Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Generalization of the polarization formula for nonhomogeneous polynomials and analytic mappings on Banach spaces

I. Chernega ${ }^{\mathrm{a}, *}$, A. Zagorodnyuk ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, 3 b, Naukova Street, Lviv 79060, Ukraine
${ }^{\mathrm{b}}$ Vasyl Stefanyk Precarpathian National University, 57 Shevchenka Street, Ivano-Frankivsk 76000, Ukraine

ARTICLE INFO

MSC:

46G20
46G25

Keywords:

Multilinear mappings
Polynomials
Analytic mappings on Banach spaces
Generalized Rademacher functions

Abstract

We propose an analogue of the classical polarization formula for any nonhomogeneous polynomial and analytic mapping on complex Banach spaces.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Let X and Y be linear spaces. A mapping $P: X \rightarrow Y$ is called an n-homogeneous polynomial if there exists a symmetric n linear mapping $A: X^{n} \rightarrow Y$ such that $P(x)=A(x, \ldots, x)$. The given symmetric n-linear mapping can be uniquely expressed as a polynomial using the polarization formula, which is one of the fundamental results in the theory of polynomials and multilinear mappings. The polarization formula has been known since 1931 [1] but later was rediscovered and published in the works of Martin [2], Mazur, Orlicz [3] and others. The polarization formula has various representations, in particular using the generalized Rademacher functions.

The generalized Rademacher functions were introduced by Aron and Globevnik in [4]. Later, in [5] it was shown that these functions are quite useful in obtaining simple proofs of various estimates in different areas of functional analysis. In this paper we shall use the generalized Rademacher functions to prove an analogue of the polarization formula for nonhomogeneous polynomials on complex linear spaces and for analytic mappings on complex Banach spaces.

For every natural number $n \geq 2$ the generalized Rademacher functions $S_{j}^{[n]}(t)$ are defined inductively as follows (see $[4,5])$. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be the complex nth roots of unity. For $j=1, \ldots, n$ let $I_{j}=\left(\frac{j-1}{n}, \frac{j}{n}\right)$ and $I_{j_{1} j_{2}}$ denote the j_{2} th open subinterval of length $\frac{1}{n^{2}}$ of $I_{j_{1}}\left(j_{1}, j_{2}=1, \ldots, n\right)$. Proceeding like this, we can define the interval $j_{1} j_{2} \ldots j_{k}$ for any k. Now $S_{1}^{[n]}(t):[0,1] \rightarrow \mathbb{C}$ is defined by setting $S_{1}^{[n]}(t)=\alpha_{j}$ for $t \in I_{j}$, where $1 \leq j \leq n$. In general, $S_{k}^{[n]}(t)=\alpha_{j}$ if t belongs to the subinterval $I_{j_{1} j_{2} \ldots j_{k}}$ where $j_{k}=j$. For all endpoints t we can set $S_{k}^{[n]}(t)=1$. Also we set $S_{1}^{[1]}(t) \equiv 1$.

The basic properties of the generalized Rademacher functions are as follows:
Proposition 1.1 ([5]). 1. For every $k=1,2, \ldots$ and $t \in[0,1]$, we have $\left|S_{k}^{[n]}(t)\right|=1$.
2. The integral

$$
\int_{0}^{1} S_{i_{1}}^{[n]}(t) \ldots S_{i_{n}}^{[n]}(t) \mathrm{d} t= \begin{cases}1, & \text { if } i_{1}=\cdots=i_{n} \\ 0 & \text { otherwise. }\end{cases}
$$

[^0]3. If j_{1}, \ldots, j_{k} are distinct positive integers, then for $\sigma_{j}^{[n]}(t)=S_{j}^{[n]}(t)$ or $\sigma_{j}^{[n]}(t)=\overline{S_{j}^{[n]}(t)}$,
\[

\int_{0}^{1}\left(\sigma_{j_{1}}^{[n]}\right)^{m_{1}}(t) ···\left(\sigma_{j_{k}}^{[n]}\right)^{m_{k}}(t) \mathrm{d} t= $$
\begin{cases}1, & \text { if } m_{1} \equiv \cdots \equiv m_{k} \equiv 0(\bmod n) \\ 0 & \text { otherwise }\end{cases}
$$
\]

