0977(3)	1,25(5)				
Cu3	4 <i>c</i>	0.3190(3)	0,25	0,2410(2)	1,16(6)				
Cu4	4c	0.4162(3)	0,25	0,0143(2)	1,15(6)				
Sn	4c	0.1386(2)	0,25	0,8605(1)	0,88(2)				

вибрана з огляду на невисоку температуру плавлення Sn (232 °C) і бінарних сполук системи Ho-Sn з високим вмістом Sn. Рентгенівський фазовий аналіз сплавів проводили за дифрактограмами, знятими на порошковому дифрактометрі ДРОН-2,0М (Fe Кавипромінювання) методом порівняння 3 теоретичними дифрактограмами відомих тернарних, бінарних сполук і чистих компонентів. Хімічний склад фаз у синтезованих зразках контролювали енергодисперсійної методом рентгенівської спектроскопії (ЕДРС) у поєднанні з растровим електронним мікроскопом-мікроаналізатором РЭММА-102-02. Для розрахунку кристалічної структури використані експериментальні масиви даних, отримані у кроковому режимі зйомки на автоматичному дифрактометрі STOE STADI Р $K\alpha_1$ - випромінювання). (Cu Для розрахунку кристалографічних параметрів фаз використовували комплекс програм WinCSD i WinPLOTR [30, 31].

Сполука Ho₃Cu₄Sn₄ досліджена методом диференціальної скануючої калориметрії (синхронний термоаналізатор LINSEIS STA PT 1600). Зразок $Ho_3Cu_4Sn_4$ нагрівали в атмосфері аргону до 1023 К зі швидкістю 10 К/хв. Втрати маси зразка в ході нагрівання практично відсутні (менші за 0,3 %).

II. Результати

2.1. Ізотермічний переріз системи Ho-Cu-Sn.

Фазові рівноваги в системі Но-Си-Sn досліджені методами рентгенівського фазового аналізу і скануючої електронної мікроскопії 15 подвійних і 29 потрійних сплавів, відпалених при 670 К (рис. 1). Фазовий склад окремих зразків приведений в таблиці 1, фотографії мікроструктур деяких сплавів показані на рис. 2. Існування всіх бінарних сполук в системах Но-Си і Си-Sn підтверджено при 670 К згідно літературних даних. Виходячи з літературних даних по системі Но–Sn, що включають експериментальні дослідження і термодинамічну оптимізацію, а також відомі раніше бінарні сполуки [23-27], зразки відповідних складів були синтезовані і аналізовані

Рис. 3. Спостережувана, розрахована і різницева дифрактограми сполуки HoCu₅Sn.

Рис. 4. Модель кристалічної структури сполуки HoCu₅Sn.

методом рентгенофазового аналізу. За результатами проведеного аналізу підтверджено існування сполук Ho₅Sn₃ (структурний тип Mn_5Si_3), Ho_5Sn_4 (структурний тип Sm₅Ge₄), Но₁₁Sn₁₀ (структурний тип Ho₁₁Ge₁₀), HoSn₂ (структурний тип ZrSi₂), Ho₂Sn₅ (структурний тип Er₂Ge₅) і HoSn₃ (структурний тип GdSn_{2 75}). Дві сполуки Ho₄Sn₅ i Ho₃Sn₇ не ідентифіковані температури за відпалювання, відповідні зразки містили фази Ho11Sn10, HoSn2 і Ho₂Sn₅, HoSn₂, відповідно. Отримані результати узгоджуються з останньою версією діаграми стану [27]. Кристалографічні характеристики Ho-Sn бінарних сполук системи Но-Sn приведені в таблиці 2. На основі бінарної сполуки НоСи₅ (структурний тип AuBe₅) встановлено утворення твердого розчину заміщення до вмісту 5 ат.% Sn (а = 0,7028(2) нм для HoCu₅, a = 0,7048(2) нм для Ho₁₇Cu₇₈Sn₅). Граничний склад підтверджений результатами рентгеноспектрального аналізу (Ho_{17.62}Cu_{77.55}Sn_{4.83},

рис. 2, а). Утворення твердого розчину включення $HoCu_xSn_2$ (до 5 ат.% Cu) на основі $HoSn_2$ (структурний тип $ZrSi_2$) узгоджується з даними праці [32] (а = 0,4393(3), b = 1,6197(5), c = 0,4298(4) нм для $Ho_{31.5}Cu_5Sn_{63.5}$). Помітної розчинності третього компонента в інших бінарних сполуках не спостерігається за використаних умов дослідження.

