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We consider polynomials on spaces ℓ𝑝(C𝑛), 1 ≤ 𝑝 < +∞, of 𝑝-summing sequences of 𝑛-dimensional complex vectors, which
are symmetric with respect to permutations of elements of the sequences, and describe algebraic bases of algebras of continuous
symmetric polynomials on ℓ𝑝(C𝑛).

1. Introduction

Algebras of polynomials and analytic functions on a Banach
space 𝑋 which are invariant (symmetric) with respect to a
group of linear operators 𝐺(𝑋) acting on 𝑋 were studied
by a number of authors [1–10] (see also a survey [11]). If𝑋 has a symmetric structure, then it is natural to consider
the case when 𝐺(𝑋) is a group of operators which preserve
this structure. In particular, if𝑋 is a rearrangement-invariant
sequence space, then 𝐺(𝑋) is used to be the group of
permutations of positive integers. In [8] Nemirovskii and
Semenov described algebraic bases of algebras of continuous
symmetric polynomials on real spaces ℓ𝑝, where 1 ≤ 𝑝 < +∞.
Their results were generalized by González et al. [7] to real
separable rearrangement-invariant sequence spaces.

Algebraic basis plays a crucial role in the problem of
description of spectra of algebras generated by polynomials
[1–4]. For example, each complex homomorphism on the
algebra of symmetric polynomials on ℓ𝑝 is completely defined
by its values on the basis elements.

Note that an algebra of symmetric functions essentially
depends on a representation of a given group 𝐺 on 𝑋. In
particular, in [12–14] the group of permutations of posi-
tive integers was considered which acts on the complex
space ℓ1 permutating “blocks” of coordinates. Polynomials
which are invariant with respect to the action are called

block-symmetric. It is natural to consider such polynomials
as symmetric polynomials on ℓ1(C𝑛).

In this work we get an explicit description of algebraic
bases of algebras of symmetric polynomials on ℓ𝑝(C𝑛), where1 ≤ 𝑝 < +∞.
2. Materials and Methods

We denote by N the set of all positive integers and by Z+ the
set of all nonnegative integers.

A mapping 𝑃 : 𝑋 → C, where 𝑋 is a complex Banach
space, is called an𝑁-homogeneous polynomial if there exists
an𝑁-linear form𝐴𝑃 : 𝑋𝑁 → C such that 𝑃 is the restriction
to the diagonal of 𝐴𝑃, that is, 𝑃(𝑥) = 𝐴𝑃(𝑥, . . . , 𝑥⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁

) for every𝑥 ∈ 𝑋. By [15, Corollary 2.3], 𝑁-homogeneous polynomial𝑃 is continuous if and only if its norm ‖𝑃‖ = sup‖𝑥‖≤1|𝑃(𝑥)|
is finite. Definition of 𝑁-homogeneous polynomial implies
the inequality |𝑃(𝑥)| ≤ ‖𝑃‖‖𝑥‖𝑁 for every 𝑥 ∈ 𝑋. A mapping𝑃 = 𝑃0+𝑃1+⋅ ⋅ ⋅+𝑃𝑚, where𝑃0 ∈ C and𝑃𝑗 is a 𝑗-homogeneous
polynomial for every 𝑗 ∈ {1, . . . , 𝑚}, is called a polynomial of
degree at most𝑚.

Let 𝑛 ∈ N and 𝑝 ∈ [1, +∞). Let us denote ℓ𝑝(C𝑛) the
vector space of all sequences𝑥 = (𝑥1, 𝑥2, . . .) , (1)
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where 𝑥𝑗 = (𝑥(1)𝑗 , . . . , 𝑥(𝑛)𝑗 ) ∈ C𝑛 for 𝑗 ∈ N, such that the series∑∞
𝑗=1∑𝑛

𝑠=1 |𝑥(𝑠)𝑗 |𝑝 is convergent. The space ℓ𝑝(C𝑛) with norm

‖𝑥‖𝑝 = (∞∑
𝑗=1

𝑛∑
𝑠=1

𝑥(𝑠)𝑗 𝑝)
1/𝑝

(2)

is a Banach space.

Definition 1. A function 𝑓 : ℓ𝑝(C𝑛) → C is called symmetric
if𝑓(𝑥∘𝜎) = 𝑓(𝑥) for every 𝑥 ∈ ℓ𝑝(C𝑛) and for every bijection𝜎 : N → N, where 𝑥 ∘ 𝜎 = (𝑥𝜎(1), 𝑥𝜎(2), . . .).

Let us denote P𝑠(ℓ𝑝(C𝑛)) the algebra of all symmetric
continuous polynomials on ℓ𝑝(C𝑛).
3. Results and Discussion

3.1. Power Sum Symmetric Polynomials on ℓ𝑝(C𝑛). For a
multi-index 𝑘 = (𝑘1, . . . , 𝑘𝑛) ∈ Z𝑛

+ let |𝑘| = 𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑛.
For every 𝑘 ∈ Z𝑛

+ such that |𝑘| ≥ ⌈𝑝⌉, where ⌈𝑝⌉ is a ceiling
of 𝑝, let us define a mapping𝐻𝑘 : ℓ𝑝(C𝑛) → C by

𝐻𝑘 (𝑥) = ∞∑
𝑗=1

𝑛∏
𝑠=1
𝑘𝑠>0

(𝑥(𝑠)𝑗 )𝑘𝑠 . (3)

Also we set 𝐻(0,...,0)(𝑥) ≡ 1. Note that 𝐻𝑘 is a symmetric |𝑘|-
homogeneous polynomial. Polynomials 𝐻𝑘 are generaliza-
tions of so-called power sum symmetric polynomials on finite-
dimensional spaces (see, e.g., [16, page 23] or [17, page 297]).

Proposition 2. For 𝑝 ∈ [1, +∞) and for every 𝑘 ∈ Z𝑛
+ such

that |𝑘| ≥ ⌈𝑝⌉, polynomial 𝐻𝑘 on ℓ𝑝(C𝑛) is continuous and‖𝐻𝑘‖ ≤ 1.
Proof. Let 𝑥 ∈ ℓ𝑝(C𝑛) such that ‖𝑥‖𝑝 ≤ 1. Note that

𝐻𝑘 (𝑥) ≤ ∞∑
𝑗=1

𝑛∏
𝑠=1
𝑘𝑠>0

𝑥(𝑠)𝑗 𝑘𝑠 . (4)

Since |𝑥(𝑠)𝑗 | ≤ max1≤𝑚≤𝑛|𝑥(𝑚)
𝑗 | for every 𝑠 ∈ {1, . . . , 𝑛} and 𝑗 ∈

N, it follows that
𝑛∏
𝑠=1
𝑘𝑠>0

𝑥(𝑠)𝑗 𝑘𝑠 ≤ (max
1≤𝑚≤𝑛

𝑥(𝑚)
𝑗

)|𝑘| (5)

for every 𝑗 ∈ N. Note that
(max
1≤𝑚≤𝑛

𝑥(𝑚)
𝑗

)|𝑘| = max
1≤𝑚≤𝑛

𝑥(𝑚)
𝑗

|𝑘| ≤ 𝑛∑
𝑚=1

𝑥(𝑚)
𝑗

|𝑘| . (6)

Therefore,

𝐻𝑘 (𝑥) ≤ ∞∑
𝑗=1

𝑛∑
𝑚=1

𝑥(𝑚)
𝑗

|𝑘| . (7)

Since ‖𝑥‖𝑝 ≤ 1, it follows that |𝑥(𝑚)
𝑗 | ≤ 1 for every 𝑚 ∈{1, . . . , 𝑛} and 𝑗 ∈ N.Therefore, |𝑥(𝑚)

𝑗 ||𝑘| ≤ |𝑥(𝑚)
𝑗 |𝑝.Thus,

𝐻𝑘 (𝑥) ≤ ∞∑
𝑗=1

𝑛∑
𝑚=1

𝑥(𝑚)
𝑗

𝑝 = ‖𝑥‖𝑝𝑝 ≤ 1. (8)

Therefore, ‖𝐻𝑘‖ = sup‖𝑥‖𝑝≤1|𝐻𝑘(𝑥)| ≤ 1. Hence, 𝐻𝑘 is
bounded and, consequently, it is continuous.

