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Abstract In the spectrum of the algebra of symmetric analytic functions of bounded type on �p,
1 � p < +∞, and along the same lines as the general non-symmetric case, we define and study a
convolution operation and give a formula for the ‘radius’ function. It is also proved that the algebra of
analytic functions of bounded type on �1 is isometrically isomorphic to an algebra of symmetric analytic
functions on a polydisc of �1. We also consider the existence of algebraic projections between algebras
of symmetric polynomials and the corresponding subspace of subsymmetric polynomials.
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1. Introduction and Preliminaries

Let X be a complex Banach space and let G be a semigroup of isometric operators on
X. A function f on X is called symmetric with respect to G (or G-symmetric for short)
if f(σ(x)) = f(x) for every σ ∈ G. The basic example is X = �p, 1 � p < ∞, and G = G,
the group of permutations on the set of positive integers N. Here we mean that σ ∈ G
acts on �p by

σ

( ∞∑
i=1

xiei

)
=

∞∑
i=1

xieσ(i),

where {e1, e2, . . . } is the standard basis in �p. Another important example is X = �p and
G = G, the semigroup generated by the isometric operators βi,

βi : (x1, x2, . . . ) �→ (x1, . . . , xi−1, 0, xi, . . . ).
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In the literature, G-symmetric functions on �p are called symmetric and G-symmetric
functions are called subsymmetric.

We use the notation P(X) for the algebra of all polynomials on X and Ps(�p) (respec-
tively, Psbs

(�p)) for the algebra of all symmetric (respectively, subsymmetric) polynomials
on �p. Also, P(nX) (respectively, Ps(n�p) and Psbs

(n�p)) denotes the Banach space of
n-homogeneous polynomials on X (respectively, n-homogeneous symmetric and n-homo-
geneous subsymmetric polynomials on �p). The completion of P(X) in the metric of
uniform convergence on bounded sets coincides with the algebra of entire analytic func-
tions of bounded type Hb(X) on X. We denote by Hbs(�p) (respectively, Hbsbs

(�p)) the
subalgebra of all symmetric (respectively, subsymmetric) functions in Hb(�p). We also use
the notation Mb(�p), Mbs(�p) and Mbsbs

(�p) for spectra of the algebras Hb(�p), Hbs(�p)
and Hbsbs

(�p), respectively, that is, the set of all non-null continuous complex-valued
homomorphisms.

We continue the study of the spectra of several algebras of symmetric and subsym-
metric analytic functions [1,7–9,12] and discuss some connections among them.

We begin § 2 by dealing with the radius function of elements in Mbs(�p) and introduce
a convolution product there in the same spirit as in the non-symmetric case. This requires
a kind of ‘symmetric translation’ that we obtain by using a new tool: the intertwining
operation (see Definition 2.2). Then we construct an algebra of symmetric analytic func-
tions on a kind of polydisc in �1 that is isometrically algebraically isomorphic to the
algebra Hb(�1). We also construct operators of symmetrization on spaces of bounded
functions. In particular, Hbs(�p) is a complemented subspace of Hb(�p). Unfortunately,
the corresponding projection is not multiplicative. In § 3 we find an algebraic basis for
the algebra generated by subsymmetric polynomials of degree less than or equal to 3.
It enables us to prove that this algebra is algebraically complemented in the algebra
generated by all polynomials of degree less than or equal to 3.

We assume that all polynomials appearing in the paper are continuous. Symmetric
polynomials on �p (with respect to G) and Lp[0, 1] (with respect to the group of measure-
preserving permutations on [0, 1]) for 1 � p < ∞ were first studied by Nemirovski and
Semenov in [12]. In [7] González et al . investigated algebraic bases of various algebras of
symmetric polynomials on rearrangement-invariant spaces. In particular, it is shown in [7]
that a polynomial P on �p is symmetric with respect to G if and only if it is symmetric
with respect to the subgroup G0 =

⋃
n∈N

Gn, where Gn is the group of permutations on
{1, . . . , n}. Also, in [7] it is proved that, similarly to the classical finite-dimensional case,
the polynomials

Fk(x) =
∞∑

i=1

xk
i , k = �p�, �p� + 1, . . . , (1.1)

form an algebraic basis in the algebra of all symmetric polynomials on �p (here �p� is the
smallest integer that is greater than or equal to p). This means that, for every symmetric
polynomial P of degree �p� + n − 1, n � 1, there is a polynomial q on Cn such that
P (x) = q(F�p�(x), . . . , F�p�+n−1(x)). Actually, q is unique, as pointed out in [1]. Using
these facts, Alencar et al . [1] investigated the spectrum of the algebra of symmetric
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uniformly continuous analytic functions on the unit ball B�p , Aus(B�p). Note that if
deg P < �p�, then P is not symmetric.

Subsymmetric polynomials were investigated in [8,9,12]. Gonzalo shows in [8, Theo-
rem 2.1] that the so-called standard polynomials

Fk1,...,kn
(x) =

∑
i1<···<in

xk1
i1

. . . xkn
in

, k1 + · · · + kn = n, (1.2)

form a linear basis in the finite-dimensional space of n-homogeneous subsymmetric poly-
nomials for n � �p�.