A mapping $P: X \rightarrow Y$ is said to be a polynomial of degree n if it can be represented as a sum

$$
P(x)=\sum_{k=0}^{n} P_{k}(x),
$$

where P_{k} is an k-homogeneous polynomial, $1 \leq k \leq n, P_{0} \in Y$ and $P_{n} \not \equiv 0$.
Let now X, Y be complex Banach spaces and Ω be an open subset of X. A mapping $f: \Omega \rightarrow Y$ is said to be analytic if for any $x_{0} \in \Omega$ there exists a neighborhood of $x_{0}, V_{x_{0}} \subset \Omega$ such that for every $x \in V_{x_{0}}$

$$
f(x)=\sum_{k=0}^{\infty} f_{k}(x)
$$

where f_{k} is a k-homogeneous polynomial and the series converges uniformly on $V_{x_{0}}$.
It is well known that polynomials f_{k} are k th Frechet derivatives,

$$
f_{k}=\frac{d^{k}(x) f}{n!}
$$

of f at x_{0} by direction x. If $\Omega=X$ we say that f is an entire mapping.
Let $f: \Omega \rightarrow Y$ be an analytic mapping, $x \in \Omega$ and B be the unit ball of X. The radius of uniform convergence $\varrho_{x}(f)$ of f at x is defined as supremum of $\lambda, \lambda \in \mathbb{C}$ such that $x+\lambda B \subset \Omega$ and the Taylor series of f at x converges to f uniformly on $x+\lambda B$. The radius of boundedness of f at x is defined as supremum of $\lambda \in \mathbb{C}$, such that f is bounded on $x+\lambda B$.

Theorem 1.2 ([6]). The radius of uniform convergence of an entire mapping f at zero coincides with the radius of boundedness of f at zero and

$$
\begin{equation*}
\varrho_{0}(f):=\left(\limsup _{n \rightarrow \infty}\left\|f_{n}\right\|^{1 / n}\right)^{-1} \tag{1}
\end{equation*}
$$

We say that $f: X \rightarrow Y$ is an entire mapping of bounded type if f is bounded on all bounded subsets (i.e. has the radius of boundedness equal to infinity.)

2. Polarization formula for polynomials

Let X and Y be Banach spaces. Let us denote by $L_{a}\left({ }^{n} X, Y\right)$ the space of all symmetric n-linear mappings

$$
A: \underbrace{X \times \cdots \times X}_{n} \rightarrow Y
$$

Let $P_{a}\left({ }^{n} X, Y\right)$ denote the space of all n-homogeneous polynomials $P: X \rightarrow Y$. For any $P \in P_{a}\left({ }^{n} X, Y\right)$ there exists a unique element $A \in L_{a}\left({ }^{n} X, Y\right)$ such that $P(x)=A(x, \ldots, x)$. To obtain A from P we can apply the polarization formula with the generalized Rademacher functions (see [5]):

$$
\begin{equation*}
A\left(x_{1}^{n_{1}}, \ldots, x_{k}^{n_{k}}\right)=\frac{n_{1}!\ldots n_{k}!}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-n_{1}}(t) \ldots\left(S_{n}^{[n]}\right)^{n-n_{k}}(t) P\left(S_{1}^{[n]}(t) x_{1}+\cdots+S_{k}^{[n]}(t) x_{k}\right) \mathrm{d} t \tag{2}
\end{equation*}
$$

where $n_{1}+\cdots+n_{k}=n, n_{1}, \ldots, n_{k}$ are non-negative integers and

$$
A\left(x_{1}^{n_{1}}, \ldots, x_{k}^{n_{k}}\right):=A(\underbrace{x_{1}, \ldots, x_{1}}_{n_{1}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{n_{k}}) .
$$

Putting $n_{1}, \ldots, n_{k}=1$ and $k=n$, then from (2) we obtain

$$
A\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) P\left(S_{1}^{[n]}(t) x_{1}+\cdots+S_{n}^{[n]}(t) x_{n}\right) \mathrm{d} t
$$

Let us set

$$
\Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{k!} \int_{0}^{1}\left(S_{1}^{[k]}\right)^{k-1}(t) \ldots\left(S_{k}^{[k]}\right)^{k-1}(t) P\left(S_{1}^{[k]}(t) x_{1}+\cdots+S_{k}^{[k]}(t) x_{k}\right) \mathrm{d} t
$$

and let us introduce a set $\mathbb{N}_{i} \subset \mathbb{N}$ by $\mathbb{N}_{i}=\left\{p=p_{1} p_{2} \ldots p_{i}: p_{1}<p_{2}<\cdots<p_{i}\right.$ are prime numbers $\}$.