For 𝑚 ∈ N, let 𝑐(𝑚)
00 (C𝑛) be the space of all sequences𝑥 = (𝑥1, . . . , 𝑥𝑚, 0, . . .), where 𝑥1, . . . , 𝑥𝑚 ∈ C𝑛 and 0 =(0, . . . , 0) ∈ C𝑛. Note that 𝑐(𝑚)

00 (C𝑛) is isomorphic to (C𝑛)𝑚.
Let 𝑐00(C𝑛) = ⋃∞

𝑚=1 𝑐(𝑚)
00 (C𝑛). Note that 𝑐00(C𝑛) is a dense

subspace in ℓ𝑝(C𝑛). Also note that 𝐻𝑘 is well-defined on𝑐00(C𝑛) for every 𝑘 ∈ Z𝑛
+.

For arbitrary 𝑥 = (𝑥1, . . . , 𝑥𝑚, 0, . . .), 𝑦 =(𝑦1, . . . , 𝑦𝑠, 0, . . .) ∈ 𝑐00(C𝑛), we set𝑥 ⊕ 𝑦 = (𝑥1, . . . , 𝑥𝑚, 𝑦1, . . . , 𝑦𝑠, 0, . . .) . (9)

For 𝑥(1), . . . , 𝑥(𝑟) ∈ 𝑐00(C𝑛), let
𝑟⨁

𝑗=1

𝑥(𝑗) = 𝑥(1) ⊕ ⋅ ⋅ ⋅ ⊕ 𝑥(𝑟). (10)

Note that 
𝑟⨁

𝑗=1

𝑥(𝑗)
𝑝

𝑝

= 𝑟∑
𝑗=1

𝑥(𝑗)𝑝𝑝 . (11)

Also note that for every 𝑘 ∈ Z𝑛
+, such that |𝑘| ≥ 1,

𝐻𝑘( 𝑟⨁
𝑗=1

𝑥(𝑗)) = 𝑟∑
𝑗=1

𝐻𝑘 (𝑥(𝑗)) . (12)

For every𝑚 ∈ N and 𝑗 ∈ {1, . . . , 𝑚}, we set
𝛼𝑚𝑗 = 1𝑚1/𝑚

exp(2𝜋𝑖𝑗𝑚 ) . (13)

Also we set 𝛼01 = 0. For 𝑙 = (𝑙1, . . . , 𝑙𝑛) ∈ Z𝑛
+, let

𝑎𝑙 = ̂
𝑙1⨁

𝑗1=1

⋅ ⋅ ⋅ ̂
𝑙𝑛⨁

𝑗𝑛=1

((𝛼𝑙1𝑗1 , . . . , 𝛼𝑙𝑛𝑗𝑛) , (0, . . . , 0) , . . .) , (14)

where 𝑙𝑗 = max{1, 𝑙𝑗} for 𝑗 ∈ {1, . . . , 𝑛}.
Let us define a partial order on Z𝑛

+ by the following way.
For 𝑘, 𝑙 ∈ Z𝑛

+ we set 𝑘 ⪰ 𝑙 if and only if there exists 𝑚 ∈ Z𝑛
+

such that 𝑘𝑠 = 𝑚𝑠𝑙𝑠 for every 𝑠 ∈ {1, . . . , 𝑛}.We write 𝑘 ≻ 𝑙, if𝑘 ⪰ 𝑙 and 𝑘 ̸= 𝑙.
Proposition 3. For 𝑘 ∈ Z𝑛

+ such that |𝑘| ≥ 1 and for arbitrary𝑙 ∈ Z𝑛
+

𝐻𝑘 (𝑎𝑙) = {{{{{{{
𝑛∏
𝑠=1
𝑘𝑠>0

1𝑙𝑘𝑠/𝑙𝑠−1𝑠

𝑛∏
𝑠=1
𝑘𝑠=0

𝑙𝑠, if 𝑘 ⪰ 𝑙
0, otherwise, (15)

where, by the definition, product of an empty set of multipliers
is equal to 1. In particular,𝐻𝑘(𝑎𝑘) = 1.
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Proof. By (12) and (14),𝐻𝑘 (𝑎𝑙)
= ̂

𝑙1∑
𝑗1=1

⋅ ⋅ ⋅ ̂
𝑙𝑛∑

𝑗𝑛=1

𝐻𝑘 ((𝛼𝑙1𝑗1 , . . . , 𝛼𝑙𝑛𝑗𝑛) , (0, . . . , 0) , . . .) . (16)

By the definition of𝐻𝑘,

𝐻𝑘 ((𝛼𝑙1𝑗1 , . . . , 𝛼𝑙𝑛𝑗𝑛) , (0, . . . , 0) , . . .) = 𝑛∏
𝑠=1
𝑘𝑠>0

(𝛼𝑙𝑠𝑗𝑠)𝑘𝑠 . (17)

Therefore,

𝐻𝑘 (𝑎𝑙) = ̂
𝑙1∑

𝑗1=1

⋅ ⋅ ⋅ ̂
𝑙𝑛∑

𝑗𝑛=1

𝑛∏
𝑠=1
𝑘𝑠>0

(𝛼𝑙𝑠𝑗𝑠)𝑘𝑠

= 𝑛∏
𝑠=1
𝑘𝑠>0

̂
𝑙𝑠∑

𝑗𝑠=1

(𝛼𝑙𝑠𝑗𝑠)𝑘𝑠 𝑛∏
𝑠=1
𝑘𝑠=0

̂
𝑙𝑠∑

𝑗𝑠=1

1

= 𝑛∏
𝑠=1
𝑘𝑠>0

̂
𝑙𝑠∑

𝑗𝑠=1

(𝛼𝑙𝑠𝑗𝑠)𝑘𝑠 𝑛∏
𝑠=1
𝑘𝑠=0

𝑙𝑠.

(18)

Let 𝑘 ⪰ 𝑙. Then there exists 𝑚 ∈ Z𝑛
+ such that 𝑘𝑠 = 𝑚𝑠𝑙𝑠

for every 𝑠 ∈ {1, . . . , 𝑛}. For 𝑠 ∈ {1, . . . , 𝑛} such that 𝑘𝑠 > 0, we
have that 𝑙𝑠 > 0 too. Consequently, for such 𝑠 we have 𝑙𝑠 = 𝑙𝑠,
and, by (13),

̂
𝑙𝑠∑

𝑗𝑠=1

(𝛼𝑙𝑠𝑗𝑠)𝑘𝑠 = 𝑙𝑠∑
𝑗𝑠=1

( 1𝑙1/𝑙𝑠𝑠

exp(2𝜋𝑖𝑗𝑠𝑙𝑠 ))𝑚𝑠𝑙𝑠

= 1𝑙𝑚𝑠𝑠
𝑙𝑠∑

𝑗𝑠=1

exp (2𝜋𝑖𝑗𝑠𝑚𝑠) = 1𝑙𝑚𝑠𝑠
𝑙𝑠∑

𝑗𝑠=1

1
= 1𝑙𝑚𝑠−1𝑠

= 1𝑙𝑘𝑠/𝑙𝑠−1𝑠

.
(19)

Therefore, by (18),

𝐻𝑘 (𝑎𝑙) = 𝑛∏
𝑠=1
𝑘𝑠>0

1𝑙𝑘𝑠/𝑙𝑠−1𝑠

𝑛∏
𝑠=1
𝑘𝑠=0

𝑙𝑠. (20)