Let AP denote the symmetric (here, symmetric has the usual (different) meaning
of invariant regarding permutations of the variables) n-linear form associated with the
n-homogeneous polynomial P on �p. We can write

P (x) =
∑

i1<···<in

∑
k1+···+kn=n

n!
k1! · · · kn!

Ap(ek1
i1

, . . . , ekn
in

)xk1
i1

· · ·xkn
in

.

If P is subsymmetric, then AP (ek1
i1

, . . . , ekn
in

) = AP (ek1
1 , . . . , ekn

n ) for every i1 < · · · < in
and k1 + · · · + kn = n.

For further details on analytic functions on infinite-dimensional spaces, we refer the
interested reader to [6, 11]. For details on spectra of algebras of analytic functions on
Banach spaces, we refer the interested reader to [2,3].

2. The algebra of symmetric analytic functions on �p

2.1. The radius function on Mbs(�p)

Following [2] we define the radius function R on Mbs(�p) (respectively, Mbsbs
(�p)) by

assigning to any complex homomorphism φ ∈ Mbs(�p) (respectively, φ ∈ Mbsbs
(�p)) the

infimum R(φ) of all r such that φ is continuous with respect to the norm of uniform
convergence on the ball rB�p

, that is, |φ(f)| � Cr‖f‖r. Furthermore, we have |φ(f)| �
‖f‖R(φ).

As in the non-symmetric case, we obtain the following formula for the radius function.

Proposition 2.1. Let φ ∈ Mbs(�p) (respectively, Mbsbs
(�p)). Then

R(φ) = lim sup
n→∞

‖φn‖1/n, (2.1)

where φn is the restriction of φ to Ps(n�p) (respectively, Psbs
(n�p)) and ‖φn‖ is its cor-

responding norm.

Proof. To prove (2.1) we use arguments from [2, Theorem 2.3]. Recall that

‖φn‖ = sup{|φn(P )| : P ∈ Ps(n�p) with ‖P‖ � 1}.

Suppose that
0 < t < lim sup

n→∞
‖φn‖1/n.
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Then there is a sequence of homogeneous symmetric polynomials Pj of degree nj → ∞
such that ‖Pj‖ = 1 and |φ(Pj)| > tnj . If 0 < r < t, then, by homogeneity,

‖Pj‖r = sup
x∈rB�p

|Pj(x)| = rnj ,

so that
|φ(Pj)| > (t/r)nj ‖Pj‖r,

and φ is not continuous for the ‖ · ‖r norm. It follows that R(φ) � r, and, on account of
the arbitrary choice of r, we obtain

R(φ) � lim sup
n→∞

‖φn‖1/n.

Now let

s > lim sup
n→∞

‖φn‖1/n

so that sm � ‖φm‖ for large m. Then there exists c � 1 such that ‖φm‖ � csm for every
m. If r > s is arbitrary and f ∈ Hbs(�p) has Taylor series expansion

f =
∞∑

n=1

fn,

then

rm‖fm‖ = ‖fm‖r � ‖f‖r, m � 0.

Hence,

|φ(fm)| � ‖φm‖ ‖fm‖ � csm

rm
‖f‖r

and so

‖φ(f)‖ � c

( ∑ sm

rm

)
‖f‖r.

Thus, φ is continuous with respect to the uniform norm on rB, and R(φ) � r. Since r

and s are arbitrary,
R(φ) � lim sup

n→∞
‖φn‖1/n.

The same arguments work for subsymmetric bounded-type entire functions. �

2.2. The intertwining operator

Recall that in [2] the convolution operation ‘∗’ for elements ϕ, θ in the spectrum
Mb(X) of Hb(X) is defined by

(ϕ ∗ θ)(f) = ϕ(θ(f(· + x))), where f ∈ Hb(X). (2.2)

Here we introduce the analogous convolution in our symmetric setting.
It is easy to see that if f is a symmetric function on �p, then, in general, f(· + y)

is not symmetric for a fixed y. However, it is possible to introduce an analogue of the
translation operator that preserves the space of symmetric functions on �p.
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Definition 2.2. Let x, y ∈ �p, x = (x1, x2, . . . ) and y = (y1, y2, . . . ). We define the
intertwining of x and y, x • y ∈ �p, according to

x • y = (x1, y1, x2, y2, . . . ).

Let us indicate some elementary properties of the intertwining.

Proposition 2.3. Given x, y ∈ �p, the following assertions hold.

(i) If x = σ1(u) and y = σ2(v), σ1, σ2 ∈ G, then x • y = σ(u • v) for some σ ∈ G.

(ii) ‖x • y‖p = ‖x‖p + ‖y‖p.

(iii) Fn(x • y) = Fn(x) + Fn(y) for every n � p, where the Fn are given by (1.1).