Згідно результатів рентгенофазового і мікроструктурного аналізів фазові рівноваги в системі Ho-Cu-Sn характеризуються утворенням чотирьох тернарних сполук, кристалографічні характеристики яких приведені в таблиці З. За температури дослідження всі сполуки утворюються при постійному складі. Серед сполук системи Ho-Cu-Sn найвищий вміст стануму властивий для сполуки Ho₃Cu₄Sn₄ (Зб ат. %), для якої проведено дослідження методом диференціальної скануючої калориметрії (DSC). Результати дослідження не виявили наявності піків на термограмі до 1023 K, які

Рис. 5. Укладка поліедрів для атомів рідкісноземельного металу в структурах CeCu₅Au (a) і CeNi₅Sn (б).

Таблиця 5

10							•		TT O O	
Коорлинати	2TOM1B	та	120TD0000	πana	метри	3TOMHOLO	3MIIIIPHHQ	сполуки	HosCius	in.
координати	arowind	1 u	isorpoinin	mapa	morph	arowinoro	эмпщенни	CHOJIYKH	11030440	,114
			· · · · ·	1	-			2		
		- ()	D = 0.005	6 D	-01	15 D	-0.0647			
		- 11	$\Lambda_n = 0.000$	\mathbf{O} . \mathbf{A}	n — U. I	I.J. A Brang	- 0.00477			

Атом	ПСТ	x/a	y/b	z/c	$B_{\rm i30}$ · 10 ² (HM ²)
Ho1	4 <i>j</i>	1/2	0	0.3692(1)	1.25(6)
Ho2	2a	0	0	0	1.20(8)
Cu	81	0	0,3075(4)	0.3283(2)	1.04(8)
Sn1	4i	0	0	0.2152(1)	0.59(7)
Sn2	4h	0	0.2020(3)	1/2	0.68(4)

Рис. 6. Спостережувана, розрахована і різницева дифрактограми сполуки Ho₃Cu₄Sn₄.

б вказували на розпад сполуки Ho₃Cu₄Sn₄.

2.2. Кристалічна структура.

Про існування сполуки HoCu₅Sn зі структурою типу CeCu₆ та її періоди гратки повідомляється в

праці [21]. В ході нашого дослідження кристалічна структура станіду досліджена методом порошку (дифрактометр STOE STADI P, пакет програм WinCSD). За результатами розрахунків встановлено, що ця сполука належить до структурного типу $CeCu_5Au$ (надструктура до структурного типу $CeCu_6$, a = 0.81889(7),просторова група Pnma, b = 0,49599(4), c = 0,50652(8) нм) з впорядкованим розміщенням всіх атомів у структурі. Уточнені координати атомів приведені в таблиці 4. Спостережувана, розрахована i різницева дифрактограми сполуки HoCu₅Sn показані на рис. 3. Міжатомні відстані в структурі HoCu₅Sn корелюють з сумою атомних радіусів компонентів. Модель кристалічної структури сполуки HoCu₅Sn показана на рис. 4. Структурний тип СеСи₅Аи як і структурний тип CeNi₅Sn, в якому кристалізуються сполуки RNi₅Sn з рідкісноземельними металами підгрупи церію [17], є похідним від структури СаСи₅. Обидві структури містять фрагменти структурного типу СаСи₅ [33, 34]. Укладка поліедрів для атомів рідкісноземельного металу в структурах CeCu₅Au (a) і CeNi₅Sn (б) показана на рис. 5.

В ході виконання досліджень кристалічна структура станіду Но₃Cu₄Sn₄ досліджена методом порошку (дифрактометр STOE STADI P, пакет програм WinPLOTR). За результатами проведених розрахунків підтверджено приналежність сполуки Но₃Cu₄Sn₄ до структурного типу Gd₃Cu₄Ge₄ (просторова група Immm, a = 0,44197(1) нм, b = 0,69065(1) нм, с = 1,45799(3) нм). Уточнені координати атомів приведені в таблиці 5. Спостережна, розрахована i різницева дифрактограми сполуки Ho₃Cu₄Sn₄ показані на рис. 6.