In the case 𝑘 = 𝑙 we have
𝐻𝑘 (𝑎𝑘) = 𝑛∏

𝑠=1
𝑘𝑠>0

1𝑘𝑘𝑠/𝑘𝑠−1𝑠

𝑛∏
𝑠=1
𝑘𝑠=0

𝑘𝑠 = 1. (21)

Let 𝑘�⪰𝑙.Then we have two cases. Case 1. There exists 𝑠 ∈{1, . . . , 𝑛} such that 𝑘𝑠 > 𝑙𝑠 = 0.Then
̂
𝑙𝑠∑

𝑗𝑠=1

(𝛼𝑙𝑠𝑗𝑠)𝑘𝑠 = (𝛼01)𝑘𝑠 = 0; (22)

therefore,𝐻𝑘(𝑎𝑙) = 0. Case 2. There exists 𝑠 ∈ {1, . . . , 𝑛} such
that 𝑙𝑠 > 𝑘𝑠 > 0.Then

̂
𝑙𝑠∑

𝑗𝑠=1

(𝛼𝑙𝑠𝑗𝑠)𝑘𝑠 = 𝑙𝑠∑
𝑗𝑠=1

( 1𝑙1/𝑙𝑠𝑠

exp(2𝜋𝑖𝑗𝑠𝑙𝑠 ))𝑘𝑠

= 1𝑙𝑘𝑠/𝑙𝑠𝑠

𝑙𝑠∑
𝑗𝑠=1

exp(2𝜋𝑖𝑗𝑠𝑙𝑠 )𝑘𝑠 .
(23)

It is known that
𝑞∑
𝑗=1

exp(2𝜋𝑖𝑗𝑞 )𝑟 = 0 (24)

for every 𝑞 ∈ {2, 3, . . .} and 𝑟 ∈ {1, . . . , 𝑞 − 1}.Therefore,

𝑙𝑠∑
𝑗𝑠=1

exp(2𝜋𝑖𝑗𝑠𝑙𝑠 )𝑘𝑠 = 0 (25)

and, consequently,𝐻𝑘(𝑎𝑙) = 0.
Let us prove the following auxiliary proposition.

Proposition 4. A function 𝑔 : (0, +∞) → R, 𝑔(𝑥) =(𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚)1/𝑥, where 𝑚 ∈ N and 𝑐1, . . . , 𝑐𝑚 > 0, is strictly
decreasing.

Proof. Let us prove that𝑔(𝑥) < 0 for every𝑥 ∈ (0, +∞).Note
that 𝑔(𝑥) = ((1/𝑥) ln(𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚)).Therefore,

𝑔 (𝑥) = 𝑔 (𝑥) (− 1𝑥2 ln (𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚) + 1𝑥
⋅ 𝑐𝑥1 ln 𝑐1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚 ln 𝑐𝑚𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚 )
= − 𝑔 (𝑥)𝑥2 (𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚) ((𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚)⋅ ln (𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚) − 𝑥 (𝑐𝑥1 ln 𝑐1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚 ln 𝑐𝑚))
= − 𝑔 (𝑥)𝑥2 (𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚) (𝑐𝑥1 (ln (𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚)− ln 𝑐𝑥1 ) + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚 (ln (𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚) − ln 𝑐𝑥𝑚)) .

(26)

Since 𝑔(𝑥)/𝑥2(𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚) > 0 and ln(𝑐𝑥1 + ⋅ ⋅ ⋅ + 𝑐𝑥𝑚) > ln 𝑐𝑥𝑗
for every 𝑗 ∈ {1, . . . , 𝑚}, it follows that 𝑔(𝑥) < 0.
Corollary 5. For every 𝑥 ∈ ℓ𝑝(C𝑛) and for every 𝑞 ≥ 𝑝

‖𝑥‖𝑝 ≥ ‖𝑥‖𝑞 . (27)

For an arbitrary nonempty finite set𝑀 ⊂ Z𝑛
+ let us define

a mapping 𝜋𝑀 : 𝑐00(C𝑛) → C|𝑀|, where |𝑀| is the cardinality
of𝑀, by

𝜋𝑀 (𝑥) = (𝐻𝑘 (𝑥))𝑘∈𝑀 , (28)
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where (𝐻𝑘(𝑥))𝑘∈𝑀 is an |𝑀|-dimensional vector of values of𝐻𝑘 on 𝑥, indexed by 𝑘 ∈ 𝑀. We endow the space C|𝑀| with
norm ‖𝜉‖∞ = max𝑘∈𝑀|𝜉𝑘|, where 𝜉 = (𝜉𝑘)𝑘∈𝑀 ∈ C|𝑀|.

Theorem6. Let𝑀 be a finite nonempty subset ofZ𝑛
+ such that|𝑘| ≥ 1 for every 𝑘 ∈ 𝑀.Then

(i) there exists 𝑚 ∈ N such that for every 𝜉 = (𝜉𝑘)𝑘∈𝑀 ∈
C|𝑀| there exists 𝑥𝜉 ∈ 𝑐(𝑚)

00 (C𝑛) such that 𝜋𝑀(𝑥𝜉) = 𝜉;
(ii) there exists a constant 𝜌𝑀 > 0 such that if ‖𝜉‖∞ < 1,

then ‖𝑥𝜉‖𝑝 < 𝜌𝑀 for every 𝑝 ∈ [1, +∞).
Proof. (i) Let 𝜉 = (𝜉𝑘)𝑘∈𝑀 ∈ C|𝑀|. For every 𝑘 ∈ 𝑀, let us
define 𝜂𝑘 ∈ C and 𝑏𝑘 ∈ 𝑐00(C𝑛) by the following way. For
minimal elements 𝑘 of the partially ordered set (𝑀, ⪯), let𝜂𝑘 = 𝜉𝑘 and 𝑏𝑘 = |𝑘|√𝜂𝑘𝑎𝑘, where 𝑎𝑘 is defined by (14) and

|𝑘|√𝜂𝑘 = {{{
|𝑘|√𝜂𝑘𝑒𝑖 arg 𝜂𝑘/|𝑘|, if 𝜂𝑘 ̸= 00, if 𝜂𝑘 = 0. (29)

For 𝑘 ∈ 𝑀, which are not minimal elements of (𝑀, ⪯), we
define 𝜂𝑘 and 𝑏𝑘 inductively by𝜂𝑘 = 𝜉𝑘 − ∑

𝑙∈𝑀
𝑙≺𝑘

𝐻𝑘 (𝑏𝑙) , (30)

𝑏𝑘 = |𝑘|√𝜂𝑘𝑎𝑘. (31)

We set 𝑥𝜉 = ⨁𝑙∈𝑀𝑏𝑙. Note that 𝑥𝜉 ∈ 𝑐(𝑚)
00 (C𝑛), where

𝑚 = ∑
𝑘∈𝑀

min {𝑗 ∈ N : 𝑎𝑘 ∈ 𝑐(𝑗)00 (C𝑛)} . (32)

For 𝑘 ∈ 𝑀, by (12), 𝐻𝑘(𝑥𝜉) = ∑𝑙∈𝑀𝐻𝑘(𝑏𝑙). Since 𝐻𝑘 is a |𝑘|-
homogeneous polynomial,

𝐻𝑘 (𝑏𝑙) = ( |𝑙|√𝜂𝑙)|𝑘|𝐻𝑘 (𝑎𝑙) . (33)

By Proposition 3, 𝐻𝑘(𝑎𝑙) is not equal to zero only for 𝑙 ∈ 𝑀
such that 𝑙 ⪯ 𝑘.Therefore,𝐻𝑘 (𝑥𝜉) = 𝐻𝑘 (𝑏𝑘) + ∑