Proposition 2.4. If f(x) ∈ Hbs(�p), then f(x • y) ∈ Hbs(�p) for every fixed y ∈ �p.

Proof. Note that x • y = x • 0 + 0 • y and that the map x �→ x • 0 is linear. Thus,
the map x �→ x • y is analytic and maps bounded sets into bounded sets, and so does
its composition with f . Moreover, f(x • y) is obviously symmetric. Hence, it belongs to
Hbs(�p). �

The mapping f �→ T s
y(f), where T s

y(f)(x) = f(x • y) will be referred as to the inter-
twining operator.

Proposition 2.5. For every y ∈ �p, the intertwining operator T s
y is a continuous

endomorphism of Hbs(�p).

Proof. Evidently, T s
y is linear and multiplicative. Let x belong to �p and ‖x‖ � r.

Then ‖x • y‖ � p
√

rp + ‖y‖p and

|T s
yf(x)| � sup

‖z‖� p
√

rp+‖y‖p

|f(z)| = ‖f‖ p
√

rp+‖y‖p , (2.3)

so T s
y is continuous. �

Using the intertwining operator we can introduce a symmetric convolution on Hbs(�p)′.
For any θ in Hbs(�p)′, according to (2.3), the radius function R(θ◦T s

y) � p
√

R(θ)p + ‖y‖p.
Then, arguing as in [2, Theorem 6.1], it turns out that, for fixed f ∈ Hbs(�p), the function
y �→ θ ◦ T s

y(f) also belongs to Hbs(�p).

Definition 2.6. For any φ and θ in Hbs(�p)′, their symmetric convolution is defined
according to

(φ � θ)(f) = φ(y �→ θ(T s
yf)).

Corollary 2.7. If φ, θ ∈ Mbs(�p), then φ � θ ∈ Mbs(�p).

Proof. The multiplicativity of T s
y yields that φ � θ is a character. Using inequality

(2.3), we obtain that
R(φ � θ) � p

√
R(φ)p + R(θ)p.

Hence, φ � θ ∈ Mbs(�p). �
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Next, we look at the relationship between the spectra of Hbs(�p) and Hb(�p). If
ϕ ∈ Mb(�p), then the restriction ϕs of ϕ to Hbs(�p) is a complex homomorphism of
Hbs(�p). According to [13] or [14], there exists a sequence of Banach spaces (En)∞

n=1
and a sequence of maps δ(n) : En → Mb(�p), where E1 = �p, the space En coincides
with the subspace of all functionals on P(n�p) that vanish on finite sums of products of
polynomials of degree less than n, and δ(1)(z)(f) = f(z) such that, for every ϕ ∈ Mb(�p),

ϕ(f) =
∞∗

n=1
δ(n)(un)(f) (2.4)

for some un ∈ En, n = 1, 2, . . . .
Hence, for every ϕ ∈ Mb(�p), ϕs has the representation

ϕs =
( ∞∗

n=1
δ(n)(un)

)s
.

Can we extend this formula for an arbitrary complex homomorphism of Hbs(�p)? Clearly,
it can be done if we can extend each character in Mbs(�p) to a character in Mb(�p).

Proposition 2.8. If there exists a continuous homomorphism Φ : Hb(�p) → Hbs(�p),
then every character θ ∈ Mbs(�p) can be extended to a character θ0 ∈ Mb(�p) by the
formula θ0 = θ ◦ Φ. If, moreover, Φ is a projection, then (θ0)s = θ and, furthermore, for
every ϕ and θ ∈ Mbs(�p), we have ψ and ξ ∈ Mb(�p) such that

(ϕ � θ) = (ψ ∗ ξ)s.

Proof. Let ϕ and θ be arbitrary elements in Mbs(�p). It is clear that θ0 = θ ◦ Φ and
φ0 = φ ◦ Φ belong to Mb(�p). According to [2], there exist nets (xα) and (yβ) in �p such
that ϕ(Φ(P )) = limα P (xα) and θ(Φ(P )) = limβ P (yβ) for all polynomials P ∈ P(�p).
Let us suppose that Φ is a projection. Then, ϕ(P ) = limα P (xα) and θ(P ) = limβ P (yβ)
for all polynomials P ∈ Ps(�p). It is a simple calculation to check that

(ϕ � θ)(Fk) = lim
α

lim
β

Fk(xα • yβ) for all k.

Put L(x) := (x • 0) and R(x) := (0 • x). Both L and R are analytic self-maps of �p.
Therefore, we have the composition operators CL(f) = f ◦ L and CR(f) = f ◦ R. Both
act on Hb(�p) and leave Hbs(�p) invariant. Define ψ := ϕ0 ◦ CL and ξ := θ0 ◦ CR. If we
set x′

α = xα • 0 and y′
β = 0 • yβ , it turns out that

ψ(P ) = lim
α

P (x′
α) and ξ(P ) = lim

β
P (x′

β).