Theorem 2.1. Let $P=P_{0}+\cdots+P_{n}$ be a polynomial of degree n and A_{k} be a symmetric k-linear mapping such that $P_{k}(x)=$ $A_{k}(x, \ldots, x)$ for some $1 \leq k \leq n$. Then

$$
\begin{equation*}
A_{k}\left(x_{1}, \ldots x_{k}\right)=\Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=1}^{r}(-1)^{i} \sum_{\mathbb{N}_{i} \ni p \leq r} \Pi_{p k}(P)\left(x_{1}^{p}, \ldots, x_{k}^{p}\right), \tag{3}
\end{equation*}
$$

where $r=\left[\frac{n}{k}\right]$.
Proof. Let us first show that $A_{n}\left(x_{1}, \ldots, x_{n}\right)=\Pi_{n}(P)\left(x_{1}, \ldots, x_{n}\right)$. Since the polynomial P is a sum of k-homogeneous polynomials $P_{k}, 1 \leq k \leq n$, we have

$$
\begin{aligned}
& \frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) P\left(S_{1}^{[n]}(t) x_{1}+\cdots+S_{n}^{[n]}(t) x_{n}\right) \mathrm{d} t \\
& =\frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) \sum_{k=0}^{n} P_{k}\left(S_{1}^{[n]}(t) x_{1}+\cdots+S_{n}^{[n]}(t) x_{n}\right) \mathrm{d} t \\
& =\frac{1}{n!} P_{0} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) \mathrm{d} t+\frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) \sum_{m=1}^{n} S_{m}^{[n]}(t) A_{1}\left(x_{m}\right) \mathrm{d} t+\cdots \\
& \quad+\frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) \sum_{m_{1}, \ldots, m_{k}=1}^{n} S_{m_{1}}^{[n]}(t) \ldots S_{m_{k}}^{[n]}(t) A_{k}\left(x_{m_{1}}, \ldots, x_{m_{k}}\right) \mathrm{d} t+\cdots \\
& \quad+\frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) \sum_{m_{1}, \ldots, m_{n}=1}^{n} S_{m_{1}}^{[n]}(t) \ldots S_{m_{n}}^{[n]}(t) A_{n}\left(x_{m_{1}}, \ldots, x_{m_{n}}\right) \mathrm{d} t .
\end{aligned}
$$

By the properties of the generalized Rademacher functions (Proposition 1.1) all of the terms for $0 \leq k \leq n-1$ are equal to zero. So we have only a term which corresponds to the polynomial P_{n} and

$$
\begin{aligned}
& \frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) \sum_{m_{1}, \ldots, m_{n}=1}^{n} S_{m_{1}}^{[n]}(t) \ldots S_{m_{n}}^{[n]}(t) A_{n}\left(x_{m_{1}}, \ldots, x_{m_{n}}\right) \mathrm{d} t \\
& \quad=\frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) P_{n}\left(S_{1}^{[n]}(t) x_{1}+\cdots+S_{n}^{[n]}(t) x_{n}\right) \mathrm{d} t=A_{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Let us now find $A_{k}\left(x_{1}, \ldots, x_{k}\right), 1 \leq k \leq n$. If $0<m \leq k-1$, then by the properties of the generalized Rademacher functions

$$
\begin{aligned}
\Pi_{k}\left(P_{m}\right)\left(x_{1}, \ldots, x_{k}\right)= & \frac{1}{k!} \int_{0}^{1}\left(S_{1}^{[k]}\right)^{k-1}(t) \ldots\left(S_{k}^{[k]}\right)^{k-1}(t) P_{m}\left(S_{1}^{[k]}(t) x_{1}+\cdots+S_{k}^{[k]}(t) x_{k}\right) \mathrm{d} t \\
= & \frac{1}{k!} \int_{0}^{1}\left(S_{1}^{[k]}\right)^{k-1}(t) \ldots\left(S_{k}^{[k]}\right)^{k-1}(t) \\
& \quad \sum_{m_{1}, \ldots, m_{m}=1}^{k} S_{m_{1}}^{[k]}(t) \ldots S_{m_{m}}^{[k]}(t) A_{m}\left(x_{m_{1}}, \ldots, x_{m_{m}}\right) \mathrm{d} t=0
\end{aligned}
$$