вивчених систем R-Cu-Sn з рідкісноземельними металами підгрупи Ітрію засвідчує певну аналогію в стехіометрії і кристалічних структурах утворених тернарних сполук. Подібність взаємодії компонентів в усіх досліджених системах проявляється в утворенні сполук RCuSn, R₃Cu₄Sn₄, R₁₉Cu₉₂Sn₂₈ i RCu₅Sn (за винятком Lu). Кристалічна структура сполуки HoCu₅Sn характеризується впорядкованим розподілом атомів відповідно до структурного типу СеСи₅Аи на противагу раніше дослідженій сполуці з Ег (структурний тип CeCu₆), стехіометрія якої відрізняється від $ErCu_5Sn$ до $ErCu_{4.5}Sn_{1.5}$ [21]. Сполуки еквіатомного складу RCuSn утворюються зі всіма рідкісноземельними елементами, проте в залежності від валентного стану і розміру рідкісноземельного елемента кристалізуються в різних структурних типах – LiGaGe (або CaIn₂) (Y, La-Sm, Gd-Er, Lu) [35-38], CeCu₂ (Eu) [39], TiNiSi (Yb) [40] i ZrBeSi (La, Ce) [35, 41]. Сполуки структурного типу Sm₂Cu₄Sn₅ реалізуються в системах з Gd, Tb i Dy. Станіди зі структурою типу MgCu₄Sn є типовими для систем Y-Cu-Sn i Yb-Cu-Sn.

Ромака Л.П. - к.х.н., провідний науковий співробітник; Романів І.М. - аспірант Ромака В.В. - д.т.н., к.х.н., доцент Коник М.Б. - к.х.н., доцент<u>:</u> Горинь А.М. - к.х.н., старший науковий співробітник; Стадник Ю.В. - к.х.н., провідний науковий співробітник.

Висновки

Порівняння дослідженої Но-Си-Sn і раніше

- L. Romaka, I. Romaniv, Yu. Stadnyk, V.V. Romaka, R. Serkiz, R. Gladyshevskii, Chem. Met. Alloys 7, 132 (2014).
- [2] Y. Zhan, H. Xie, J. Jiang, Y. Xu, Y. Wang, Y. Zhuang, J. Alloys Compd. 461, 570 (2008).
- [3] P. Riani, D. Mazzone, G. Zanicchi, R. Marazza, R. Ferro, F. Faudot, M. Harmelin, J. Phase Equilibria 3, 239 (1998).
- [4] Л.П. Комаровская, Л.А. Мыхайлив, Р.В. Сколоздра, Изв. АН СССР. Металлы 4, 209 (1989).
- [5] P. Riani, D. Mazzone, G. Zanicchi, R. Marazza, R. Ferro, Intermetallics 8, 259 (2000).
- [6] D. Mazzone, P.L. Paulose, S.K. Dhar, M.L. Fornasini, P. Manfrinetti, J. Alloys Compd. 453, 24 (2008).
- [7] P. Riani, D. Mazzone, G. Zanicchi, R. Marazza, J. Alloys Compd. 247, 148 (1997).
- [8] P. Riani, M.L. Fornasini, R. Marazza, D. Mazzone, G. Zanicchi, R. Ferro, Intermetallics 7, 835 (1999).
- [9] I. V. Senkovska, Ya.S. Mudryk, L.P. Romaka, O.I. Bodak, J. Alloys Compd. 312, 124 (2000).
- [10] L. Romaka, V.V. Romaka, E.K. Hlil, D. Fruchart, Chem. Met. Alloys 2(1,2), 68 (2009).
- [11] O.I. Bodak, V.V. Romaka, L.P. Romaka, A.V. Tkachuk, Yu.V. Stadnyk, J. Alloys Compd. 395, 113 (2005).
- [12] В. Ромака, Ю. Гореленко, Л. Ромака, Вісник Львів. унів. Сер. хім. 49, 3 (2008).
- [13] G. Zanicchi, D. Mazzone, M.L. Fornasini, P. Riani, R. Marazza, R. Ferro, Intermetallics 7, 957 (1999).
- [14] L. Romaka, V.V. Romaka, V. Davydov, Chem. Met. Alloys. 1(2), 192 (2008).
- [15] Л.П. Комаровская, С.А. Садыков, Р.В. Сколоздра, Изв. АН СССР. Металлы 33(8), 1249 (1988).
- [16] S. Singh, M.L. Fornasini, P. Manfrinetti, A. Palenzona, S.K. Dhar, P.L. Paulose, J. Alloys Compd. 317-318, 560 (2001).
- [17] R.V. Skolozdra, in: K.A. Gschneidner, Jr. and L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 24, 1997, 399 p.
- [18] В.В. Ромака, Л.П. Ромака, В.Я. Крайовський, Ю.В. Стадник, Станіди рідкісноземельних та перехідних металів (Львівська політехніка, Львів, 2015).
- [19] M.L. Fornasini, P. Manfrinetti, D. Mazzone, P. Riani, G. Zanicchi, J. Solid State Chem. 177, 1919 (2004).