Now, since

(ψ ∗ ξ)(Fk) = lim
α

lim
β

Fk(x′
α + y′

β) = lim
α

lim
β

Fk(xα • yβ) = (ϕ � θ)(Fk) for all k,

these identities are also true for every symmetric polynomial. Thus, the above equation
holds for every function f ∈ Hbs(�p). �
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Note that, for the finite-dimensional case, there is an algebraic isomorphism Φn from
the algebra of entire functions H(Cn) to the algebra of symmetric entire functions Hs(Cn)
given by

Φn : f(t1, . . . , tn) �→ f

( n∑
k=1

tk,

n∑
k=1

t2k, . . . ,

n∑
k=1

tnk

)
.

This holds because the map

Fn : (t1, . . . , tn) �→
( n∑

k=1

tk,

n∑
k=1

t2k, . . . ,

n∑
k=1

tnk

)

acts from Cn onto Cn (see, for example, [1]).
As the following proposition will show, this type of construction fails in the infinite-

dimensional case, since it implies that the range F(�p) of

F : x �→ (F�p�(x), . . . , Fn(x), . . . )

is never a linear space for any 1 � p � ∞.

Proposition 2.9. If (ξ1, . . . , ξn, . . . ) is a non-zero sequence in F(�p), then (−ξ1, . . . ,

−ξn, . . . ) does not belong to F(�p).

Proof. Let x ∈ �p, x �= 0, such that Fn(x) = ξn, n � �p�. Suppose that there exists
y ∈ �p such that Fn(y) = −ξn, n � �p�. Then Fn(x • y) = ξn − ξn = 0 for all n � �p�.
According to [1], x • y = 0, but this is impossible because x �= 0. �

Let (ξn) be a sequence of complex numbers. Consider a map Ξ : Fn �→ ξn for all n,
and extend it to a map on Ps(�p) by linearity and multiplicativity, that is, for

P = q(F�p�, . . . , F�p�+m−1),

define
Ξ(P ) = Ξ(q(F�p�, . . . , F�p�+m−1)) = q(ξ1, . . . , ξm).

It is evident that Ξ is a homomorphism.

Question 2.10. Under which conditions on (ξn) is the map Ξ continuous on Ps(�p)?

If there exists x such that Fk(x) = ξk for all k, then it is clear that Ξ is continuous.
Next we show that there is a continuous homomorphism Ξ which is not an evaluation

at some point of �p. In [1, Example 3.1] a continuous homomorphism ϕ on the uniform
algebra Aus(B�p) was constructed such that ϕ(Fp) = 1 and ϕ(Fi) = 0 for all i > p. Note
that Aus(B�p

) ⊃ Hbs(�p) and R(ϕ) = 1; hence

Ξ := ϕ|Hbs(�p) ∈ Mbs(�p).

However, there is no point x ∈ �p for which the linear multiplicative functional of evalu-
ation at x is equal to Ξ [1, Corollary 1.4].
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2.3. An algebra of symmetric functions on the polydisc of �1

Let us denote

D =
{

x =
∞∑

i=1

xiei ∈ �1 : sup
i

|xi| < 1
}

.

It is easy to see that D is an open unbounded set. We shall call D the polydisc in �1.

Lemma 2.11. For every x ∈ D, the sequence F(x) = (Fk(x))∞
k=1 belongs to �1.

Proof. First, let us consider x ∈ �1 such that

‖x‖ =
∞∑

i=1

|xi| < 1

and let us calculate F(x) = (Fk(x))∞
k=1. We have

‖F(x)‖ =
∞∑

k=1

|Fk(x)|

=
∞∑

k=1

∣∣∣∣
∞∑

i=1

xk
i

∣∣∣∣

�
∞∑

k=1

∞∑
i=1

|xi|k

�
∞∑

k=1

( ∞∑
i=1

|xi|
)k

=
∞∑

k=1

‖x‖k

=
‖x‖

1 − ‖x‖
< ∞.

In particular,

‖F(λek)‖ =
|λ|

1 − |λ| for |λ| < 1.

If x is an arbitrary element in D, pick m ∈ N such that

∞∑
i=m+1

|xi| < 1.

Set u = x − (x1, . . . , xm, 0 . . . ) and note that

Fk(x) = Fk(x1e1) + · · · + Fk(xmem) + Fk(u)
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with

‖xkek‖ < 1, k = 1, . . . , m, ‖u‖ < 1.

Also,

‖F(xkek)‖ � ‖x‖∞
1 − ‖x‖∞

.

Hence,

‖F(x)‖ =
∥∥∥∥

m∑
k=1

F(xkek) + F(u)
∥∥∥∥

�
m∑

k=1

‖F(xkek)‖ + ‖F(u)‖

< ∞.

�

Note that F is an analytic mapping from D into �1, since F(x) can be represented as
a convergent series

F(x) =
∞∑

k=1

Fk(x)ek

for every x ∈ D and F is bounded in a neighbourhood of zero [5, p. 58].

Proposition 2.12. Let g1, g2 ∈ Hb(�1). If g1 �= g2, then there exists x ∈ D such that
g1(F(x)) �= g2(F(x)).

