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1. Introduction

Let X and Y be linear spaces. A mapping P : X → Y is called an n-homogeneous polynomial if there exists a symmetric n-
linear mapping A : Xn → Y such that P(x) = A(x, . . . , x). The given symmetric n-linear mapping can be uniquely expressed
as a polynomial using the polarization formula, which is one of the fundamental results in the theory of polynomials and
multilinear mappings. The polarization formula has been known since 1931 [1] but later was rediscovered and published
in the works of Martin [2], Mazur, Orlicz [3] and others. The polarization formula has various representations, in particular
using the generalized Rademacher functions.
The generalized Rademacher functions were introduced by Aron and Globevnik in [4]. Later, in [5] it was shown that

these functions are quite useful in obtaining simple proofs of various estimates in different areas of functional analysis.
In this paper we shall use the generalized Rademacher functions to prove an analogue of the polarization formula for
nonhomogeneous polynomials on complex linear spaces and for analytic mappings on complex Banach spaces.
For every natural number n ≥ 2 the generalized Rademacher functions S[n]j (t) are defined inductively as follows (see

[4,5]). Let α1, α2, . . . , αn be the complex nth roots of unity. For j = 1, . . . , n let Ij =
( j−1
n ,

j
n

)
and Ij1j2 denote the j2th open

subinterval of length 1
n2
of Ij1 (j1, j2 = 1, . . . , n). Proceeding like this, we can define the interval j1j2 . . . jk for any k. Now

S[n]1 (t) : [0, 1] → C is defined by setting S[n]1 (t) = αj for t ∈ Ij, where 1 ≤ j ≤ n. In general, S
[n]
k (t) = αj if t belongs to the

subinterval Ij1j2...jk where jk = j. For all endpoints t we can set S
[n]
k (t) = 1. Also we set S

[1]
1 (t) ≡ 1.

The basic properties of the generalized Rademacher functions are as follows:

Proposition 1.1 ([5]). 1. For every k = 1, 2, . . . and t ∈ [0, 1], we have |S[n]k (t)| = 1.
2. The integral∫ 1

0
S[n]i1 (t) . . . S

[n]
in (t)dt =

{
1, if i1 = · · · = in
0 otherwise.

∗ Corresponding author.
E-mail addresses: icherneha@ukr.net (I. Chernega), andriyzag@yahoo.com (A. Zagorodnyuk).

0040-9383/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.top.2009.11.019



Author's personal copy

198 I. Chernega, A. Zagorodnyuk / Topology 48 (2009) 197–202

3. If j1, . . . , jk are distinct positive integers, then for σ
[n]
j (t) = S

[n]
j (t) or σ

[n]
j (t) = S

[n]
j (t),∫ 1

0
(σ
[n]
j1
)m1(t) . . . (σ [n]jk )

mk(t)dt =
{
1, if m1 ≡ · · · ≡ mk ≡ 0 (modn)
0 otherwise.

A mapping P : X → Y is said to be a polynomial of degree n if it can be represented as a sum

P(x) =
n∑
k=0

Pk(x),

where Pk is an k-homogeneous polynomial, 1 ≤ k ≤ n, P0 ∈ Y and Pn 6≡ 0.
Let now X, Y be complex Banach spaces andΩ be an open subset of X . A mapping f : Ω → Y is said to be analytic if for

any x0 ∈ Ω there exists a neighborhood of x0, Vx0 ⊂ Ω such that for every x ∈ Vx0

f (x) =
∞∑
k=0

fk (x) ,

where fk is a k-homogeneous polynomial and the series converges uniformly on Vx0 .
It is well known that polynomials fk are kth Frechet derivatives,

fk =
dk(x)f
n!

of f at x0 by direction x. IfΩ = X we say that f is an entire mapping.
Let f : Ω → Y be an analytic mapping, x ∈ Ω and B be the unit ball of X . The radius of uniform convergence %x(f ) of f

at x is defined as supremum of λ, λ ∈ C such that x + λB ⊂ Ω and the Taylor series of f at x converges to f uniformly on
x+ λB. The radius of boundedness of f at x is defined as supremum of λ ∈ C, such that f is bounded on x+ λB.