Л.П. Ромака, І.М. Романів, В.В. Ромака, М.Б. Коник, А.М. Горинь, Ю.В. Стадник

- [20] M.L. Fornasini, G. Zanicchi, D. Mazzone, P. Riani, Z. Kristallogr. 216(1), 21 (2001).
- [21] Ya. Mudryk, O. Isnard, L. Romaka, D. Fruchart, Solid State Commun. 119, 423 (2001).
- [22] V.V. Romaka, D. Fruchart, R. Gladyshevskii, P. Rogl, N. Koblyuk, J. Alloys Compd. 460, 283 (2008).
- [23] A. Palenzona, P. Manfrinetti, J. Alloys Compd. 201, 43 (1993).
- [24] M.L. Fornasini, F. Merlo. G.B. Bonino, Atti Accad. Naz. Lincei 50, 186 (1971).
- [25] M.V. Bulanova, V.N. Eremenko, V.M. Petjukh, V.R. Sidorko, J. Phase Equil. 19, 136 (1998).
- [26] X.C. Zhong, M. Zou, H. Zhang, Z. W. Liu, D.C. Zeng, K.A.Jr. Gschneidner, V.K. Pecharsky, J. Appl. Phys.
- 109, 07A917 (2011).
- [27] J. Kim, J.-H. Jung, Calphad 55, 134 (2016).
- [28] T.B. Massalski, in: Binary Alloy Phase Diagr., ASM, Metals Park, Ohio, 1990.
- [29] P. Villars, L.D. Calvert, in: Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Metals Park, OH, 1991.
- [30] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Cryst. 47, 803 (2014).
- [31] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum 378–381, 118 (2001).
- [32] M. Francois, G. Venturini, B. Malaman, B. Roques, J. less-Common Met. 160, 197 (1990).
- [33] Р.В. Сколоздра, В.М. Мандзюк, Л.Г. Аксельруд, Кристаллография 26, 272 (1981).
- [34] M. Ruck, G. Portish, H.G. Schlager, M. Sieck, H. Löhneysen, Acta Crystallogr. B49 (1993) 936–941.
- [35] C.P. Sebastian, C. Fehse, H. Eckert, R.D. Hoffmann, R. Pottgen, Solid State Sci. 8(11), 1386 (2006).
- [36] J.P. Maehlen, M. Stange, V.A. Yartys', R.G. Delaplane, J. Alloys Compd. 404, 112 (2005).
- [37] J.V. Pacheco, K. Yvon, E. Gratz, Z. Kristallogr. 213, 510 (1998).
- [38] S. Baran, V. Ivanov, J. Leciejewicz, N. Stusser, A. Szytula, A. Zygmunt, Y.F. Ding, J. Alloys Compd. 257, 5 (1997).
- [39] R. Pottgen, J. Alloys Compd. 243, L1 (1996).
- [40] K. Katon, T. Takabatake, A. Minami, I. Oguro, H. Sawa, J. Alloys Compd. 261, 32 (1997).
- [41] F. Yang, J.P. Kuang, J. Li, E. Brueck, H. Nakotte, F.R. de Boer, X. Wu, Z. Li, Y. Wang, J. Appl. Phys. 69(8), 4705 (1991).

L. Romaka¹, I. Romaniv¹, V.V. Romaka², M. Konyk¹, A. Horyn¹, Yu. Stadnyk¹

Isothermal Section of the Ho–Cu–Sn Ternary System at 670 K

¹Inorganic Chemistry Department, Ivan Franko L'viv National University, Kyryla and Mefodiya str. 6,

79005 L'viv, Ukraine

²Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013, Lviv, Ukraine

The interaction of the components in the Ho-Cu-Sn ternary system was investigated at 670 K over the whole concentration range using X-ray diffraction and EPM analyses. Four ternary compounds were formed in the Ho-Cu-Sn system at 670 K: HoCuSn (LiGaGe type, space group $P6_3mc$), Ho₃Cu₄Sn₄ (Gd₃Cu₄Ge₄-type, space group *Immm*), HoCu₅Sn (CeCu₅Au-type, space group *Pnma*), and Ho_{1.9}Cu_{9.2}Sn_{2.8} (Dy_{1.9}Cu_{9.2}Sn_{2.8}-type, space group $P6_3/mmc$). The formation of the interstitial solid solution based on HoSn₂ (ZrSi₂-type) binary compound up to 5 at. % Cu was found.

Keywords: Intermetallics; Phase diagrams; X-ray diffraction; Crystal structure.