Proof. It is sufficient to show that if, for some g ∈ Hb(�1), we have g(F(x)) = 0 for
all x ∈ D, then g(x) ≡ 0.

Let

g(x) =
∞∑

n=1

Qn(x),

where Qn ∈ P(n�1) and

Qn

( ∞∑
n=1

xiei

)
=

∑
k1+···+kn=n

∑
i1<···<in

qn,i1···inxk1
i1

· · ·xkn
in

.

For any fixed x ∈ D and t ∈ C such that tx ∈ D, let

g(F(tx)) =
∞∑

j=1

tjrj(x)

be the Taylor series at the origin. Then

∞∑
n=1

Qn(F(tx)) = g(F(tx)) =
∞∑

j=1

tjrj(x).
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Let us compute rm(x). We have

rm(x) =
∑
k<m

k1i1+···+knin=m

qk,i1···in
F k1

i1
(x) · · ·F kn

in
(x). (2.5)

It is easy to see that the sum on the right-hand side of (2.5) is finite.
Since g(F(x)) = 0 for every x ∈ D, we have rm(x) = 0 for every m. Furthermore, as

F1, . . . , Fn are algebraically independent, qk,i1···in
= 0 in (2.5) for an arbitrary k < m,

k1i1 + · · · + knin = m. Since this is true for every m, Qn ≡ 0 for n ∈ N. So g(x) ≡ 0
on �1. �

Let us denote by H�1
s (D) the algebra of all symmetric analytic functions that can

be represented by f(x) = g(F(x)), where g ∈ Hb(�1), x ∈ D. In other words, H�1
s (D)

is the range of the one-to-one composition operator CF (g) = g ◦ F acting on Hb(�1).
According to Proposition 2.12, the correspondence Ψ : f �→ g is a bijection from H�1

s (D)
onto Hb(�1). Thus, we endow H�1

s (D) with the topology that turns the bijection Ψ into a
homeomorphism. This topology is the weakest topology on H�1

s (D) in which the following
seminorms are continuous:

qr(f) := ‖(Ψ(f))‖r = ‖g‖r = sup
‖x‖�1�r

|g(x)|, r ∈ Q.

Note that Ψ is a homomorphism of algebras. So we have proved the following propo-
sition.

Proposition 2.13. There is an onto isometric homomorphism between the algebras
H�1

s (D) and Hb(�1).

Corollary 2.14. The spectrum M(H�1
s (D)) of H�1

s (D) can be identified with Mb(�1).
In particular, �1 ⊂ M(H�1

s (D)), that is, for arbitrary z ∈ �1 there is a homomorphism
ψz ∈ M(H�1

s (D)) such that ψz(f) = Ψ(f)(z).

The following example shows that there exists a character on H�1
s (D) that is not an

evaluation at any point of D.

Example 2.15. Let us consider a sequence of real numbers (an), |an| < 1, such that
(an) ∈ �2 \ �1 and such that the series

∑∞
n=1 an conditionally converges to some number

C. Despite (an) /∈ �1, evaluations on (an) are determined for every symmetric polynomial
on �1. In particular,

F1((an)) = C, Fk((an)) =
∑

ak
n < ∞ and {Fk((an))}∞

k=1 ∈ �1.

So (an) ‘generates’ a character on H�1
s (D) by the formula ϕ(f) = Ψ(f)(F((an))).

Since (an) ∈ �2, Fk((aπ(n))) = Fk((an)), k > 1. Note that there exists a permutation on
the set of positive integers, π, such that

∞∑
n=1

aπ(n) = C ′ �= C.
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For such a permutation π we may use the same construction as above and obtain a
homomorphism ϕπ ‘generated by evaluation at (aπ(n))’, ϕπ(f) = Ψ(f)(F((aπ(n)))).

Let us suppose that there exist x, y ∈ D such that ϕ(f) = f(x) and ϕπ(f) = f(y) for
every function f ∈ H�1

s (D). Since ϕ(Fk) = ϕπ(Fk), k � 2, it follows from [1, Corollary
1.4] that there is a permutation of the indices that transforms the sequence x into the
sequence y. But this cannot be true, because F1(x) = ϕ(F1) �= ϕπ(F1) = F1(y). Thus, at
least one of the homomorphisms ϕ and ϕπ is not an evaluation at some point of D.

Note that the homomorphism ‘generated by evaluation at (an)’ is a character on Ps(�1)
too, but we do not know whether this character is continuous in the topology of uniform
convergence on bounded sets.

2.4. Mean symmetrization

For a given topological semigroup G, B(G) denotes the Banach algebra of all bounded
complex functions on G, and C(G) denotes its subalgebra of continuous functions.

Let U be a subalgebra of B(G). A mean of U is a complex-valued linear functional ϕ

on U that is positive (that is, ϕ(f) � 0 whenever f � 0, f ∈ U) and ϕ(1) = 1. A mean
ϕ is called invariant (or bi-invariant) if it is invariant with respect to both left and right
translation by any element of g ∈ G.

