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1. Introduction

Let X and Y be linear spaces. A mapping P : X — Y is called an n-homogeneous polynomial if there exists a symmetric n-
linear mapping A : X" — Y suchthat P(x) = A(x, ..., x). The given symmetric n-linear mapping can be uniquely expressed
as a polynomial using the polarization formula, which is one of the fundamental results in the theory of polynomials and
multilinear mappings. The polarization formula has been known since 1931 [1] but later was rediscovered and published
in the works of Martin [2], Mazur, Orlicz [3] and others. The polarization formula has various representations, in particular
using the generalized Rademacher functions.

The generalized Rademacher functions were introduced by Aron and Globevnik in [4]. Later, in [5] it was shown that
these functions are quite useful in obtaining simple proofs of various estimates in different areas of functional analysis.
In this paper we shall use the generalized Rademacher functions to prove an analogue of the polarization formula for
nonhomogeneous polynomials on complex linear spaces and for analytic mappings on complex Banach spaces.

For every natural number n > 2 the generalized Rademacher functions Sj[”](t) are defined inductively as follows (see

[4,5]). Let arq, oo, . . ., @y be the complex nth roots of unity. Forj =1, ..., nletl; = (J_Tl jﬁ) and I;,j, denote the j,th open
subinterval of length niz of I (j1,jo = 1,..., n). Proceeding like this, we can define the interval jij; ... ji for any k. Now
si"(¢) : [0, 1] — Cis defined by setting S\ (t) = o; for t € I, where 1 < j < n.In general, S\" (t) = q; if t belongs to the

subinterval I; ;, ; where ji = j. For all endpoints t we can set S,E"](t) = 1. Also we set SE”(t) = 1.
The basic properties of the generalized Rademacher functions are as follows:

Proposition 1.1 ([5]). 1. Foreveryk = 1,2,...andt € [0, 1], we have |S,E”](t)| =1.
2. The integral

1 1, fir=---=i
/Si[:'](t)...Si[n"](t)dt:{0’ 1= =
0

otherwise.
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3.1f ji, ..., jx are distinct positive integers, then for ajm(t) = S}"J(t) or aj["J(t) = Sj["] (t),

1 .
nlym ]\ my _ )1, ifmy=-..=m=0(modn)
/0 (Gh ) 1(t)"'(ajk yHdt = {O otherwise.

A mapping P : X — Y is said to be a polynomial of degree n if it can be represented as a sum

n
PX) =Y Pi(x),
k=0
where Py is an k-homogeneous polynomial, 1 < k <n, Py € Y and P, # 0.
Let now X, Y be complex Banach spaces and §2 be an open subset of X. A mapping f : £2 — Y is said to be analytic if for
any xo € £2 there exists a neighborhood of xg, Vy, C §2 such that for every x € V,,

FO=Y fi®),
k=0

where fy is a k-homogeneous polynomial and the series converges uniformly on Vy,.
It is well known that polynomials f are kth Frechet derivatives,

d“(f

fk = )
n!

of f at xo by direction x. If 2 = X we say that f is an entire mapping.

Let f : £2 — Y be an analytic mapping, x € §2 and B be the unit ball of X. The radius of uniform convergence ox(f) of f
at x is defined as supremum of A, A € C such that x + AB C £2 and the Taylor series of f at x converges to f uniformly on
X + AB. The radius of boundedness of f at x is defined as supremum of A € C, such that f is bounded on x + AB.

Theorem 1.2 ([6]). The radius of uniform convergence of an entire mapping f at zero coincides with the radius of boundedness
of f at zero and

-1
oo(/) = (limsup ;") (1)

n—oo

We say that f : X — Y is an entire mapping of bounded type if f is bounded on all bounded subsets (i.e. has the radius of
boundedness equal to infinity.)

