Tribonacci numbers via recurrent determinants of four-diagonal matrix

Taras Goy
Vasyl Stefanyk Precarpathian National University. Faculty of Mathematics and Computer Science Shevchenko St. , 57, 76018 Ivano-Frankivsk,
Ukraine
tarasgoy@yahoo.com

Among the several generalizations of Fibonacci numbers, some of the best known is the tribonacci sequence $\left\{t_{n}\right\}_{n \geq 0}$. The tribonacci numbers are defined by the recurrence $t_{n}=t_{n-1}+$ $t_{n-2}+t_{n-3}$, with initial values $t_{0}=1, t_{1}=1, t_{2}=1$; see entry A000703 in [3] for more information and details.

In this note, we present two formulas expressing tribonacci numbers t_{n} with even and odd subscripts via recurrent determinants of four-diagonal matrix of order n. Our approach is similar to spirit in [1,2].

Références

[1] T. Goy, Fibonacci and Lucas numbers via the determinants of tridiagonal matrix, Notes on Number Theory and Discrete Mathematics, 24(1) (2018), p. 103-108.
[2] T. Goy, Horadam sequence through recurrent determinants of tridiagonal matrix, Kragujevac Journal of Mathematics, 42(4) (2018), p. 527-532.
[3] N. J. A. Sloane (ed.), The On-Line Encyclopedia of Integer Sequences. Published electronically at http :/ /oeis. org.