A topological semigroup G is called amenable if there is an invariant mean on B(G).
It is well known [4, p. 89] that G0 is an amenable group. Let λ be the (discrete) Haar
measure on G0, λ(σ) = 1 for any σ ∈ G0. It is easy to see that, for every σ ∈ G0,

lim
n→∞

λ(σGn∆Gn)
λ(Gn)

= 0.

According to [4, pp. 80, 147], there is an invariant mean on C(G0) defined as

ϕ(g) = lim
U

λ(Gn)−1
∫

Gn

g(σ) dλ = lim
U

1
n!

∑
σ∈Gn

g(σ), (2.6)

where U is some free ultrafilter on the set of positive integers.
Now let G be a subgroup of isometric operators on a Banach space X. A subset V ⊂ X

is G-symmetric if σ(x) ∈ V for every x ∈ X and σ ∈ G. We assume that G is endowed
with the topology of pointwise convergence on X. For a given subalgebra A of bounded
functions on a G-symmetric subset V , f ∈ A and x ∈ X, we define a function on G,
(f, x) ∈ B(G) by (f, x)(σ) = f(σ(x)). If f is continuous, then (f, x) is continuous as well.

Proposition 2.16. Let ϕ be a continuous invariant mean of U ⊂ B(G) and let A be a
uniform algebra of functions on V such that (f, x) ∈ U for every f ∈ A and x ∈ V . Then
there exists a continuous operator of symmetrization Sϕ that maps A into a uniform
algebra of bounded G-symmetric functions on X.

Proof. Set
Sϕ(f) = ϕ(f, x).
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Since ϕ is an invariant mean of U and (f, x) ∈ U ,

Sϕ(f)(σx) = ϕ(f, σ(x)) = ϕ(f, σ0(x)) = Sϕ(f)(x),

where σ0 is the identity in G. So Sϕ(f) is symmetric. Evidently, if ‖x‖ � 1, then
‖(f, x)‖ � ‖f‖ and the set

{(f, x) : ‖f‖ � 1 and ‖x‖ � 1}

is a subset of {(f, x) : ‖(f, x)‖ � 1}. Hence,

‖Sϕ‖ = sup
‖f‖�1

‖ϕ(f, ·)‖ = sup
‖x‖�1,‖f‖�1

|ϕ(f, x)| � sup
‖(f,x)‖�1

|ϕ(f, x)| = ‖ϕ‖.

�

Corollary 2.17. Let V be a G0-symmetric subset of �p, 1 � p < ∞. There exists
a continuous linear projection operator S on the algebra of continuous functions on V

that are bounded on bounded subsets, Cb(V ), into the algebra of G0-symmetric bounded
functions on V , Bs(V ), such that

S(f)(x) = lim
U

1
n!

∑
σ∈Gn

f(σ(x)) (2.7)

and

‖S(f)‖V := sup
x∈V

|S(f)(x)| � ‖f‖V . (2.8)

Proof. Let ϕ be the invariant mean on G0 that is defined by (2.6). Put S := Sϕ(f).
By Proposition 2.16, S is a continuous linear map from Cb(V ) to Bs(V ). Since S(f) = f

for any f ∈ Bs(V ), S is a projection. Formula (2.7) follows immediately from (2.6).
Since V is symmetric, ‖f(σ(·))‖V = ‖f‖V for every σ ∈ G0. Then, for each n,∥∥∥∥ 1

n!

∑
σ∈Gn

f(σ(·))
∥∥∥∥

V

� 1
n!

∑
σ∈Gn

‖f(σ(·))‖V = ‖f‖V .

�

Proposition 2.18. Let V be a G0-symmetric subset of �p, 1 � p < ∞. If f is uniformly
continuous on V , then S(f) is uniformly continuous on V . If V is open and f is analytic
on V , then S(f) is analytic on V .

Proof. Let ε > 0 be given and let δ > 0 be chosen such that if ‖x − y‖ < δ, then
|f(x) − f(y)| < ε. Since ‖x − y‖ < δ implies ‖σ(x) − σ(y)‖ < δ, it follows that∣∣∣∣ 1

n!

∑
σ∈Gn

f(σ(x)) − 1
n!

∑
σ∈Gn

f(σ(y))
∣∣∣∣ < ε.

Consequently, |S(f)(x) − S(f)(y)| � ε.
For the last statement, it is sufficient to show that S(P ) is an n-homogeneous poly-

nomial if P is too. This follows from the linearity of the mapping σ : x �→ σ(x) for all
σ ∈ G0. �
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Corollary 2.19. Hbs(�p) is a complemented closed subspace of Hb(�p).

The next example shows that S is not a homomorphism.

Example 2.20. Let P and Q be two functionals on �1 given by

P (x) =
∞∑

i=1

x2i−1 and Q(x) =
∞∑

i=1

x2i.

Observe that

S
( ∞∑

i=1

xi

)
= lim

U

1
n!