2. Polarization formula for polynomials

Let X and Y be Banach spaces. Let us denote by L, (”X , Y) the space of all symmetric n-linear mappings
A: Xx---xX—>Y.
—_—

n

Let P, ("X, Y) denote the space of all n-homogeneous polynomials P : X — Y.Forany P € P ("X, Y) there exists a unique

elementA € L, (”X , Y) such that P(x) = A(x, ..., x). To obtain A from P we can apply the polarization formula with the
generalized Rademacher functions (see [5]):
nl...n! ! n—ny n—n

AGG ) = Tt /0 (™) @ (si) P (Mo + -+ s om) e, )
wheren; + - - -+ ng = n, nyq, ..., N are non-negative integers and

AT o x) = AR, X K e K.

——— S——
n Nk
Putting nq, ..., n, = 1and k = n, then from (2) we obtain

Ay, ..., xp) = %/01 (5£n1>"7] t)... (5£n]>n71(t)P (s&”](t)xl 4+t Sr[lnl(t)x"> de.

Let us set

1 1! k—1 k—1
T (P) (1. 3 = / (SE"]) ... (S,Ek]) (t)P (s&"l(t)x1 o +s,£"](t)xk) de
o

and let us introduceasetN; C NbyN; = {p = pip2...pi : p1 < p2 < --- < p; are prime numbers}.
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Theorem 2.1. Let P = Py + - - - + P, be a polynomial of degree n and Ay be a symmetric k-linear mapping such that Py(x) =
Ar(x,...,x) forsome 1 < k < n. Then

A1, ) = TP, - x) + Y (=1 Y T (P (), ..., %), (3)
i=1 Nijsp=<r
wherer = [%].

Proof. Let us first show that A, (X1, ..., X;) = IT,(P)(x4, ..., X,). Since the polynomial P is a sum of k-homogeneous poly-
nomials P, 1 < k < n, we have

%1@W”@W@W7m@Wmﬁm+wm@m
- Jo

= 1 1 (Sgn])n—l ... (Szgn]>n_l([) ;Pk <s£”](t)x1 NI Sﬁ"](t)xn> dr

n! Jo
(S,[,"]>n_](t)dt + % /0 1 (s&’”)n_] ©... (s}l“])n_l(t) ;sg](tm] () dE+ - -

1 1 n—1
- mPO/O <s£”]) ®)...
n

1 1 n—1 n—1
[n]
+Eo<sl) (t)...(S,E"J) © 15,[1:‘]](t)...515;’13(t)Ak(xm],...,xmk)dt—i—---
my,..., myg=

n

1 1 n—1 n—1
A (55”]) (t)...(S,E"]) © Y S . SEOA (X Xy .

By the properties of the generalized Rademacher functions (Proposition 1.1) all of the terms for 0 < k < n — 1 are equal
to zero. So we have only a term which corresponds to the polynomial P,, and

1 1/ ! N n . .
/0(5{]) (t)...(s,g]) © 3 SE@) . SEOA (g X,

n! mq,...,mp=1
11 ! m\" ! n] [n]
=l (s1 ) (t)...(Sn ) (t)P, (s1 (%1 + - - + 5! (t)xn> dt = Ay(xq, ... X).
Let us now find A, (x1,...,x),1 <k <n.If0 < m < k — 1, then by the properties of the generalized Rademacher
functions

IT (Pm) (X1, ..., Xg) = 1 1<5£k1>"1 (t)m<5’£kl)" !