Using the same properties, we have

$$
\begin{aligned}
\Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)= & \frac{1}{k!} \int_{0}^{1}\left(S_{1}^{[k]}\right)^{k-1}(t) \ldots\left(S_{k}^{[k]}\right)^{k-1}(t) P\left(S_{1}^{[k]}(t) x_{1}+\ldots+S_{k}^{[k]}(t) x_{k}\right) \mathrm{d} t \\
= & \frac{1}{k!} \int_{0}^{1}\left(S_{1}^{[k]}\right)^{k-1}(t) \ldots\left(S_{k}^{[k]}\right)^{k-1}(t) P_{k}\left(S_{1}^{[k]}(t) x_{1}+\cdots+S_{k}^{[k]}(t) x_{k}\right) \mathrm{d} t \\
& +\frac{1}{k!} \int_{0}^{1}\left(S_{1}^{[k]}\right)^{k-1}(t) \ldots\left(S_{k}^{[k]}\right)^{k-1}(t) P_{2 k}\left(S_{1}^{[k]}(t) x_{1}+\ldots+S_{k}^{[k]}(t) x_{k}\right) \mathrm{d} t+\cdots \\
& +\frac{1}{k!} \int_{0}^{1}\left(S_{1}^{[k]}\right)^{k-1}(t) \ldots\left(S_{k}^{[k]}\right)^{k-1}(t) P_{r k}\left(S_{1}^{[k]}(t) x_{1}+\cdots+S_{k}^{[k]}(t) x_{k}\right) \mathrm{d} t
\end{aligned}
$$

where $r=\left[\frac{n}{k}\right]$. So we obtain that

$$
\begin{equation*}
\Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)=A_{k}\left(x_{1}, \ldots, x_{k}\right)+A_{2 k}\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)+\cdots+A_{r k}\left(x_{1}^{r}, \ldots, x_{k}^{r}\right) \tag{4}
\end{equation*}
$$

that is,

$$
\begin{equation*}
A_{k}\left(x_{1}, \ldots, x_{k}\right)=\Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)-A_{2 k}\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)-\cdots-A_{r k}\left(x_{1}^{r}, \ldots, x_{k}^{r}\right) . \tag{5}
\end{equation*}
$$

Using the same arguments,

$$
A_{2 k}\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)=\Pi_{2 k}(P)\left(x_{1}^{2}, \ldots, x_{k}^{2}\right)-A_{4 k}\left(x_{1}^{4}, \ldots, x_{k}^{4}\right)-\cdots-A_{2 m k}\left(x_{1}^{2 m}, \ldots, x_{k}^{2 m}\right)
$$

where $m=\left[\frac{n}{2 k}\right]$;

$$
A_{3 k}\left(x_{1}^{3}, \ldots, x_{k}^{3}\right)=\Pi_{3 k}(P)\left(x_{1}^{3}, \ldots, x_{k}^{3}\right)-A_{6 k}\left(x_{1}^{6}, \ldots, x_{k}^{6}\right)-\cdots-A_{3 p k}\left(x_{1}^{3 p}, \ldots, x_{k}^{3 p}\right),
$$

where $p=\left[\frac{n}{3 k}\right]$ and so on. Substituting all $A_{t k}, 2 \leq t \leq r$ in (5) and grouping corresponding terms we have

$$
\begin{aligned}
A_{k}\left(x_{1}, \ldots x_{k}\right)= & \Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)-\sum_{p \in \mathbb{N}_{1}} \Pi_{p k}(P)\left(x_{1}^{p}, \ldots, x_{k}^{p}\right) \\
& +\sum_{p \in \mathbb{N}_{2}} \Pi_{p k}(P)\left(x_{1}^{p}, \ldots, x_{k}^{p}\right)+\cdots+\sum_{p \in \mathbb{N}_{r}}(-1)^{r} \Pi_{p k}(P)\left(x_{1}^{p}, \ldots, x_{k}^{p}\right) \\
= & \Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=1}^{r} \sum_{\mathbb{N}_{i} \ni p \leq r}(-1)^{i} \Pi_{p k}(P)\left(x_{1}^{p}, \ldots, x_{k}^{p}\right),
\end{aligned}
$$

