УДК 538.95

ISSN 1729-4428

С.В. Солодін¹, $\underbrace{\mathbb{C}.\mathbb{C}.\text{Никонюк}^2}$, Г.І. Раренко¹, П.М. Фочук¹

Електрофізичні властивості кристалів Cd_{1-x}Mn_xTe (x < 0,1), легованих германієм

¹Чернівецький національний університет ім. Юрія Федьковича, м. Чернівці, 58012, Україна, e-mail: <u>serhii.solodin@gmail.com</u>

²Національний університет водного господарства та природокористування, 33028 Рівне, Україна

Методом Бріджмена вирощено кристали $Cd_{1-x}Mn_xTe$ (x = 0,02; 0,04; 0,08), леговані домішкою Ge. Електричними вимірюваннями в інтервалі температур 280 – 420 К встановлено, що діркова провідність кристалів контролюється глибокими компенсованими акцепторами, енергія іонізації яких (ϵ_A) збільшується з вмістом Mn(x) згідно зі співвідношенням $\epsilon_A = 0,6$ (1 + 2x) eB. При 300 K: $\rho = (10^8 - 10^9)$ (Ом·см), $R_X = (5 \times 10^9 - 5 \times 10^{10})$ см³/Кл; рухливість носіїв струму ~50 см²/(B·c).

Ключові слова: Cd_{1-x}Mn_xTe, тверді розчини, електричні властивості, ефект Холла, Германій.

Стаття поступила до редакції 06.06.2019; прийнята до друку 15.06.2019.

Вступ

Активні дослідження кристалів твердого розчину на основі кадмій-манган телуриду (Cd_{1-x}Mn_xTe) пов'язані з перспективами застосування в опто- та фотоелектроніці: з них можна виготовити оптичні рентгенівського детектори фільтри, та у-випромінювання, фоторефрактивні елементи тощо [1-5]. Необхідний напівізолюючий стан в цих монокристалах зазвичай досягається шпяхом легування домішками, що мають глибину залягання енергетичних рівнів в забороненій зоні, яка відповідає робочій області застосування. Дослідження [6-10] вказують на те, що кристали CdTe, леговані Ge, є досить високоомними з питомим опором $\rho = (10^8 - 10^9)$ (Ом×см) та р-типом провідності за кімнатної температури, який контролюється глибоким акцепторним рівнем поблизу середини забороненої зони E_V + (0,65 - 0,68) eB. Існування рівня E_V + (0,65 - 0,69) eB було підтверджено як електричними [11, 12] так і магніто-оптичними дослідженнями [13, 14]. У роботі [15] знайдено розміщення рівня Ge^{2+/3+} на ~0,6 eB вище стелі валентної зони. Шляхом порівняння структурних і елекричних властивостей було ідентифіковано два глибоких донорних рівня, розміщених біля Е_с-0,31 еВ та в середині забороненої зони. Енергія активації останнього рівня, який був пов'язаний з виникненням ефекту кластеризації Ge у кристалах CdTe:Ge, становила 0,82 eB [16]. Характеристики кристалів CdTe:Ge (роздільна здатність 22 % ширина на напіввисоті піку для Cs-137 та 7 % - для

Аg-110, відповідно) свідчать про можливість їх використання в якості детекторів [17]. Електричні вимірювання показали [18], що у випадку перевищення концентрації Ge більше за 5,7×10¹⁷ ат/см³ тип провідності кристалів CdTe:Ge змінюється з діркового на електронний.

За припущенням Крегера [19] високоомний стан кристалів CdTe:Ge досягається за рахунок самокомпенсації між різними формами домішки Ge. Ця думка була також підтверджена іншими авторами [20]. Автори припустили, що компенсуючий рівень відповідає асоціативному дефекту (Ge_{Cd}⁺V_{Cd}²⁻)⁻, який акцептора. Дослідженнями виступає в ролі електричних, оптичних та магнітних властивостей кристалів CdTe:Ge після високотемпературного відпалу в атмосфері пари кадмію встановлено низькі значення поперечного перерізу електронного захоплення на r-центрах і відповідні для дірок, що вказує на існування акцепторних центрів $(\text{Ge}_{\text{Cd}}^{+} \text{V}_{\text{Cd}}^{2})^{-}$ [21]. Теоретичні розрахунки [22] вказують на можливість розташування атомів Ge у вузлах Те виступаючи в ролі акцептора (Ge_{Te}) в умовах насичення парами кадмію.