𝑙∈𝑀
𝑙≺𝑘

𝐻𝑘 (𝑏𝑙) . (34)

By Proposition 3,𝐻𝑘(𝑎𝑘) = 1, and therefore, by (33),𝐻𝑘(𝑏𝑘) =𝜂𝑘.Hence, 𝐻𝑘 (𝑥𝜉) = 𝜂𝑘 + ∑
𝑙∈𝑀
𝑙≺𝑘

𝐻𝑘 (𝑏𝑙) . (35)

Taking into account (30), we have 𝐻𝑘(𝑥𝜉) = 𝜉𝑘. Hence,𝜋𝑀(𝑥𝜉) = 𝜉.
(ii) Let 𝜉 = (𝜉𝑘)𝑘∈𝑀 ∈ C|𝑀| be such that ‖𝜉‖∞ < 1. For𝑘 ∈ 𝑀 let⟨𝑘⟩ = max {𝑠 ∈ N : ∃𝑙(1), . . . , 𝑙(𝑠) ∈ 𝑀 such that 𝑙(1)
≺ ⋅ ⋅ ⋅ ≺ 𝑙(𝑠) = 𝑘} . (36)

Note that for minimal elements 𝑘 ∈ 𝑀 we have ⟨𝑘⟩ = 1.

Let

𝐶 = max {1,max
𝑘∈𝑀

𝑎𝑘1} . (37)

Let 𝑟 = max
𝑘∈𝑀

⟨𝑘⟩ , (38)

and for every 𝑗 ∈ {1, . . . , 𝑟} let
𝜇𝑗 = 𝑗∏

𝑠=1

(1 + 𝑚𝑠) , (39)

where

𝑚𝑠 = |{𝑘 ∈ 𝑀 : ⟨𝑘⟩ = 𝑠}| . (40)

Also we set 𝜇0 = 1.
Note that for every 𝑗 ∈ {1, . . . , 𝑟}

𝜇𝑗 = 𝜇𝑗−1 (1 + 𝑚𝑗) = 𝜇𝑗−1 + 𝜇𝑗−1𝑚𝑗= 𝜇𝑗−2 + 𝜇𝑗−2𝑚𝑗−1 + 𝜇𝑗−1𝑚𝑗 = ⋅ ⋅ ⋅
= 𝜇0 + 𝜇0𝑚1 + 𝜇1𝑚2 + ⋅ ⋅ ⋅ + 𝜇𝑗−1𝑚𝑗.

(41)

Let us prove that for every 𝑘 ∈ 𝑀𝑏𝑘1 < 𝜇⟨𝑘⟩−1𝐶⟨𝑘⟩. (42)

We proceed by induction on ⟨𝑘⟩. In the case ⟨𝑘⟩ = 1, we have𝜂𝑘 = 𝜉𝑘, and therefore, ‖𝑏𝑘‖1 = |𝑘|√|𝜉𝑘|‖𝑎𝑘‖1. Since |𝜉𝑘| < 1, it
follows that ‖𝑏𝑘‖1 < ‖𝑎𝑘‖1 ≤ 𝐶 = 𝜇0𝐶. If 𝑟 = 1, then (42) is
proved. Let 𝑟 ≥ 2 and 𝑗 ∈ {2, . . . , 𝑟}. Suppose that inequality
(42) holds for every 𝑘 ∈ 𝑀 such that ⟨𝑘⟩ ∈ {1, . . . , 𝑗 − 1}. Let
us prove (42) for 𝑘 ∈ 𝑀 such that ⟨𝑘⟩ = 𝑗. By (31) and (37),

𝑏𝑘1 ≤ |𝑘|√𝜂𝑘 𝑎𝑘1 ≤ |𝑘|√𝜂𝑘𝐶. (43)

By (30), 𝜂𝑘 ≤ 𝜉𝑘 + ∑
𝑙∈𝑀
𝑙≺𝑘

𝐻𝑘 (𝑏𝑙) . (44)

Since 𝐻𝑘 is a |𝑘|-homogeneous polynomial on the spaceℓ1(C𝑛) and ‖𝐻𝑘‖ ≤ 1,𝐻𝑘 (𝑏𝑙) ≤ 𝐻𝑘
 𝑏𝑙|𝑘|1 ≤ 𝑏𝑙|𝑘|1 . (45)

Therefore, taking into account |𝜉𝑘| < 1, we have𝜉𝑘 + ∑
𝑙∈𝑀
𝑙≺𝑘

𝐻𝑘 (𝑏𝑙) < 1 + ∑
𝑙∈𝑀
𝑙≺𝑘

𝑏𝑙|𝑘|1 .
(46)

Therefore,

|𝑘|√𝜂𝑘 < (1 + ∑
𝑙∈𝑀
𝑙≺𝑘

𝑏𝑙|𝑘|1 )
1/|𝑘|

. (47)
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By Proposition 4,

(1 + ∑
𝑙∈𝑀
𝑙≺𝑘

𝑏𝑙|𝑘|1 )
1/|𝑘|

≤ 1 + ∑
𝑙∈𝑀
𝑙≺𝑘

𝑏𝑙1 . (48)

Note that if 𝑙 ≺ 𝑘, then ⟨𝑙⟩ < ⟨𝑘⟩.Therefore,∑
𝑙∈𝑀
𝑙≺𝑘

𝑏𝑙1 ≤ ∑
𝑙∈𝑀

⟨𝑙⟩<⟨𝑘⟩

𝑏𝑙1 . (49)

Since ⟨𝑘⟩ = 𝑗,
∑
𝑙∈𝑀

⟨𝑙⟩<⟨𝑘⟩

𝑏𝑙1 = 𝑗−1∑
𝑠=1

∑
𝑙∈𝑀
⟨𝑙⟩=𝑠

𝑏𝑙1 . (50)

By the induction hypothesis, if ⟨𝑙⟩ = 𝑠, where 𝑠 ∈ {1, . . . , 𝑗−1},
then ‖𝑏𝑙‖1 < 𝜇𝑠−1𝐶𝑠.Therefore,∑

𝑙∈𝑀
⟨𝑙⟩=𝑠

𝑏𝑙1 < ∑
𝑙∈𝑀
⟨𝑙⟩=𝑠

𝜇𝑠−1𝐶𝑠 = 𝜇𝑠−1𝐶𝑠 ∑
𝑙∈𝑀
⟨𝑙⟩=𝑠

1 = 𝜇𝑠−1𝑚𝑠𝐶𝑠.
(51)

Since 𝐶 ≥ 1, it follows that 𝐶𝑠 ≤ 𝐶𝑗−1 for every 𝑠 ∈ {1, . . . , 𝑗 −1}, and therefore,

1 + 𝑗−1∑
𝑠=1

𝜇𝑠−1𝑚𝑠𝐶𝑠 ≤ 1 + 𝐶𝑗−1
𝑗−1∑
𝑠=1

𝜇𝑠−1𝑚𝑠

≤ (1 + 𝑗−1∑
𝑠=1

𝜇𝑠−1𝑚𝑠)𝐶𝑗−1. (52)

Since 𝜇0 = 1, by (41),
1 + 𝑗−1∑

𝑠=1

𝜇𝑠−1𝑚𝑠 = 𝜇𝑗−1. (53)

By (47)–(53),

|𝑘|√𝜂𝑘 < 𝜇𝑗−1𝐶𝑗−1. (54)

By (43) and (54), ‖𝑏𝑘‖1 ≤ 𝜇𝑗−1𝐶𝑗.Hence, inequality (42) holds
for every 𝑘 ∈ 𝑀.