where $\mathbb{N}_{i}=\left\{p=p_{1} p_{2} \ldots p_{i}: p_{1}<p_{2}<\cdots<p_{i}\right.$ are prime numbers $\}$ and $r=\left[\frac{n}{k}\right]$.
Note that $\Pi_{p k}(P)=0$ if $p \equiv 0\left(\bmod p_{j}^{m}\right), m>1$, where p_{j} is an arbitrary prime number.
Remark 2.2. Eq. (4) may be understood as a system of n linear nonhomogeneous equations with n variables $A_{k}=A_{k}\left(x_{1}\right.$, $\left.\ldots, x_{k}\right), 1 \leq k \leq n, x_{1}, \ldots, x_{k}$ are fixed. The corresponding homogeneous system can be represented by a matrix C with elements ($c_{i j}$):

$$
c_{i j}= \begin{cases}1, & j \equiv 0(\bmod i) \\ 0, & \text { otherwise }\end{cases}
$$

By the Kronecker-Capelli Theorem there exists a unique solution of the system. Variables $A_{k}, 1 \leq k \leq n$ of system (4) are determined by

$$
\begin{equation*}
A_{k}=\frac{\operatorname{det} C_{k}}{\operatorname{det} C} \tag{6}
\end{equation*}
$$

where C_{k} is a matrix obtained from the matrix C by replacing the k th column by the column $\left(\Pi_{1}(P)\left(x_{1}\right), \ldots, \Pi_{n}(P)\right.$ $\left.\left(x_{1}, \ldots, x_{n}\right)\right)^{\top}$. Since C is a triangular matrix with units on the diagonal, we can write

$$
A_{k}=\operatorname{det} C_{k}
$$

Note that $A_{k}=\Pi_{k}(P)$ if $k>\frac{n}{2}$.
Corollary 2.3. Let $P=P_{0}+\cdots+P_{n}$ be an arbitrary polynomial of degree n on X, where $P_{0} \equiv$ const and P_{k} are k-homogeneous polynomials for $k=1, \ldots, n$. Let A_{n} be a symmetric n-linear form, which generates P_{n}. Then

$$
A_{n}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n!} \int_{0}^{1}\left(S_{1}^{[n]}\right)^{n-1}(t) \ldots\left(S_{n}^{[n]}\right)^{n-1}(t) P\left(S_{1}^{[n]}(t) x_{1}+\cdots+S_{n}^{[n]}(t) x_{n}\right) \mathrm{d} t
$$

Corollary 2.4. For any $P \in P_{a}\left({ }^{n} X, Y\right)$

$$
\Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)=\sum_{m=1}^{\infty} A_{m k}\left(x_{1}^{m}, \ldots, x_{k}^{m}\right)
$$

3. The case of analytic mappings

Definition 3.1. We say that a mapping $B: X^{k} \rightarrow Y$ is (k, m)-linear if $B\left(x_{1}, \ldots, x_{k}\right)$ is an m-homogeneous polynomial with respect to every single variable x_{j} for another $x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k}$ fixed. The mapping B is called symmetric if $B\left(x_{1}, \ldots, x_{k}\right)=B\left(x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)$ for any permutation σ on the set $\{1, \ldots, k\}$.

It is easy to see that for a symmetric (k, m)-linear mapping B there exists an unique symmetric $k m$-linear mapping A such that

$$
B\left(x_{1}, \ldots, x_{k}\right)=A\left(x_{1}^{m}, \ldots, x_{k}^{m}\right)
$$

Let now X, Y be Banach spaces and $L\left({ }^{n} X, Y\right), P\left({ }^{n} X, Y\right)$ be spaces of continuous n-linear mappings from X^{n} into Y and continuous n-homogeneous polynomials from X into Y respectively. Let us denote by $\left.L{ }_{m}^{k} X, Y\right)$ the space of continuous (k, m)-linear mappings. Note that the spaces $L\left({ }^{n} X, Y\right), L\left({ }_{m}^{k} X, Y\right)$ and $P\left({ }^{n} X, Y\right)$ are Banach spaces with sup-norm over unit balls of corresponding spaces.