Theorem 1.2 ([6]). The radius of uniform convergence of an entire mapping f at zero coincides with the radius of boundedness
of f at zero and

%0(f ) :=
(
lim sup
n→∞

‖fn‖1/n
)−1

. (1)

We say that f : X → Y is an entire mapping of bounded type if f is bounded on all bounded subsets (i.e. has the radius of
boundedness equal to infinity.)

2. Polarization formula for polynomials

Let X and Y be Banach spaces. Let us denote by La
(
nX, Y

)
the space of all symmetric n-linear mappings

A : X × · · · × X︸ ︷︷ ︸
n

→ Y .

Let Pa
(
nX, Y

)
denote the space of all n-homogeneous polynomials P : X → Y . For any P ∈ Pa

(
nX, Y

)
there exists a unique

element A ∈ La
(
nX, Y

)
such that P(x) = A(x, . . . , x). To obtain A from P we can apply the polarization formula with the

generalized Rademacher functions (see [5]):

A
(
xn11 , . . . , x

nk
k

)
=
n1! . . . nk!
n!

∫ 1

0

(
S[n]1
)n−n1

(t) . . .
(
S[n]n
)n−nk

(t)P
(
S[n]1 (t)x1 + · · · + S

[n]
k (t)xk

)
dt, (2)

where n1 + · · · + nk = n, n1, . . . , nk are non-negative integers and

A
(
xn11 , . . . , x

nk
k

)
:= A(x1, . . . , x1︸ ︷︷ ︸

n1

, . . . , xk, . . . , xk︸ ︷︷ ︸
nk

).

Putting n1, . . . , nk = 1 and k = n, then from (2) we obtain

A (x1, . . . , xn) =
1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)P
(
S[n]1 (t)x1 + · · · + S

[n]
n (t)xn

)
dt.

Let us set

Πk (P) (x1, . . . , xk) =
1
k!

∫ 1

0

(
S[k]1
)k−1

(t) . . .
(
S[k]k
)k−1

(t)P
(
S[k]1 (t)x1 + · · · + S

[k]
k (t)xk

)
dt

and let us introduce a set Ni ⊂ N by Ni = {p = p1p2 . . . pi : p1 < p2 < · · · < pi are prime numbers}.
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Theorem 2.1. Let P = P0 + · · · + Pn be a polynomial of degree n and Ak be a symmetric k-linear mapping such that Pk(x) =
Ak(x, . . . , x) for some 1 ≤ k ≤ n. Then

Ak (x1, . . . xk) = Πk(P)(x1, . . . , xk)+
r∑
i=1

(−1)i
∑

Ni3p≤r

Πpk (P)
(
xp1, . . . , x

p
k

)
, (3)

where r = [ nk ].

Proof. Let us first show that An (x1, . . . , xn) = Πn(P)(x1, . . . , xn). Since the polynomial P is a sum of k-homogeneous poly-
nomials Pk, 1 ≤ k ≤ n, we have

1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)P
(
S[n]1 (t)x1 + · · · + S

[n]
n (t)xn

)
dt

=
1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)
n∑
k=0

Pk
(
S[n]1 (t)x1 + · · · + S

[n]
n (t)xn

)
dt

=
1
n!
P0

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)dt +
1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)
n∑
m=1

S[n]m (t)A1 (xm) dt + · · ·

+
1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)
n∑

m1,...,mk=1

S[n]m1(t) . . . S
[n]
mk (t)Ak

(
xm1 , . . . , xmk

)
dt + · · ·

+
1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)
n∑

m1,...,mn=1

S[n]m1(t) . . . S
[n]
mn(t)An

(
xm1 , . . . , xmn

)
dt.