By (11) and by Proposition 4,𝑥𝜉1 ≤ ∑
𝑙∈𝑀

𝑏𝑙1 . (55)

By (42),

∑
𝑙∈𝑀

𝑏𝑙1 = 𝑟∑
𝑗=1

∑
𝑙∈𝑀
⟨𝑙⟩=𝑗

𝑏𝑙1 < 𝑟∑
𝑗=1

∑
𝑙∈𝑀
⟨𝑙⟩=𝑗

𝜇𝑗−1𝐶𝑗

= 𝑟∑
𝑗=1

𝜇𝑗−1𝐶𝑗 ∑
𝑙∈𝑀
⟨𝑙⟩=𝑗

1 = 𝑟∑
𝑗=1

𝜇𝑗−1𝑚𝑗𝐶𝑗

≤ ( 𝑟∑
𝑗=1

𝜇𝑗−1𝑚𝑗)𝐶𝑟 < (𝜇0 + 𝑟∑
𝑗=1

𝜇𝑗−1𝑚𝑗)𝐶𝑟

= 𝜇𝑟𝐶𝑟.

(56)

Set 𝜌𝑀 = 𝜇𝑟𝐶𝑟. We have that ‖𝑥𝜉‖1 < 𝜌𝑀 if ‖𝜉‖∞ < 1. By
Corollary 5, ‖𝑥𝜉‖𝑝 ≤ ‖𝑥𝜉‖1 ≤ 𝜌𝑀 for every 𝑝 ∈ [1, +∞).
Corollary 7. Let𝑀 = {𝑘(1), . . . , 𝑘(𝑠)} ⊂ Z𝑛

+ such that |𝑘(𝑗)| ≥ 1
for every 𝑗 ∈ {1, . . . , 𝑠}. Then there exists 𝑚 ∈ N such that
for every 𝑚 ≥ 𝑚 polynomials𝐻𝑘(1) , . . . , 𝐻𝑘(𝑠) are algebraically
independent on 𝑐(𝑚)00 (C𝑛).
Proof. By Theorem 6, there exists 𝑚 ∈ N such that for every𝜉 = (𝜉1, . . . , 𝜉𝑠) ∈ C𝑠 there exists 𝑥𝜉 ∈ 𝑐(𝑚)

00 (C𝑛) such that

𝐻𝑘(𝑗) (𝑥𝜉) = 𝜉𝑗 (57)

for every 𝑗 ∈ {1, . . . , 𝑠}. Let us show that 𝐻𝑘(1) , . . . , 𝐻𝑘(𝑠) are
algebraically independent on 𝑐(𝑚)00 (C𝑛) for every𝑚 ≥ 𝑚. Let𝑄 : C𝑠 → C be a polynomial such that𝑄 (𝐻𝑘(1) (𝑥) , . . . , 𝐻𝑘(𝑠) (𝑥)) = 0 (58)

for every 𝑥 ∈ 𝑐(𝑚)00 (C𝑛). Set 𝑥 = 𝑥𝜉. Taking into account (57),
we have 𝑄(𝜉1, . . . , 𝜉𝑠) = 0 for arbitrary 𝜉1, . . . , 𝜉𝑠 ∈ C, that is,𝑄 ≡ 0. Hence, 𝐻𝑘(1) , . . . , 𝐻𝑘(𝑠) are algebraically independent.

3.2. Algebraic Basis of the AlgebraP𝑠(ℓ1(C𝑛))
Theorem 8. Every 𝑁-homogeneous polynomial 𝑃 ∈
P𝑠(𝑐(𝑚)

00 (C𝑛)), where 𝑚 is an arbitrary positive integer,
can be represented as an algebraic combination of polynomials𝐻𝑘, where 𝑘 ∈ Z𝑛

+ such that 1 ≤ |𝑘| ≤ 𝑁.
Proof. We proceed by induction on 𝑚. In the case 𝑚 = 1 for𝑥 = (𝑥1, 0, . . .) ∈ 𝑐(1)00 (C𝑛), we have

𝑃 (𝑥) = ∑
𝑘∈Z𝑛+
|𝑘|=𝑁

𝛼𝑘 (𝑥(1)1 )𝑘1 ⋅ ⋅ ⋅ (𝑥(𝑛)1 )𝑘𝑛
= ∑

𝑘∈Z𝑛+
|𝑘|=𝑁

𝛼𝑘𝐻𝑘 (𝑥) , (59)

where 𝛼𝑘 ∈ C. Suppose the statement holds for 𝑚 − 1 and
prove it for 𝑚. Let 𝑃 ∈ P𝑠(𝑐(𝑚)

00 (C𝑛)) and 𝑥 = (𝑥1, . . . , 𝑥𝑚,0, . . .) ∈ 𝑐(𝑚)
00 (C𝑛).Then 𝑃(𝑥) can be represented as a sum of

terms

𝛽𝑘 (𝑥(1)𝑚 )𝑘1 ⋅ ⋅ ⋅ (𝑥(𝑛)𝑚 )𝑘𝑛 𝑓𝑘 ((𝑥1, . . . , 𝑥𝑚−1, 0, . . .)) , (60)

where 𝛽𝑘 ∈ C, 𝑘 = (𝑘1, . . . , 𝑘𝑛) ∈ Z𝑛
+ such that 1 ≤ |𝑘| ≤𝑁, and 𝑓𝑘 is an (𝑁 − |𝑘|)-homogeneous polynomial. Note

that 𝑓𝑘 ∈ P𝑠(𝑐(𝑚−1)
00 (C𝑛)), and therefore, by the induction

hypothesis, 𝑓𝑘((𝑥1, . . . , 𝑥𝑚−1, 0, . . .)) can be represented as an
algebraic combination of 𝐻𝑙((𝑥1, . . . , 𝑥𝑚−1, 0, . . .)), where 𝑙 ∈
Z𝑛

+ such that 1 ≤ |𝑙| ≤ 𝑁 − |𝑘|. Note that
𝐻𝑙 ((𝑥1, . . . , 𝑥𝑚−1, 0, . . .))

= 𝐻𝑙 (𝑥) − (𝑥(1)𝑚 )𝑙1 ⋅ ⋅ ⋅ (𝑥(𝑛)𝑚 )𝑙𝑛 . (61)
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Therefore, 𝑃(𝑥) can be represented as an algebraic combina-
tion of𝐻𝑙(𝑥) and 𝑥(1)𝑚 , . . . , 𝑥(𝑛)𝑚 . Since𝑃 and𝐻𝑙 are symmetric,
it follows that together with term

𝛾𝑟1,...,𝑟𝑛,𝑡1,...,𝑡𝑠 (𝑥(1)𝑚 )𝑟1 ⋅ ⋅ ⋅ (𝑥(𝑛)𝑚 )𝑟𝑛 𝐻𝑡1
𝑙1
(𝑥) ⋅ ⋅ ⋅ 𝐻𝑡𝑠

𝑙𝑠
(𝑥) , (62)

where 𝛾𝑟1,...,𝑟𝑛,𝑡1,...,𝑡𝑠 ∈ C, 𝑙1, . . . , 𝑙𝑠 ∈ Z𝑛
+ and𝑟1, . . . , 𝑟𝑛, 𝑡1, . . . , 𝑡𝑠 ∈ Z+, the sum must contain terms

𝛾𝑟1 ,...,𝑟𝑛,𝑡1,...,𝑡𝑠 (𝑥(1)𝑗 )𝑟1 ⋅ ⋅ ⋅ (𝑥(𝑛)𝑗 )𝑟𝑛 𝐻𝑡1
𝑙1
(𝑥) ⋅ ⋅ ⋅ 𝐻𝑡𝑠

𝑙𝑠
(𝑥) , (63)

where 𝑗 ∈ {1, . . . , 𝑚 − 1}.Therefore, 𝑃(𝑥) can be represented
as a sum of terms

𝛾𝑟1,...,𝑟𝑛,𝑡1,...,𝑡𝑠 ( 1𝑚 𝑚∑
𝑗=1

(𝑥(1)𝑗 )𝑟1 ⋅ ⋅ ⋅ (𝑥(𝑛)𝑗 )𝑟𝑛)
⋅ 𝐻𝑡1

𝑙1
(𝑥) ⋅ ⋅ ⋅ 𝐻𝑡𝑠

𝑙𝑠
(𝑥) .