( ∑
σ∈Gn

∞∑
i=1

xσ(i)

)

= lim
n→∞

1
n!

( ∑
σ∈Gn

∞∑
i=1

xσ(i)

)

=
∞∑

i=1

xi.

Since

(P + Q)(x) =
∞∑

i=1

xi

and Q is the composition of P and the shift operator, it follows that

S(P )(x) = S(Q)(x) = 1
2

∞∑
i=1

xi.

So

S(P )S(Q)(x) = 1
4

∞∑
i,j=1

xixj

�= S
( ∞∑

i,j=1

x2i−1x2j

)

= S(PQ)(x)

because S(P )S(Q)(x) contains terms 1
4x2

i , i = 1, 2, . . . , and S(PQ)(x) does not.

3. The algebra of subsymmetric analytic functions on �p

3.1. Projection homomorphisms

In [8] a spreading model technique was used to construct a homomorphism from P(X)
to Psbs

(X). It was proved that, for a given polynomial P on �p, there exists an infinite
set H of positive integers and a polynomial P ∗ on �p such that

P ∗
( k∑

i=1

xiei

)
= lim

n1<···<nk
nj∈H

P

( k∑
i=1

xieni

)
.
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According to [6, pp. 122, 123], P ∗ can be described in the following way. Let U be a
free ultrafilter on N. Then

P ∗
( k∑

i=1

xiei

)
= lim

U,1
· · · lim

U,k
P

( k∑
i=1

xieni

)
. (3.1)

Formula (3.1) means that at first we take the limit via the ultrafilter U over the index
k � nk at the basis element ek with the coordinate xk. We denote this limit by

lim
U,k

P (x1e1 + · · · + xk−1ek−1 + xkenk
).

The limit exists because P is bounded. Next we take the limit over the index k−1 � nk−1

at ek−1, and so on.
Because of the way P ∗ is defined, it depends only on P and the ultrafilter U . We

denote by Ssbs
the map P �→ P ∗ for a fixed free ultrafilter U . It is easy to see that

P ∗ is subsymmetric on �p. From (3.1), it follows that Ssbs
is a homomorphism and

‖P ∗‖ � ‖P‖.
Note that in the proof of [8, Theorem 3.1] the fact that P �→ P ∗ is a homomorphism

was used.

Corollary 3.1. Let V be a G-symmetric domain of �p, 1 � p < ∞. Then, for any
algebra A of analytic functions on V such that the symmetric polynomials are dense, Ssbs

can be extended to a continuous homomorphism onto its subalgebra Asbs
of subsymmetric

functions. Moreover, if f is continuous on the closure V̄ , then Ssbs
(f) is continuous on

V̄ , and if f is bounded on some subsymmetric subset V0 ⊂ V , then Ssbs
(f) is also.

We will denote this extension by the same symbol Ssbs
.

Corollary 3.2. Every complex homomorphism ϕ ∈ Mbsbs
(�p) can be extended to

some complex homomorphism ψ ∈ Mb(�p) by

ψ(f) = ϕ(Ssbs
(f)), f ∈ Hb(�p).

3.2. Relation to the symmetric case

Motivated by Proposition 2.8, we seek to find examples of the existence of projection
homomorphisms from algebras of analytic functions onto their symmetric counterpart.

Let us denote by Pn(�1) (respectively, Ps,n(�1), Psbs ,n(�1)) the algebra of (respectively,
symmetric, subsymmetric) polynomials on �1 generated by all (respectively, symmetric,
subsymmetric) polynomials of degree less than or equal to n. The notation Hb,n(�1),
Hbs,n(�1), Hsbs ,n(�1), Mb,n(�1), Mbs,n(�1) and Msbs ,n(�1) is obvious.

First we consider the case where n = 2. Since Hbs,2(�1) = Hsbs ,2(�1), the restriction
Ssbs ,2 of Ssbs

to Hb,2(�1) is a projection homomorphism from Hb,2(�1) onto Hbs,2(�1).
Let Θ : Hbs,2(�1) → Hbs,2(�1) be a homomorphism defined on the basis functions F1, F2

by
Θ(F1) = F2, Θ(F2) = F1.
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According to [1], there is a topological isomorphism between the algebra Hbs,2(�1) and
the algebra of entire functions of two variables H(C2) given by

Hbs,2(�1) � u(F1(x), F2(x)) ↔ u(t1, t2) ∈ H(C2).

Thus, Θ is evidently continuous. Hence Θ ◦ Ssbs
is a continuous homomorphism from

Hs,2(�1) to itself with the ‘pathological’ property that

Θ ◦ Ssbs
(F1) = F2, Θ ◦ Ssbs

(F2) = F1.

Next we will see that the case where n = 3 is much more complicated.

Lemma 3.3. The polynomials F1, F2, F3 and

F1,2(x) =
∑
i<j

xix
2
j

algebraically generate Psbs ,3(�1).