Proposition 3.2. The mapping Π_{k} is a continuous linear operator from $\mathcal{P}\left({ }^{n} X, Y\right)$ into $\mathcal{L}\left({ }_{m}^{k} X, Y\right)$.
Proof. The operator Π_{k} is linear by the definition. Let us show the continuity of Π_{k}. Let $P \in \mathcal{P}\left({ }^{n} X, Y\right)$ for some n. If k does not divide n, then $\Pi_{k}(P)=0$. Suppose that $n=k m$ for some m. Since by (4)

$$
\begin{gathered}
\Pi_{k}(P)\left(x_{1}, \ldots, x_{k}\right)=\sum_{s=1}^{m} A_{s k}\left(x_{1}^{s}, \ldots, x_{k}^{s}\right) \\
m\|P\| \leq\left\|\Pi_{k}(P)\right\| \leq m\|A\|
\end{gathered}
$$

where $A(x, \ldots, x)=P(x)$. On the other hand, by the polarization inequality [7, p. 10],

$$
\|A\| \leq \frac{n^{n}}{n!}\|P\|
$$

So Π_{k} is a bounded linear operator on the Banach space $\mathcal{P}\left({ }^{n} X, Y\right)$. Hence it is continuous.
Lemma 3.3. Let $f=\sum_{n=0}^{\infty} f_{n}$ be an entire mapping of bounded type from X to Y. Then for every k there is a well defined mapping $\Pi_{k}(f): X^{k} \rightarrow Y$, such that

$$
\begin{aligned}
\Pi_{k}(f)\left(x_{1}, \ldots, x_{k}\right) & :=\lim _{m \rightarrow \infty} \sum_{n=0}^{m} \Pi_{k}\left(f_{n}\right)\left(x_{1}, \ldots, x_{k}\right) \\
& =\sum_{n=0}^{\infty} \Pi_{k}\left(f_{n}\right)\left(x_{1}, \ldots, x_{k}\right)
\end{aligned}
$$

and the series on the right converges for any $x_{1}, \ldots, x_{k} \in X$.
Proof. Since f is an entire mapping of bounded type on X, by (1)

$$
\limsup _{n \rightarrow \infty}\left\|f_{n}\right\|^{1 / n}=0
$$

For any fixed $x_{1}, \ldots, x_{k} \in X$ such that $\max \left(\left\|x_{1}\right\|, \ldots,\left\|x_{k}\right\|\right) \neq 0$ consider a formal series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \Pi_{k}\left(f_{n}\right)\left(t z_{1}, \ldots, t z_{k}\right)=\sum_{n=0}^{\infty} t^{n} \Pi_{k}\left(f_{n}\right)\left(z_{1}, \ldots, z_{k}\right) \tag{7}
\end{equation*}
$$

where $z_{k}=\frac{x_{k}}{\max \left(\left\|x_{1}\right\|, \ldots,\left\|_{x_{k}}\right\|\right)}$ and $t \in \mathbb{C}$.
By the Cauchy-Hadamard formula the radius of convergence of the series at zero is

$$
\varrho_{0}=\left(\limsup _{n \rightarrow \infty}\left\|\Pi_{k}\left(f_{n}\right)\left(z_{1}, \ldots, z_{k}\right)\right\|^{1 / n}\right)^{-1}
$$

Using the Stirling formula and inequality $\left\|\Pi_{k}\left(f_{n}\right)\right\| \leq \frac{n^{n}}{n!}\left\|f_{n}\right\|$ we have

$$
\begin{aligned}
\left\|\Pi_{k}\left(f_{n}\right)\left(z_{1}, \ldots, z_{k}\right)\right\|^{1 / n} & \leq\left(\frac{n^{n}}{n!}\left\|f_{n}\right\| \max \left(\left\|z_{1}\right\|, \ldots,\left\|z_{k}\right\|\right)\right)^{1 / n} \\
& \leq e \max \left(\left\|z_{1}\right\|, \ldots,\left\|z_{k}\right\|\right)^{1 / n}\left\|f_{n}\right\|^{1 / n}
\end{aligned}
$$

So

$$
\frac{1}{\varrho_{0}}=\limsup _{n \rightarrow \infty}\left\|\Pi_{k}\left(f_{n}\right)\left(z_{1}, \ldots, z_{k}\right)\right\|^{1 / n}=0
$$

Hence the series (7) converges for every t and so in particular it is convergent for $t=\max \left(\left\|x_{1}\right\|, \ldots,\left\|x_{k}\right\|\right)$ as well.