(64)

Since ∑𝑚
𝑗=1(𝑥(1)𝑗 )𝑟1 ⋅ ⋅ ⋅ (𝑥(𝑛)𝑗 )𝑟𝑛 = 𝐻𝑟(𝑥), where 𝑟 = (𝑟1, . . . , 𝑟𝑛),

it follows that 𝑃 is an algebraic combination of polynomials𝐻𝑘, where 𝑘 ∈ Z𝑛
+ such that 1 ≤ |𝑘| ≤ 𝑁.

Theorem 9. Let 𝑃 : 𝑐00(C𝑛) → C be a symmetric 𝑁-
homogeneous polynomial. Let𝑀𝑁 = {𝑘 ∈ Z𝑛

+ : 1 ≤ |𝑘| ≤ 𝑁}.
There exists a polynomial 𝑞 : C|𝑀𝑁| → C such that𝑃 = 𝑞∘𝜋𝑀𝑁 ,
where the mapping 𝜋𝑀𝑁 is defined by (28).
Proof. By Corollary 7, there exists 𝑚 ∈ N such that for every𝑚 ≥ 𝑚 polynomials𝐻𝑘, where 𝑘 ∈ 𝑀, are algebraically inde-
pendent. Therefore, the representation, given by Theorem 8
for the restriction of 𝑃 to 𝑐(𝑚)00 (C𝑛), is unique. Thus, for every𝑚 ≥ 𝑚 there exists a unique polynomial 𝑞𝑚 : C|𝑀𝑁| → C

such that 𝑃(𝑥) = (𝑞𝑚 ∘𝜋𝑀𝑁)(𝑥) for every 𝑥 ∈ 𝑐(𝑚)00 (C𝑛). Since𝑐(𝑚)00 (C𝑛) ⊃ 𝑐(𝑚)
00 (C𝑛), it follows that 𝑞𝑚 is the restriction of 𝑞𝑚

to𝜋𝑀𝑁(𝑐(𝑚)
00 (C𝑛)).ByTheorem6,𝜋𝑀𝑁(𝑐(𝑚)

00 (C𝑛)) = C|𝑀𝑁|, and
therefore, 𝑞𝑚 ≡ 𝑞𝑚. Let 𝑞 = 𝑞𝑚.Then 𝑃(𝑥) = (𝑞 ∘𝜋𝑀𝑁)(𝑥) for
every 𝑥 ∈ 𝑐00(C𝑛).
Theorem 10. Polynomials 𝐻𝑘, where 𝑘 ∈ Z𝑛

+, form an
algebraic basis of the algebraP𝑠(ℓ1(C𝑛)).
Proof. Let us prove that every symmetric continuous polyno-
mial on ℓ1(C𝑛) can be uniquely represented as an algebraic
combination of polynomials 𝐻𝑘. It suffices to prove the
statement only for homogeneous polynomials. Let 𝑃 :ℓ1(C𝑛) → C be a symmetric continuous 𝑁-homogeneous
polynomial. By Theorem 9, the restriction of 𝑃 to 𝑐00(C𝑛)
can be uniquely represented as an algebraic combination of
polynomials 𝐻𝑘, where 𝑘 ∈ Z𝑛

+ such that 1 ≤ |𝑘| ≤ 𝑁.
Since 𝑐00(C𝑛) is dense in ℓ1(C𝑛) and polynomials 𝐻𝑘 are
well-defined and continuous on ℓ1(C𝑛), it follows that given
representation can be extended to ℓ1(C𝑛).
3.3. Algebraic Basis of the Algebra P𝑠(ℓ𝑝(C𝑛)). Let 𝑝 ∈(1, +∞). In this section, we describe an algebraic basis of the
algebraP𝑠(ℓ𝑝(C𝑛)).

Let us prove a complex analog of [8, Lemma 2].

Lemma 11. Let 𝐾 ⊂ C𝑚 and 𝜘 : 𝐾 → C𝑚−1 be an
orthogonal projection: 𝜘((𝑥1, 𝑥2, . . . , 𝑥𝑚)) = (𝑥2, . . . , 𝑥𝑚). Let𝐾1 = 𝜘(𝐾), int𝐾1 ̸= 0 and for every open set 𝑈 ⊂ 𝐾1 a set𝜘−1(𝑈) is unbounded. If polynomial 𝑄(𝑥1, . . . , 𝑥𝑚) is bounded
on 𝐾, then 𝑄 does not depend on 𝑥1.
Proof. Suppose that 𝑄 depends on 𝑥1.Then

𝑄 (𝑥1, . . . , 𝑥𝑚) = 𝑘∑
𝑗=0

𝑞𝑗 (𝑥2, . . . , 𝑥𝑚) 𝑥𝑗1, (65)

where 1 ≤ 𝑘 ≤ deg𝑄 and 𝑞𝑘�≡0.Note that 𝑞𝑘�≡0 on int𝐾1, and
therefore, there exists point 𝑎 ∈ int𝐾1 such that 𝑞𝑘(𝑎) ̸= 0.
Since int𝐾1 is open and 𝑞𝑘 is continuous, there exists 𝑟 > 0
such that 𝐵(𝑎, 𝑟) ⊂ int𝐾1 and inf𝑏∈𝐵(𝑎,𝑟)|𝑞𝑘(𝑏)| > 0, where𝐵(𝑎, 𝑟) is an open ball with center 𝑎 and radius 𝑟 in the space
C𝑚−1. Note that, for (𝑥1, . . . , 𝑥𝑚) ∈ 𝜘−1(𝐵(𝑎, 𝑟)),𝑄 (𝑥1, . . . , 𝑥𝑚) ≥ 𝑞𝑘 (𝑥2, . . . , 𝑥𝑚) 𝑥1𝑘

− 𝑘−1∑
𝑗=0

𝑞𝑗 (𝑥2, . . . , 𝑥𝑚) 𝑥1𝑗
≥ 𝑐 𝑥1𝑘 − 𝑘−1∑

𝑗=0

𝑑𝑗 𝑥1𝑗 ,
(66)

where 𝑐 = inf𝑏∈𝐵(𝑎,𝑟)|𝑞𝑘(𝑏)| and 𝑑𝑗 = sup𝑏∈𝐵(𝑎,𝑟)|𝑞𝑗(𝑏)| for𝑗 ∈ {0, . . . , 𝑘−1}.Note that for the polynomial 𝑐𝑥𝑘1+∑𝑘−1
𝑗=0 𝑑𝑗𝑥𝑗1

there exists 𝑅 > 0 such that if |𝑥1| > 𝑅, then 𝑐|𝑥1|𝑘 >2∑𝑘−1
𝑗=0 𝑑𝑗|𝑥1|𝑗, that is, ∑𝑘−1

𝑗=0 𝑑𝑗|𝑥1|𝑗 < (1/2)𝑐|𝑥1|𝑘. Therefore,
if |𝑥1| > 𝑅, then

𝑐 𝑥1𝑘 − 𝑘−1∑
𝑗=0

𝑑𝑗 𝑥1𝑗 > 𝑐 𝑥1𝑘 − 12𝑐 𝑥1𝑘 = 12𝑐 𝑥1𝑘 . (67)

Since 𝜘−1(𝐵(𝑎, 𝑟)) is unbounded, there exists a sequence((𝑥(𝑛)1 , . . . , 𝑥(𝑛)𝑚 ))𝑛∈N ⊂ 𝜘−1(𝐵(𝑎, 𝑟)) such that 𝑥(𝑛)1 → ∞ as𝑛 → +∞. Taking into account (66) and (67), we have𝑄 (𝑥(𝑛)1 , . . . , 𝑥(𝑛)𝑚 ) > 12𝑐 𝑥(𝑛)1