By the properties of the generalized Rademacher functions (Proposition 1.1) all of the terms for 0 ≤ k ≤ n− 1 are equal
to zero. So we have only a term which corresponds to the polynomial Pn and

1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)
n∑

m1,...,mn=1

S[n]m1(t) . . . S
[n]
mn(t)An

(
xm1 , . . . , xmn

)
dt

=
1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)Pn
(
S[n]1 (t)x1 + · · · + S

[n]
n (t)xn

)
dt = An(x1, . . . , xn).

Let us now find Ak (x1, . . . , xk) , 1 ≤ k ≤ n. If 0 < m ≤ k − 1, then by the properties of the generalized Rademacher
functions

Πk (Pm) (x1, . . . , xk) =
1
k!

∫ 1

0

(
S[k]1
)k−1

(t) . . .
(
S[k]k
)k−1

(t)Pm
(
S[k]1 (t)x1 + · · · + S

[k]
k (t)xk

)
dt

=
1
k!

∫ 1

0

(
S[k]1
)k−1

(t) . . .
(
S[k]k
)k−1

(t)

×

k∑
m1,...,mm=1

S[k]m1(t) . . . S
[k]
mm(t)Am

(
xm1 , . . . , xmm

)
dt = 0.

Using the same properties, we have

Πk (P) (x1, . . . , xk) =
1
k!

∫ 1

0

(
S[k]1
)k−1

(t) . . .
(
S[k]k
)k−1

(t)P
(
S[k]1 (t)x1 + . . .+ S

[k]
k (t)xk

)
dt

=
1
k!

∫ 1

0

(
S[k]1
)k−1

(t) . . .
(
S[k]k
)k−1

(t)Pk
(
S[k]1 (t)x1 + · · · + S

[k]
k (t)xk

)
dt

+
1
k!

∫ 1

0

(
S[k]1
)k−1

(t) . . .
(
S[k]k
)k−1

(t)P2k
(
S[k]1 (t)x1 + . . .+ S

[k]
k (t)xk

)
dt + · · ·

+
1
k!

∫ 1

0

(
S[k]1
)k−1

(t) . . .
(
S[k]k
)k−1

(t)Prk
(
S[k]1 (t)x1 + · · · + S

[k]
k (t)xk

)
dt,

where r = [ nk ]. So we obtain that

Πk (P) (x1, . . . , xk) = Ak (x1, . . . , xk)+ A2k
(
x21, . . . , x

2
k

)
+ · · · + Ark

(
xr1, . . . , x

r
k

)
, (4)
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that is,

Ak (x1, . . . , xk) = Πk (P) (x1, . . . , xk)− A2k
(
x21, . . . , x

2
k

)
− · · · − Ark

(
xr1, . . . , x

r
k

)
. (5)

Using the same arguments,

A2k
(
x21, . . . , x

2
k

)
= Π2k (P)

(
x21, . . . , x

2
k

)
− A4k

(
x41, . . . , x

4
k

)
− · · · − A2mk

(
x2m1 , . . . , x

2m
k

)
,

wherem = [ n2k ];

A3k
(
x31, . . . , x

3
k

)
= Π3k (P)

(
x31, . . . , x

3
k

)
− A6k

(
x61, . . . , x

6
k

)
− · · · − A3pk

(
x3p1 , . . . , x

3p
k

)
,

where p = [ n3k ] and so on. Substituting all Atk, 2 ≤ t ≤ r in (5) and grouping corresponding terms we have

Ak (x1, . . . xk) = Πk(P)(x1, . . . , xk)−
∑
p∈N1

Πpk (P)
(
xp1, . . . , x

p
k

)
+

∑
p∈N2

Πpk (P)
(
xp1, . . . , x

p
k

)
+ · · · +

∑
p∈Nr

(−1)rΠpk (P)
(
xp1, . . . , x

p
k

)
= Πk(P)(x1, . . . , xk)+

r∑
i=1

∑
Ni3p≤r

(−1)iΠpk (P)
(
xp1, . . . , x

p
k

)
,

where Ni = {p = p1p2 . . . pi : p1 < p2 < · · · < pi are prime numbers} and r = [ nk ].
Note thatΠpk(P) = 0 if p ≡ 0 (mod pmj ),m > 1, where pj is an arbitrary prime number. �

Remark 2.2. Eq. (4) may be understood as a system of n linear nonhomogeneous equations with n variables Ak = Ak(x1,
. . . , xk), 1 ≤ k ≤ n, x1, . . . , xk are fixed. The corresponding homogeneous system can be represented by a matrix C with
elements (cij):

cij =
{
1, j ≡ 0 (mod i);
0, otherwise.

By the Kronecker–Capelli Theorem there exists a unique solution of the system. Variables Ak, 1 ≤ k ≤ n of system (4)
are determined by

Ak =
det Ck
det C

, (6)

where Ck is a matrix obtained from the matrix C by replacing the kth column by the column (Π1(P)(x1), . . . ,Πn(P)
(x1, . . . , xn))ᵀ. Since C is a triangular matrix with units on the diagonal, we can write

Ak = det Ck.

Note that Ak = Πk(P) if k > n
2 .

Corollary 2.3. Let P = P0+ · · · + Pn be an arbitrary polynomial of degree n on X, where P0 ≡ const and Pk are k-homogeneous
polynomials for k = 1, . . . , n. Let An be a symmetric n-linear form, which generates Pn. Then

An (x1, . . . , xn) =
1
n!

∫ 1

0

(
S[n]1
)n−1

(t) . . .
(
S[n]n
)n−1

(t)P
(
S[n]1 (t)x1 + · · · + S

[n]
n (t)xn

)
dt.

Corollary 2.4. For any P ∈ Pa
(
nX, Y

)
Πk(P)(x1, . . . , xk) =

∞∑
m=1

Amk(xm1 , . . . , x
m
k ).

3. The case of analytic mappings

Definition 3.1. We say that a mapping B : Xk → Y is (k,m)-linear if B(x1, . . . , xk) is an m-homogeneous polynomial
with respect to every single variable xj for another x1, . . . , xj−1, xj+1, . . . , xk fixed. The mapping B is called symmetric if
B(x1, . . . , xk) = B(xσ(1), . . . , xσ(k)) for any permutation σ on the set {1, . . . , k}.
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It is easy to see that for a symmetric (k,m)-linear mapping B there exists an unique symmetric km-linear mapping A such
that

B(x1, . . . , xk) = A(xm1 , . . . , x
m
k ).

Let now X, Y be Banach spaces and L
(
nX, Y

)
, P
(
nX, Y

)
be spaces of continuous n-linear mappings from Xn into Y and

continuous n-homogeneous polynomials from X into Y respectively. Let us denote by L(kmX, Y ) the space of continuous
(k,m)-linear mappings. Note that the spaces L(nX, Y ), L(kmX, Y ) and P(

nX, Y ) are Banach spaces with sup-norm over unit
balls of corresponding spaces.

Proposition 3.2. The mapping Πk is a continuous linear operator from P (nX, Y ) intoL(kmX, Y ).

Proof. The operatorΠk is linear by the definition. Let us show the continuity ofΠk. Let P ∈ P (nX, Y ) for some n. If k does
not divide n, thenΠk(P) = 0. Suppose that n = km for somem. Since by (4)

Πk(P)(x1, . . . , xk) =
m∑
s=1

Ask(xs1, . . . , x
s
k)

m‖P‖ ≤ ‖Πk(P)‖ ≤ m‖A‖,

where A(x, . . . , x) = P(x). On the other hand, by the polarization inequality [7, p. 10],

‖A‖ ≤
nn

n!
‖P‖.