Встановлено [23], що легування кристалів $Cd_{1-x}Mn_x$ Те домішкою Sn призводить до підвищення питомого опору кристалів; при x = 0,2 вводяться глибокі донори, а при x=0,4 – глибокі акцептори. Варто очікувати, що такі особливості кристалів CdTe:Ge як високий питомий опір, значна фоточутливість зберігатимуться і у кристалах твердих розчинів Cd_{1-x}Mn_xTe, легованих домішкою Ge. Однак на сьогодні такі кристали зовсім не

Рис.1. IЧ-знімки зразків кристала $Cd_{1-x}Mn_xTe$ (x = 0,08), легованого Ge (а – початок злитку, б – кінець злитку).

досліджені, тому у зв'язку з цим актуальними є дослідження електричних характеристик кристалів $Cd_{1-x}Mn_xTe$, легованих домішкою Ge.

I. Експериментальна частина

Кристали $Cd_{1-x}Mn_xTe$ (x = 0,02 - 0,08), леговані Ge (концентрація домішки в розплаві – 8×10^{18} см⁻³), одержувались з вихідних компонентів класу чистоти не нижче 5N. Домішка Ge завантажувалась у кварцову ампулу разом з вихідними компонентами Cd, Te i Mn. Тривалий синтез (70 – 72 год.) забезпечував рівномірний розподіл компонентів в розплаві, після чого проводилось вирощування монокристалів методом Бріджмена у модифікованій установці з масивним рухомим нагрівником. Максимальна температура розплаву перел вирощуванням становила біля 1400 К, що було достатньо для топлення високотемпературних твердих фаз у розплаві. Градієнт температури на кристалізації становив 10 ÷ 15 К/см. фронті швидкість росту – 2 мм/год. Для вирощування використовувався кварцовий контейнер діаметром 40 мм з плоским дном і тепловідводом по центру дна, забезпечувало одержання шо великих монокристалічних блоків [24]. Після закінчення кристалізації злиток відпалювався за 1173 К протягом 48 год, після чого охолоджувався до кімнатних температур зі швидкістю 20 К/год.

Зразки вирощених кристалів обстежувались на ІЧ мікроскопі Leitz, оснащеному ІЧ камерою Pixelink PL-A741 на наявність вкраплень другої фази. Оскільки матриця кристалу Cd_{1-x}Mn_xTe прозора по відношенню до ІЧ довжин хвиль, а вкраплення Te – непрозорі, що дає можливість спостерігати їхню локалізацію, будову та розмір.

Електрофізичні виміри проводились на прямокутних монокристалічних зразках (12×2×1,5 мм³) з двома парами потенціальних контактів. Струмові і зондові контакти до зразків виготовлялися за допомогою осадження міді з краплі насиченого розчину CuSO₄ на свіжопротравлений

зразок [25]. Електричні сигнали реєструвались електрометром з вхідним опором 10^{12} Ом, що забезпечувало відсутність шунтування поверхнею чи елементами установки. В режимі постійного струму, при індукції магнітного поля 0,5 Тл досліджувались температурні (280 – 420 К) залежності (ТЗ) питомого опору р та коефіцієнта Холла R_H, а також холлівської рухливості носіїв струму $\mu = R_H/\rho$. Концентрація носіїв заряду р(п) розраховувалась за формулою р(п) = (e×R_x)⁻¹. Холл-фактор приймався рівним одиниці.

II. Результати та обговорення

На рис. 1 представлені ІЧ знімки двох зразків вирізаних з початку (а) та кінця злитку (b) $Cd_{1-x}Mn_xTe$ (x = 0,08), відповідно. Помітна присутність як поодиноких вкраплень, так і вкраплень, скупчених на дислокаційних сітках, що особливо помітно у кристалі з кінця злитку.