𝑘 → +∞ (68)

as 𝑛 → +∞, which contradicts the boundedness of 𝑄 on 𝐾.
For 𝑘 = (𝑘1, . . . , 𝑘𝑛) ∈ Z𝑛

+, let V(𝑘) = {𝑠 ∈ {1, . . . , 𝑛} :𝑘𝑠 ̸= 0} and ](𝑘) = |V(𝑘)|.
Lemma 12. For 𝑘, 𝑙 ∈ Z𝑛

+ if 𝑙 ≻ 𝑘 and ](𝑙) ≥ ](𝑘), then |𝑙| > |𝑘|.
Proof. Since 𝑙 ≻ 𝑘, there exists𝑚 ∈ Z𝑛

+ such that (𝑙1, . . . , 𝑙𝑛) =(𝑚1𝑘1, . . . , 𝑚𝑛𝑘𝑛), and 𝑙 ̸= 𝑘. Therefore, if 𝑘𝑠 = 0 for some𝑠 ∈ {1, . . . , 𝑛}, then 𝑙𝑠 = 0 too. It means that V(𝑙) ⊂ V(𝑘).
On the other hand, ](𝑙) ≥ ](𝑘).Therefore,V(𝑙) = V(𝑘); that
is, for 𝑠 ∈ {1, . . . , 𝑛}, we have that 𝑙𝑠 ̸= 0 if and only if 𝑘𝑠 ̸= 0.
Therefore, for every 𝑠 ∈ V(𝑙)we have that𝑚𝑠 ≥ 1. Since 𝑙 ̸= 𝑘,
there exists 𝑠0 ∈ V(𝑙) such that𝑚𝑠0

≥ 2.Therefore,|𝑙| = 𝑚1𝑘1 + ⋅ ⋅ ⋅ + 𝑚𝑛𝑘𝑛 > 𝑘1 + ⋅ ⋅ ⋅ + 𝑘𝑛 = |𝑘| . (69)



Journal of Function Spaces 7

For𝑁 ∈ N and 𝐽 ∈ {1, . . . , 𝑛} let
𝑀(𝐽)

𝑁 = {𝑙 ∈ Z
𝑛
+ : 1 ≤ |𝑙| < ⌈𝑝⌉ , ] (𝑙) ≥ 𝐽}

∪ {𝑙 ∈ Z
𝑛
+ : ⌈𝑝⌉ ≤ |𝑙| ≤ 𝑁} . (70)

By Theorem 6, for 𝑀 = 𝑀(1)
𝑁 there exists 𝜌 = 𝜌𝑀 > 0 such

that𝜋𝑀(𝑉𝜌) contains the open unit ball of the spaceC|𝑀| with
norm ‖ ⋅ ‖∞, where

𝑉𝜌 = {𝑥 ∈ 𝑐00 (C𝑛) : ‖𝑥‖𝑝 < 𝜌} . (71)

Proposition 13. For 𝐽 ∈ {1, . . . , 𝑁}, let 𝑞((𝜉𝑙)𝑙∈𝑀(𝐽)𝑁 ) be a

polynomial onC|𝑀(𝐽)𝑁 |. If 𝑞 is bounded on 𝜋𝑀(𝐽)𝑁 (𝑉𝜌), then 𝑞 does
not depend on 𝜉𝑘 such that ](𝑘) = 𝐽 and 1 ≤ |𝑘| < ⌈𝑝⌉.
Proof. Let 𝑘 ∈ Z𝑛

+ such that ](𝑘) = 𝐽 and 1 ≤ |𝑘| < ⌈𝑝⌉. Let𝐾 = 𝜋𝑀(𝐽)𝑁 (𝑉𝜌), 𝐾1 = 𝜋𝑀(𝐽)𝑁 \{𝑘}(𝑉𝜌) and 𝜘 : 𝐾 → 𝐾1 be an
orthogonal projection, defined by

𝜘 : (𝜉𝑙)𝑙∈𝑀(𝐽)𝑁 → (𝜉𝑙)𝑙∈𝑀(𝐽)𝑁 \{𝑘} . (72)

Let us show that, for every ball

𝐵 (𝑢, 𝑟) = {𝜉 ∈ C
|𝑀(𝐽)𝑁 \{𝑘}| : 𝜉 − 𝑢∞ < 𝑟} (73)

with center𝑢 = (𝑢𝑙)𝑙∈𝑀(𝐽)𝑁 \{𝑘} ∈ C|𝑀(𝐽)𝑁 \{𝑘}| and radius 𝑟 > 0 such
that 𝐵(𝑢, 𝑟) ⊂ 𝜋𝑀(𝐽)𝑁 \{𝑘}(𝑉𝜌), a set 𝜘−1(𝐵(𝑢, 𝑟)) is unbounded.
Since 𝑢 ∈ 𝜋𝑀(𝐽)𝑁 \{𝑘}(𝑉𝜌), there exists 𝑥𝑢 ∈ 𝑉𝜌 such that𝜋𝑀(𝐽)𝑁 \{𝑘}(𝑥𝑢) = 𝑢. For 𝑚 ∈ N, we set 𝑥𝑚 = ⨁𝑚

𝑗=1(1/𝑗1/|𝑘|)𝑎𝑘,
where 𝑎𝑘 is defined by (14). Choose 𝜀 such that

0 < 𝜀 < min
{{{1,

𝜌 − 𝑥𝑢𝑝𝑎𝑘𝑝 𝜁 (𝑝/ |𝑘|)1/𝑝 ,
𝑟𝑎𝑘𝑁1 𝜁 (1 + 1/ |𝑘|)}}} ,

(74)

where 𝜁(⋅) is a Riemann zeta-function. Let 𝑥𝑚,𝜀 = (𝜀𝑥𝑚) ⊕ 𝑥𝑢.
Let us show that 𝑥𝑚,𝜀 ∈ 𝑉𝜌. By (11),

𝑥𝑚𝑝𝑝 = 𝑚∑
𝑗=1

 1𝑗1/|𝑘| 𝑎𝑘
𝑝

𝑝

= 𝑚∑
𝑗=1

1𝑗𝑝/|𝑘| 𝑎𝑘𝑝𝑝
= 𝑎𝑘𝑝𝑝 𝑚∑

𝑗=1

1𝑗𝑝/|𝑘| < 𝑎𝑘𝑝𝑝 𝜁 ( 𝑝|𝑘|) .
(75)

Therefore, ‖𝑥𝑚‖𝑝 < ‖𝑎𝑘‖𝑝𝜁(𝑝/|𝑘|)1/𝑝. By the triangle inequal-
ity, 𝑥𝑚,𝜀

𝑝 ≤ 𝜀 𝑥𝑚𝑝 + 𝑥𝑢𝑝
< 𝜀 𝑎𝑘𝑝 𝜁 ( 𝑝|𝑘|)1/𝑝 + 𝑥𝑢𝑝 . (76)

Since 𝜀 < (𝜌 − ‖𝑥𝑢‖𝑝)/‖𝑎𝑘‖𝑝𝜁(𝑝/|𝑘|)1/𝑝, it follows that‖𝑥𝑚,𝜀‖𝑝 < 𝜌.Hence, 𝑥𝑚,𝜀 ∈ 𝑉𝜌.
Note that for arbitrary 𝑙 ∈ Z𝑛

+ such that |𝑙| ≥ 1, by (12),
𝐻𝑙 (𝑥𝑚) = 𝑚∑

𝑗=1

1𝑗|𝑙|/|𝑘|𝐻𝑙 (𝑎𝑘) = 𝐻𝑙 (𝑎𝑘) 𝑚∑
𝑗=1

1𝑗|𝑙|/|𝑘| , (77)