O (ST Ox+ -+ 5P Ox) de

k! Jo
1 1! k—1 k—1
=~ (s”‘]> (t)...(S,E"]) (t)
k! Jo
k
x> S . SH (OAR (Xmy - Xmy) dE =0,
mq,..., mm=

1 1
M®mw”m=_f
0

k! ( )
1 1 k—1 k—1
= / (55"]) ... (Slﬁk]) (t)Py (Sﬁk](t)m ot s,E"](t)xk) dr
- JO

1)< K Kl i

+ k_l / <51 ) ... (Sk ) (t)Pyy (51 O)x1 + ...+ S, (t)Xk> dt +---
- JO
1 1 k—1 k—1

+ k_l / <S£k]) (t) T (SIEk]> (t)Prk (Sgk](t))ﬁ +---+ S,EId(t)Xk) dl’,
- JO

where r = [7]. So we obtain that

M (P) (X1, %) = Ac (X1, - X0) + A (8, 0) 4+ A (X5 X)) (4)
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that is,

A (X1, X) = e (P) (1, X) = Agie (B x8) — o — An (X7, .. ) . (5)
Using the same arguments,

Agk (X7, . x0) = T (P) (X3, ..., xg) — Aac (X7, .. x) — - — Aok (3™ ..o 2™)

where m = [5;];

A3k (X?, ...,XZ) = H3k(P) (X?, ..-,Xi) _AGk (X?v ---’Xg) - _A3pk (X?p’ ""xip> ’
where p = [%] and so on. Substituting all Ay, 2 < t < r in(5) and grouping corresponding terms we have

Ac(a, ... x) = P, . .ox) — > T (P) (¥, ... x})

peNy

+ Y My (P (K)o Y (D) T (P) (K K)

peNy PENy

.
= I(P)x1. . x) + > Y (=D (P) (%),
i=1 Njsp<r
whereN; = {p = p1p2...pi : p1 < p» < --- < p; are prime numbers} and r = [%].
Note that [T, (P) = 0if p = 0 (mod p}”), m > 1, where p; is an arbitrary prime number. O

Remark 2.2. Eq. (4) may be understood as a system of n linear nonhomogeneous equations with n variables Ay = Ay (x1,
.3 Xk), 1 <k < n,xq,...,xare fixed. The corresponding homogeneous system can be represented by a matrix C with
elements (c;):

~_J1, j=0(modi);
G = 0, otherwise.

By the Kronecker-Capelli Theorem there exists a unique solution of the system. Variables Ay, 1 < k < n of system (4)
are determined by

. det C;, (6)
“7 detC’
where Cj is a matrix obtained from the matrix C by replacing the kth column by the column (/7;(P)(X1), ..., IT,(P)
(x1, ..., %p))7. Since C is a triangular matrix with units on the diagonal, we can write
A = det Cy.

Note that Ay = I (P) ifk > 3.

Corollary 2.3. Let P = Py + - - - + P, be an arbitrary polynomial of degree n on X, where Py = const and Py are k-homogeneous
polynomials for k = 1, ..., n. Let A, be a symmetric n-linear form, which generates P,,. Then

An (X1, .. Xg) = %/01 (Sgrﬂ)"’l ... (s,gnl)”_l(t)p (sgrﬂ(t)m + "~+5,5”](t)xn) dt.

Corollary 2.4. Forany P € P, ("X, Y)

o0
MPY(x, - %) = Y AmiXY ., X0,
m=1

3. The case of analytic mappings

Definition 3.1. We say that a mapping B : X*¥ — Y is (k, m)-linear if B(x1, ..., X;) is an m-homogeneous polynomial
with respect to every single variable x; for another x4, ..., Xj_1, Xj+1, . . ., X fixed. The mapping B is called symmetric if
B(x1, ..., xx) = B(Xs(1), - - -, X (1) for any permutation o on the set {1, ..., k}.
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It is easy to see that for a symmetric (k, m)-linear mapping B there eXxists an unique symmetric km-linear mapping A such
that

B(X1, ..., %) = AT, ..., X5).

Let now X, Y be Banach spaces and L (”X, Y) ,P (”X, Y) be spaces of continuous n-linear mappings from X" into Y and
continuous n-homogeneous polynomials from X into Y respectively. Let us denote by L(’,;X ,Y) the space of continuous

(k, m)-linear mappings. Note that the spaces L("X, Y), L(’r‘nX ,Y) and P("X, Y) are Banach spaces with sup-norm over unit
balls of corresponding spaces.