Theorem 3.4. Let A_{k} be a k-linear symmetric mapping corresponding to k-homogeneous component f_{k} of entire mapping of bounded type f. Then

$$
\begin{equation*}
A_{k}\left(x_{1}, \ldots x_{k}\right)=\Pi_{k}(f)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=1}^{\infty}(-1)^{i} \sum_{p \in \mathbb{N}_{i}} \Pi_{p k}(f)\left(x_{1}^{p}, \ldots, x_{k}^{p}\right) \tag{8}
\end{equation*}
$$

where $\mathbb{N}_{i}=\left\{p=p_{1} p_{2} \ldots p_{i}: p_{1}<p_{2}<\cdots<p_{i}\right.$ are prime numbers $\}$.
Proof. For the simplicity we rewrite formula (8) by

$$
A_{k}\left(x_{1}, \ldots x_{k}\right)=\Pi_{k}(f)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=2}^{\infty} c_{i} \Pi_{i k}(f)\left(x_{1}^{i}, \ldots, x_{k}^{i}\right),
$$

where $c_{i}=0 ; 1 ;-1$.
By Theorem 2.1 for an arbitrary n

$$
A_{k}\left(x_{1}, \ldots x_{k}\right)=\Pi_{k}\left(\sum_{j=0}^{n} f_{j}\right)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=2}^{r} c_{i} \Pi_{i k}\left(\sum_{j=0}^{n} f_{j}\right)\left(x_{1}^{i}, \ldots, x_{k}^{i}\right)
$$

where $r=\left[\frac{n}{k}\right]$. Using Proposition 3.2 we obtain that

$$
A_{k}\left(x_{1}, \ldots x_{k}\right)=\sum_{j=0}^{n} \Pi_{k}\left(f_{j}\right)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=2}^{r} \sum_{j=0}^{n} c_{i} \Pi_{i k}\left(f_{j}\right)\left(x_{1}^{i}, \ldots, x_{k}^{i}\right)
$$

Proceeding to the limit as $n \rightarrow \infty$ and observing that

$$
\sum_{i=2}^{r} \sum_{j=0}^{n} c_{i} \Pi_{i k}\left(f_{j}\right)=\sum_{i=2}^{\infty} \sum_{j=0}^{n} c_{i} \Pi_{i k}\left(f_{j}\right)
$$

we obtain

$$
A_{k}\left(x_{1}, \ldots, x_{k}\right)=\lim _{n \rightarrow \infty} \sum_{j=0}^{n} \Pi_{k}\left(f_{j}\right)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=2}^{\infty} \lim _{n \rightarrow \infty} \sum_{j=0}^{n} c_{i} \Pi_{i k}\left(f_{j}\right)\left(x_{1}^{i}, \ldots, x_{k}^{i}\right) .
$$

By Lemma 3.3,

$$
\begin{aligned}
A_{k}\left(x_{1}, \ldots, x_{k}\right) & =\Pi_{k}\left(\sum_{j=0}^{\infty} f_{j}\right)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=2}^{\infty} c_{i} \Pi_{i k}\left(\sum_{j=0}^{\infty} f_{j}\right)\left(x_{1}^{i}, \ldots, x_{k}^{i}\right) \\
& =\Pi_{k}(f)\left(x_{1}, \ldots, x_{k}\right)+\sum_{i=2}^{\infty} c_{i} \Pi_{i k}(f)\left(x_{1}^{i}, \ldots, x_{k}^{i}\right)
\end{aligned}
$$

References

[1] H.F. Bohnenblust, E. Hille, On the absolute convergence of Dirichlet series, Ann. of Math. 32 (2) (1931) 610.
[2] R.S. Martin, Contributions to the theory of functionals, Ph.D. thesis, University of California, 1932. Unpublished.
[3] S. Mazur, W. Orlicz, Grundlegende eigenschaften der polynomischen operationen I, II, Studia Math. 5 (1935) 50-68. 179-189.
[4] R.M. Aron, J. Globevnik, Analytic functions on c_{0}, Rev. Mat. 2 (1989) 27-34.
[5] R.M. Aron, M. Lacruz, R.A. Ryan, A.M. Tonge, The generalized Rademacher Functions, Note Math. 12 (1992) 15-22.
[6] S. Dineen, Complex Analysis in Locally Convex Spaces, in: Mathematics Studies, vol. 57, North-Holland, Amsterdam, New York, Oxford, 1981.
[7] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, in: Monographs in Mathematics, Springer, New York, 1999.

[^0]: * Corresponding author.

 E-mail addresses: icherneha@ukr.net (I. Chernega), andriyzag@yahoo.com (A. Zagorodnyuk).