На рис. 2 представлені залежності питомого

Рис. 2. Залежність питомого опору при 300К зразків Cd(Mn)Te (1) та Cd(Mn)Te-Ge(2) від складу (х).

Рис. 3. Температурна залежність коефіцієнта Холла зразків Cd(Mn)Te-Ge різного складу: 1 - x = 0.02; 2 - x = 0.04; 3 - x = 0.08.

Рис. 4. Залежність енергії іонізації акцепторів А від складу (х) кристалів Cd_{1-x}Mn_xTe-Ge.

опору зразків (300 К) нелегованих (1) [26] і легованих домішкою Ge (2) кристалів Cd_{1-х}Mn_xTe від складу злитка (x). Вимірювання проводились на зразках з різних ділянок кожного злитку, про що свідчить зазначений на рис. 2 інтервал похибок р. Видно, що макроскопічна однорідність легованих ніж нелегованих, що, кристалів навіть краща, можливо. зумовлено меншим впливом неконтрольованих домішок. Збільшення питомого опору легованих кристалів при усіх складах досягає 6 порядків.

На рис. З представлені ТЗ коефіцієнта Холла трьох типових зразків легованих кристалів різного складу. По знаку коефіцієнта Холла всі зразки (і не приведені на цьому рисунку) володіли дірковою провідністю. Холлівська рухливість дірок усіх експериментальних зразків за 300 К лежить в межах (45 - 60) см²/(B×c) і практично не залежить від складу (х) кристалу. В циклах «нагрів-охолодження» результати R_H і ρ були відтворюваними, відсутні ізотермічні релаксації, характерні для нелегованих кристалів Cd(Mn)Te [27]. В цьому відношенні ці кристали не відрізняються від кристалів p-CdTe-Ge

Рис. 5. Температурна залежність холлівської рухливості носіїв струму в зразках: 1 - n-Cd_{1-x}Mn_xTe-In (x = 0,05); 2 - p-Cd_{1-x}Mn_xTe-Ge (x = 0,04).

[6, 7].

Для визначення енергії іонізації (є_А) акцепторів А, що контролюють р-провідність в кристалах Cd(Mn)Te-Ge, результати рис. 3 проаналізовані з використанням моделі компенсованого напівпровідника, яка визначає положення донорних чи акцепторних рівнів відносно країв відповідних зон при О К. Для розрахунків використовували значення ефективних мас густини станів $m_n^* = 0.11m_0$, $m_{p}^{*} = 0,63m_{0}$ для чистого кадмій телуриду [28] та значення ширини забороненої зони для Cd(Mn)Te при 0 К і при 300 К, приведені у роботах [29, 30]. Виявлено лінійну залежність є₄ від вмісту Мп (рис. 4), яка описується рівнянням $\varepsilon_A = 0,60 (1 + 2,0x) \text{ eB}.$ Цікаво порівняти цю залежність з такою ж для ширини забороненої зони $\{E_g = 1, 49 (1 + 0, 92) eB\}$ і для основних акцепторів А2 в нелегованих кристалах Cd(Mn)Te { $\epsilon_{A2} = 0,12 (1 + 5,5x) eB$ }[31]. Видно, що швидкість віддалення від вершини V-зони акцепторного рівня в Cd(Mn)Те-Ge суттєво менша, ніж рівня акцептора А2 в нелегованих кристалах. Але вона досить близька до швидкості віддалення дна Сзони від вершини V-зони. Тому можна стверджувати, що акцептор А (чи його складові) локалізований в катіонній підгратці.