Proposition 3.2. The mapping I, is a continuous linear operator from £ ("X, Y) into OC(f;X ,Y).
Proof. The operator I7; is linear by the definition. Let us show the continuity of IT,. Let P € £ ("X, Y) for some n. If k does
not divide n, then 77, (P) = 0. Suppose that n = km for some m. Since by (4)

MPY(x1, ... X) = Y A, ... %))
s=1

m||P|| < [[ITk(P) || < m|lAll,
where A(x, ..., x) = P(x). On the other hand, by the polarization inequality [7, p. 10],

n

n
AN < = IIPII.
n!
So IT; is a bounded linear operator on the Banach space # ("X, Y). Hence it is continuous. O

Lemma 3.3. Let f = Zﬁio fn be an entire mapping of bounded type from X to Y. Then for every k there is a well defined mapping
ITi(f) : X¥ — Y, such that

m
M () (s o) = lim Y I () (s - %)
m—o0

n=0
o0
= an (fl‘l) (X17 e axk)
n=0
and the series on the right converges for any x4, ..., X, € X.

Proof. Since f is an entire mapping of bounded type on X, by (1)
lim sup |f, | /" = 0.

n—oo
For any fixed xq, . .., X, € X such that max(||x4]], ..., |X]|) 7 O consider a formal series
o0 oo
Y M) (2, tz) = Y T () @1, 20 (7)
n=0 n=0
— Xk
where z;, = mae el andt € C.

By the Cauchy-Hadamard formula the radius of convergence of the series at zero is

-1
0o = (limsup 17T, () @1, ... 20 17"

n—oo

Using the Stirling formula and inequality || IT;, (fy) || < ':l—r,' Ilfall we have

n

n 1/n
17T ) @20 1M = (Sl max(lizall, - )

IA

1/n 1n
emax(lizil, .., Nzl ) IV

IA

So

l =i 1/n _
= limsup || 1Ty (fp) (z1, ..., 2z) |77 = 0.

Qo n—o00

Hence the series (7) converges for every t and so in particular it is convergent for t = max(||x1|[, ..., ||X||) aswell. O
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Theorem 3.4. Let Ay be a k-linear symmetric mapping corresponding to k-homogeneous component fi of entire mapping of
bounded type f. Then

Ac s ) = TP ox) + ) (DY M (F) (... %) (8)
i=1

peN;
whereN; = {p = pip2...Di : P1 < P2 < -+ < p; are prime numbers}.

Proof. For the simplicity we rewrite formula (8) by

o0
A (X1, ... X)) = IT(F) (X1, ..., xp) + Zcinik (RIS AN
i—2

wherec; = 0; 1; —1.
By Theorem 2.1 for an arbitrary n

n r n
A, ox) =T [ D f ) @anex) + ) allu | Y F ) (K. x)
i—2 =0

j=0
wherer = [%]. Using Proposition 3.2 we obtain that
n r n . )
Ac(xr, ) = DT (o x) + YD GlTi(f) (%, -, X)) -
j=0 i=2 j=0
Proceeding to the limit as n — oo and observing that
r n oo n
Z Z cilTy(f;) = Z Z cilTy (),
i=2 j=0 i=2 j=0

we obtain

n o0 n
A (X1, .o X)) = nli)n;loZHk(ﬁ) (X1, .0 Xe) + ani)ngchin,-k(ﬁ) (x5, ... %) -
=0 i=2 j=0

By Lemma 3.3,
o0 oo oo ) )
Ak(X1, ...,Xk) = I Zf} (X1, ...,Xk) +ZC1‘HH< Zf} (Xll, ...,X;<)

j=0 i=2 j=0

0 . .
= Hk(f)(xh.--,xk)+ZCi17i/<(f) (X,....x). O
i=2
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