Proof. Since F1, F2, F3, F1,2 and F2,1 form a linear basis in Psbs ,3(�1) and (the non-
symmetric polynomial) F1,2 cannot be represented by an algebraic combination of (the
symmetric polynomials) F1, F2 and F3, it is enough to show that F2,1 belongs to the
algebraic span of F1, F2, F3 and F1,2. But it is easy to see that

F2,1(x) = F1(x)F2(x) − F3(x) − F1,2(x)

for every x ∈ �1. �

Proposition 3.4. F1, F2, F3 and F1,2 form an algebraic basis in Psbs ,3(�1).

Proof. It is enough to check that F1, F2, F3 and F1,2 are algebraically independent.
Let us suppose that

P (F1(x), F2(x), F3(x), F1,2(x)) ≡ 0

for some non-trivial polynomial P on C4.
For any fixed n � 3 and any x = (x1, . . . , xn, 0, . . . , 0, . . . ), a direct calculation shows

that
F1,2(x1, . . . , xn, xn, . . . , x1, 0, . . . , 0, . . . ) = 2(F1(x)F2(x) − 1

2F3(x)).

Then we have

P (F1(x1, . . . , xn, xn, . . . , x1, 0, . . . , 0, . . . ),

F2(x1, . . . , xn, xn, . . . , x1, 0, . . . , 0, . . . ),

F3(x1, . . . , xn, xn, . . . , x1, 0, . . . , 0, . . . ),

F1,2(x1, . . . , xn, xn, . . . , x1, 0, . . . , 0, . . . ))

= P (2F1(x), 2F2(x), 2F3(x), F1,2(x1, . . . , xn, xn, . . . , x1, 0, . . . , 0, . . . ))

= P (2F1(x), 2F2(x), 2F3(x), 2(F1(x)F2(x) − 1
2F3(x)))

= 0.
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Since n � 3 for an arbitrary vector (t1, t2, t3) ∈ C3, we can find [1] an element x =
(x1, x2, x3, 0, . . . , 0, . . . ) such that

Fk(x) = tk, 1 � k � 3.

So
P (2t1, 2t2, 2t3, 2(t1t2 − 1

2 t3)) ≡ 0.

Now we want to show that P can be assumed to be irreducible. Let P = P1P2. Then

P1(2t1, 2t2, 2t3, 2(t1t2 − 1
2 t3))P2(2t1, 2t2, 2t3, 2(t1t2 − 1

2 t3)) ≡ 0.

Hence, either

P1(2t1, 2t2, 2t3, 2(t1t2 − 1
2 t3)) ≡ 0

or

P2(2t1, 2t2, 2t3, 2(t1t2 − 1
2 t3)) ≡ 0.

So, without loss of generality, we can assume that P is irreducible.
Consider the polynomial S(u1, u2, u3, u4) = 1

2 (u1u2 −u3)−u4. Then kerS ⊂ ker P . By
the Hilbert Nullstellensatz [10, Proposition 1.2, Theorem 1.3A], P belongs to the radical
of the ideal (S) generated by S. Since S is irreducible, (S) coincides with its radical. So
P = SQ for some polynomial Q. Because P is irreducible too, we have S = cP for some
constant c. Thus, 1

2 (F1F2 − F3) − F1,2 ≡ 0 or

F1,2 = 1
2 (F1F2 − F3).

However, this is impossible. �

Proposition 3.5. There exists a continuous projection homomorphism Ss,3 of P3(�1)
onto Ps,3(�1).

Proof. First we define a homomorphism J from Psbs ,3(�1) onto Ps,3(�1) determining
it on the algebraic basis of Psbs ,3(�1) by

J(Fk) = Fk, k = 1, 2, 3,

and
J(F1,2) = 0.

Evidently, J is a well-defined homomorphism.
Set

Ss,3 = J ◦ Ssbs ,3, (3.2)

where Ssbs ,3 is the restriction of Ssbs
to the space Psbs ,3(�1). Since the algebraic basis

of subsymmetric polynomials contains the algebraic basis of symmetric polynomials,
J(P ) = P if P is symmetric.
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Arguing as in [1, Theorem 2.1], it is not difficult to show that Hsbs ,3(�1) is isomorphic
to H(C4) by means of the map

Hsbs ,3(�1) � u(F1(x), F2(x), F3(x), F1,2(x)) ↔ u(t1, t2, t3, t4) ∈ H(C4).

So J is continuous. �

We denote by the same symbol Ss,3 the continuous extension of this homomorphism
to Hb,3(�1) onto Hbs,3(�1) ⊂ Hbs(�1), the closed algebra generated by all symmetric poly-
nomials of degree less than or equal to 3.

Corollary 3.6. There exists a continuous embedding of the set Mbs,3(�1) into
Mb,3(�1):

Mbs,3(�1) � ϕ �→ ϕ ◦ Ss,3 ∈ Mb,3(�1),

where Mbs,3(�1) is the spectrum of Hbs,3(�1) and Mb,3(�1) is the spectrum of Hb,3(�1).

Unfortunately, we do not know how to describe an algebraic basis for the algebra of
all subsymmetric polynomials.
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