𝐻𝑙 (𝑥𝑚,𝜀) = 𝜀|𝑙|𝐻𝑙 (𝑥𝑚) + 𝐻𝑙 (𝑥𝑢)
= 𝜀|𝑙|𝐻𝑙 (𝑎𝑘) 𝑚∑

𝑗=1

1𝑗|𝑙|/|𝑘| + 𝐻𝑙 (𝑥𝑢) . (78)

Let us show that 𝜋𝑀(𝐽)𝑁 \{𝑘}(𝑥𝑚,𝜀) ∈ 𝐵(𝑢, 𝑟). For 𝑙 ∈ 𝑀(𝐽)
𝑁 \ {𝑘}

such that 𝑙�≻𝑘, by Proposition 3,𝐻𝑙(𝑎𝑘) = 0, and therefore, by
(78),

𝐻𝑙 (𝑥𝑚,𝜀) = 𝐻𝑙 (𝑥𝑢) = 𝑢𝑙. (79)

Let 𝑙 ∈ 𝑀(𝐽)
𝑁 \ {𝑘} be such that 𝑙 ≻ 𝑘. If ⌈𝑝⌉ ≤ |𝑙| ≤ 𝑁, then|𝑙| > |𝑘|, since |𝑘| < ⌈𝑝⌉. If 1 ≤ |𝑙| < ⌈𝑝⌉ and ](𝑙) ≥ 𝐽, then|𝑙| > |𝑘| by Lemma 12. Hence, |𝑙| > |𝑘| in both cases. By (78),

𝐻𝑙 (𝑥𝑚,𝜀) − 𝑢𝑙 ≤ 𝜀|𝑙| 𝐻𝑙 (𝑎𝑘) 𝑚∑
𝑗=1

1𝑗|𝑙|/|𝑘| . (80)

Since 𝜀 < 1, it follows that 𝜀|𝑙| ≤ 𝜀. Since ‖𝐻𝑙‖ ≤ 1, it follows
that |𝐻𝑙(𝑎𝑘)| ≤ ‖𝑎𝑘‖|𝑙|1 . Taking into account ‖𝑎𝑘‖𝑝 ≥ 1 and|𝑙| ≤ 𝑁, we have that |𝐻𝑙(𝑎𝑘)| ≤ ‖𝑎𝑘‖𝑁1 . Since |𝑙| and |𝑘| are
integer numbers and |𝑙| > |𝑘|, it follows that |𝑙| ≥ |𝑘| + 1, and
therefore,

𝑚∑
𝑗=1

1𝑗|𝑙|/|𝑘| ≤ 𝑚∑
𝑗=1

1𝑗1+1/|𝑘| < 𝜁(1 + 1|𝑘|) . (81)

Hence,

𝐻𝑙 (𝑥𝑚,𝜀) − 𝑢𝑙 < 𝜀 𝑎𝑘𝑁1 𝜁 (1 + 1|𝑘|) . (82)

Since 𝜀 < 𝑟/‖𝑎𝑘‖𝑁1 𝜁(1+1/|𝑘|), it follows that |𝐻𝑙(𝑥𝑚,𝜀)−𝑢𝑙| < 𝑟,
and therefore, 𝜋𝑀(𝐽)𝑁 \{𝑘}(𝑥𝑚,𝜀) ∈ 𝐵(𝑢, 𝑟).

By Proposition 3,𝐻𝑘(𝑎𝑘) = 1, and therefore, by (78),

𝐻𝑘 (𝑥𝑚,𝜀) = 𝜀|𝑙| 𝑚∑
𝑗=1

1𝑗 + 𝐻𝑘 (𝑥𝑢) → ∞ (83)

as 𝑚 → +∞. Hence, 𝜘−1(𝐵(𝑢, 𝑟)) is unbounded. By
Lemma 11, 𝑞 does not depend on 𝜉𝑘.
Theorem 14. Let 𝑃 ∈ P𝑠(ℓ𝑝(C𝑛)) be an 𝑁-homogeneous
polynomial. If 𝑁 < ⌈𝑝⌉, then 𝑃 ≡ 0. Otherwise, there exists
a unique polynomial 𝑞 : C|𝑀𝑝,𝑁| → C such that 𝑃 = 𝑞 ∘ 𝜋(𝑝)

𝑀𝑝,𝑁
,

where 𝑀𝑝,𝑁 = {𝑘 ∈ Z𝑛
+ : ⌈𝑝⌉ ≤ |𝑘| ≤ 𝑁} and 𝜋(𝑝)𝑀𝑝,𝑁

:ℓ𝑝(C𝑛) → C|𝑀𝑝,𝑁| is defined by 𝜋(𝑝)
𝑀𝑝,𝑁

(𝑥) = (𝐻𝑘(𝑥))𝑘∈𝑀𝑝,𝑁 .
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Proof. Let 𝑃0 be the restriction of 𝑃 to 𝑐00(C𝑛). Note that 𝑃0
is a continuous symmetric 𝑁-homogeneous polynomial. By
Theorem 9, there exists a unique polynomial 𝑞 : C|𝑀𝑁| →
C, where 𝑀𝑁 = 𝑀(1)

𝑁 such that 𝑃0 = 𝑞 ∘ 𝜋𝑀𝑁 . Since 𝑃0 is
continuous, 𝑃0 is bounded on 𝑉𝜌, defined by (71). Therefore,𝑞 is bounded on 𝜋𝑀𝑁(𝑉𝜌).

Let us prove that 𝑞 does not depend on arguments 𝜉𝑘 such
that 1 ≤ |𝑘| < ⌈𝑝⌉ by induction on ](𝑘). By Proposition 13, for𝐽 = 1wehave that 𝑞((𝜉𝑘)𝑘∈𝑀𝑁)does not depend on arguments𝜉𝑘 such that ](𝑘) = 1 and 1 ≤ |𝑘| < ⌈𝑝⌉. Suppose that the
statement holds for ](𝑘) ∈ {1, . . . , 𝐽 − 1}, where 𝐽 ∈ {2, . . . , 𝑛},
that is, 𝑞((𝜉𝑘)𝑘∈𝑀𝑁) does not depend on arguments 𝜉𝑘 such
that 1 ≤ ](𝑘) ≤ 𝐽 − 1 and 1 ≤ |𝑘| < ⌈𝑝⌉.Then the restriction
of 𝑞 to C|𝑀(𝐽)𝑁 |, by Proposition 13, does not depend on 𝜉𝑘 such
that ](𝑘) = 𝐽 and 1 ≤ |𝑘| < ⌈𝑝⌉.Hence, 𝑞 does not depend on𝜉𝑘 such that 1 ≤ |𝑘| < ⌈𝑝⌉.

Since polynomials𝐻𝑘, where 𝑘 ∈ 𝑀𝑝,𝑁, are well-defined
and continuous on ℓ𝑝(C𝑛) and 𝑐00(C𝑛) is dense in ℓ𝑝(C𝑛), it
follows that 𝑃 = 𝑞 ∘ 𝜋(𝑝)

𝑀𝑝,𝑁
. Note that in the case𝑁 < ⌈𝑝⌉ we

have𝑀𝑝,𝑁 = 0 and, therefore, 𝑃 ≡ 0.
Corollary 15. Polynomials 𝐻𝑘, where 𝑘 ∈ {𝑙 ∈ Z𝑛

+ : |𝑙| ≥⌈𝑝⌉} ∪ {0}, form an algebraic basis of the algebraP𝑠(ℓ𝑝(C𝑛)).
4. Conclusions

Power sum symmetric polynomials on ℓ𝑝(C𝑛) are alge-
braically independent and form an algebraic basis of the
algebra of all continuous symmetric polynomials on ℓ𝑝(C𝑛).

Results of this work generalize results of works [7, 8, 14].
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