На основі ТЗ R_н неможливо було встановити концентрацію електрично активних центрів (N₁), оскільки відсутня область повної іонізації А-центрів. В цьому відношенні дещо інформативнішою є ТЗ рухливості носіїв струму (рис. 5, крива 2). ТЗ µ_р в зразку p-Cd_{1-x}Mn_xTe-Ge можна описати 3 використанням класичних механізмів розсіяння (на коливаннях кристалічної гратки та іонізованих центрах), з врахуванням наявності областей, в тому числі областей просторового заряду Вайсберга [32], непрозорих для носіїв струму. Максимум ТЗ µ_р при T > 300 K вказує на те, що N_I не може бути меншим, ніж 5×10¹⁷ см⁻³.

На рис. 5 для порівняння приведена ТЗ холлівської рухливості електронів (крива 1) в напівізолюючому зразку n-Cd_{1-x}Mn_xTe, легованому

In. Видно, що при низьких температурах T3 μ_n значно сильніша, ніж T^{3/2}. І тому в цьому випадку слід говорити про розсіяння не на ізольованих, іонізованих центрах, а на колективних дрейфових бар'єрах, обумовлених мікронеоднорідностями системи точкових дефектів. Слід відмітити факт існування таких бар'єрів у інших навівізолюючих кристалах з електронним типом провідності (CdTe, CdTe-Cl, Cd(Zn)Te-In), в яких перекомпенсація забезпечується мілкими донорами.

Висновки

Величини питомого опору ρ і коефіцієнта Холла R_H в зразках з однаковою кількістю домішки Ge зі збільшенням вмісту Mn зростають; при 300 K: $\rho = (10^8 - 10^9)$ Ом·см, $R_H = (5 \times 10^9 - 5 \times 10^{10})$ см³/Кл, концентрація носіїв заряду рівна $1,2 \times 10^9 - 1,2 \times 10^{10}$ см⁻³, рухливість носіїв струму ~50 см²/(В·с).

Діркова провідність контролюється глибокими компенсованими акцепторами з енергією іонізації ε_A величина якої лежить в межах 0,61 - 0,71 еВ, при цьому, залежність ε_A від вмісту Mn(x) описується співвідношенням $\varepsilon_A = 0,60$ (1 + 2,0x) еВ.

Не виявлено мікронеоднорідностей, які викликають існування дрейфових бар'єрів для носіїв струму, що, як правило, спостерігається у високоомних кристалах CdTe і твердих розчинах на його основі.

Солодін С.В - аспірант кафедри загальної хімії та хімічного матеріалознавства;

Никонюк Є.С. – к.ф.-м.н., доцент;

Раренко Г.І. – к.ф.-м.н., старший науковий співробітник;

Фочук П.М. – професор, д.х.н., проректор з наукової роботи і міжнародних зв'язків.