SoΠk is a bounded linear operator on the Banach space P (nX, Y ). Hence it is continuous. �

Lemma 3.3. Let f =
∑
∞

n=0 fn be an entire mapping of bounded type from X to Y . Then for every k there is a well defined mapping
Πk(f ) : Xk → Y , such that

Πk (f ) (x1, . . . , xk) := lim
m→∞

m∑
n=0

Πk (fn) (x1, . . . , xk)

=

∞∑
n=0

Πk (fn) (x1, . . . , xk)

and the series on the right converges for any x1, . . . , xk ∈ X .

Proof. Since f is an entire mapping of bounded type on X , by (1)

lim sup
n→∞

‖fn‖1/n = 0.

For any fixed x1, . . . , xk ∈ X such that max(‖x1‖, . . . , ‖xk‖) 6= 0 consider a formal series

∞∑
n=0

Πk (fn) (tz1, . . . , tzk) =
∞∑
n=0

tnΠk (fn) (z1, . . . , zk) , (7)

where zk =
xk

max(‖x1‖,...,‖xk‖)
and t ∈ C.

By the Cauchy–Hadamard formula the radius of convergence of the series at zero is

%0 =
(
lim sup
n→∞

‖Πk (fn) (z1, . . . , zk) ‖1/n
)−1

.

Using the Stirling formula and inequality ‖Πk (fn) ‖ ≤ nn
n! ‖fn‖we have

‖Πk (fn) (z1, . . . , zk) ‖1/n ≤
(nn
n!
‖fn‖max(‖z1‖, . . . , ‖zk‖)

)1/n
≤ emax

(
‖z1‖, . . . , ‖zk‖

)1/n
‖fn‖1/n.

So
1
%0
= lim sup

n→∞
‖Πk (fn) (z1, . . . , zk) ‖1/n = 0.

Hence the series (7) converges for every t and so in particular it is convergent for t = max(‖x1‖, . . . , ‖xk‖) as well. �
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Theorem 3.4. Let Ak be a k-linear symmetric mapping corresponding to k-homogeneous component fk of entire mapping of
bounded type f . Then

Ak (x1, . . . xk) = Πk(f )(x1, . . . , xk)+
∞∑
i=1

(−1)i
∑
p∈Ni

Πpk (f )
(
xp1, . . . , x

p
k

)
, (8)

where Ni = {p = p1p2 . . . pi : p1 < p2 < · · · < pi are prime numbers}.

Proof. For the simplicity we rewrite formula (8) by

Ak (x1, . . . xk) = Πk(f )(x1, . . . , xk)+
∞∑
i=2

ciΠik (f )
(
xi1, . . . , x

i
k

)
,

where ci = 0; 1;−1.
By Theorem 2.1 for an arbitrary n

Ak (x1, . . . xk) = Πk

(
n∑
j=0

fj

)
(x1, . . . , xk)+

r∑
i=2

ciΠik

(
n∑
j=0

fj

) (
xi1, . . . , x

i
k

)
,

where r = [ nk ]. Using Proposition 3.2 we obtain that

Ak (x1, . . . xk) =
n∑
j=0

Πk(fj) (x1, . . . , xk)+
r∑
i=2

n∑
j=0

ciΠik(fj)
(
xi1, . . . , x

i
k

)
.

Proceeding to the limit as n→∞ and observing that
r∑
i=2

n∑
j=0

ciΠik(fj) =
∞∑
i=2

n∑
j=0

ciΠik(fj),

we obtain

Ak (x1, . . . , xk) = lim
n→∞

n∑
j=0

Πk(fj) (x1, . . . , xk)+
∞∑
i=2

lim
n→∞

n∑
j=0

ciΠik(fj)
(
xi1, . . . , x

i
k

)
.

By Lemma 3.3,

Ak (x1, . . . , xk) = Πk

(
∞∑
j=0

fj

)
(x1, . . . , xk)+

∞∑
i=2

ciΠik

(
∞∑
j=0

fj

) (
xi1, . . . , x

i
k

)
= Πk (f ) (x1, . . . , xk)+

∞∑
i=2

ciΠik (f )
(
xi1, . . . , x

i
k

)
. �
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