- [1] S.A. Gad, M. Boshta, A.M. Moustafa, et al., Solid State Sciences 13, 23 (2011).
- [2] Y. Cui, A. Bolotnikov, A. Hossain, et al., Proc. SPIE 7079, 70790N-1 (2008).
- [3] W. Liang, K, Qin, J. Zhang, et al., J. Cryst. Growth 419, 123 (2015).
- [4] K. Shcherbin, S. Odoulov, Z. Zakharuk, I. Rarenko, Optical Materials 18, 159 (2001).
- [5] M. B. Klein, K. Shcherbin, V. Danylyuk, OSA, Washington, DC, 483 (2003).
- [6] V. Matlak, Ye. Nykonyuk, A. Savitskyi, K. Tovstyuk, Sov. Phys. Semicond. 6, 1760 (1972).
- [7] O.Panchuk, A.Savitskiy, P.Fochuk, et al. J.Cryst. Growth 197, 607 (1999).
- [8] Ye. Nykonyuk, V. Matlak, R. Ivanchuk, A. Savitskyi, in "Fizychna Elektronika" (in Ukrainian), Lviv, Vyshcha Shkola, 8 (1970).
- [9] A. Savitskiy, Ye. Nykonyuk, V. Matlak, et al., in Pytannya suchasnoho pryrodoznavstva (in Ukrainian), Lviv, Vyshcha Shkola, 52 (1975).
- [10] L. Shcherbak, Ye. Nykonyuk, O. Panchuk et al Inorg. Mater. 13, 415 (1977).
- [11] C. Scharager, P. Siffert, P. Hoöschl, et al., Phys. Status Solidi (a) 66, 87 (1981).
- [12] M. Fiederle, V. Babentsov, J. Franc, et al. J. Cryst. Growth 243, 77 (2002).
- [13] B. Farid, Ph.D. Thesis., University D. Diderot, Paris, 2000.
- [14] B. Farid, F. Ramaz, O. Panchuk, et al., Opt. Mater. 18, 7 (2001).
- [15] E. Rzepka, Y. Marfaing, M. Cuniot, R. Triboulet, Mater. Sci. Eng. B 16, 262 (1993).
- [16] B. Fraboni, F. Boscherini, P. Fochuk and A. Cavallini, J. Appl. Phys. 110, 053706 (2011).
- [17] P. Feichuk, L. Shcherbak, D. Pluta, et al. Proc. SPIE 3182, 100 (1997).
- [18] P. Gorley, O. Parfenyuk, M. Ilashchuk, I. Nikolayevych, Inorg. Mater. 41, 1266 (2005).
- [19] F.A. Kröger, Rev. Phys. Appl., 12, 205 (1975).
- [20] O. Panchuk, L. Shcherbak, Ye. Nykonyuk, A. Savitskiy, Inorg. Mater. 16, 433 (1980).
- [21] O. Panchuk, A. Savitskiy, P. Fochuk, et al., J. Cryst. Growth 197, 607 (1999).
- [22] J.E. Jaffe, J. Appl. Phys. 99, 033704 (2006).
- [23] Є. Никонюк, З. Захарук, Г. Раренко та ін., Фізика і хімія твердого тіла 6, 372 (2005).
- [24] Z. Zakharuk, A. Rarenko, E. Rybak, et al., Physics and chemistry of solid state 8, 25 (2007).
- [25] В. Заячкивский, М. Ковалец, Н. Кучма и др. ПТЭ 5, 211 (1984).
- [26] Є. Никонюк, З. Захарук, Г. Раренко, та ін. Журнал нано- та електронної фізики 7, 04054 (2015).
- [27] E.Nikonyuk, Z. Zakharuk, M. Kuchma, et al., Semiconductors 42, 1012 (2008).
- [28] K. Zanio. Semicond. and Semimet. 13, 235 (1978).
- [29] А. Власенко, В. Бабенцов, С. Свечников и др., ФТП 31, 1017 (2001).
- [30] П. Жуковский, Я. Партыка, П. Венгерек и др., ФТП 35, 937 (2001).
- [31] П. Фочук, Є. Никонюк, З. Захарук, та ін., Журнал нано- та електронної фізики 8, 04011 (2016).
- [32] L.R. Weisberg. J. Appl. Phys. 33, 1817 (1962).

S. Solodin¹, Ye. Nikoniuk², G. Rarenko¹, P. Fochuk¹

Electro-Physical Properties of Ge-doped Cd_{1-x}Mn_xTe (x < 0,1) Crystals

¹Yuriy Fedkovich' Chernivtsi National University, Chernivtsi, 58012, Ukraine. e-mail: <u>serhii.solodin@gmail.com</u> ²National University of Water Management and Nature Resources, Rivne, 33028, Ukraine

Ge-doped $Cd_{1-x}Mn_xTe$ (x = 0.02, 0.04, 0.08) crystals were grown by the Bridgman method. Carried out electrical measurements in the temperature range 280 – 420 K have found that the crystals' hole conductivity is controlled by the deep compensated acceptors, whose ionization energy (ϵ_A) was increased with the content Mn (x) according to the relation $\epsilon_A = 0.6 (1 + 2x) \text{ eV}$. At 300 K: $\rho = (10^8 - 10^9)$ (Ohm×cm), $R_H = (5 \times 10^9 - 5 \times 10^{10}) \text{ cm}^3/\text{C}$; mobility of current carriers ~ 50 cm²/(V×s).

Key words: Cd_{1-x}Mn_xTe, solid solutions, electrical properties, Hall effect, Germanium.