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A Green function of a boundary value problem of a vector quasidifferential equation with
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Introduction

Linear differential operators generated by differential ex-
pressions with smooth coefficients were studied quite
comprehensively in the literature (e.g., see [1]). How-
ever, applied problems often contain differential equa-
tions with discontinuous or even generalized functions
in the coefficients. Such problems much worse are in-
vestigated.

As early as in the 1950s, boundary value problems
were studied for ordinary differential equations of or-
der 2 and 4 describing the free vibrations of a string
and a beam that, in addition to a continuously dis-
tributed mass, bear lumped masses (beads) [2]. In [3]
the Schrodinger operator is explored on an unlimited
interval in the case when singular potential is, for ex-
ample, a finite or infinite sum of Dirac δ-functions.

Real problems often lead to differential expressions
that contain terms of the form (P (x)Y (m))(n) and can-
not be reduced to conventional differential expressions
by n-fold differentiation if the coefficient P (x) is not suf-
ficiently smooth. Such expressions are said to be qua-
sidifferential. The introduction of quasiderivatives is one
of the oldest and most efficient methods for their anal-
ysis [4, 5]. (The quasiderivatives are the components
of the vector used in the reduction of a quasidifferen-
tial equation to a system of first-order differential equa-
tions.) This method allows to give up the requirements
of the smoothness of the coefficients in quasidifferential
expressions.

At first mainly quasidifferential expressions with
continuous or summable by Lebesgue coefficients were
investigated in the works of D. Shin [4, 5] and his follow-
ing. However, attempts of application of this method to
investigation of quasidifferential expressions with distri-
butions were appeared later. In particular, the Green

matrix of a boundary value problem for a quasidiffer-
ential equation with a self-adjoint quasidifferential ex-
pression was constructed in the work [6]. In the case of
a boundary value problem for a scalar singular differ-
ential and quasidifferential equation the Green function
was constructed and the asymptotic behaviour of eigen-
values and eigenfunctions was investigated and also the
development by them was fulfilled in the works [7–9].

This work is devoted to the construction of the Green
function of a boundary value problem for a vector qua-
sidifferential equation with distributions in the coeffi-
cients and homogeneous boundary conditions. With the
help of the method of the introduction of quasideriva-
tives the properties of the Green functions of the adjoint
boundary problems are investigated.

I. Formulation of the problem

The real or complex-valued scalar function f(x) is called
the function of the boundary variation on the interval
[a, b], if the expression

v =

n−1∑
k=0

|f(xk+1)− f(xk)|

permits of the fixed supremum for all natural n and all
decompositions of the interval [a, b]: a = x0 < x1 <
. . . < xn = b. The least general supremum of all such
expressions is termed the total variation of the func-
tion f(x) on [a, b]. The real or complex-valued matrix
function F (x) has the boundary variation on the inter-
val [a, b], if every entry of this matrix has the boundary
variation on [a, b].
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Consider the differential expression

Lmn(y) ≡
n∑
i=0

m∑
j=0

(−1)m−j(Aij(x)y
(n−i))(m−j),

where m, n are natural numbers; Ai0(x), A0j(x) are
square matrix functions of order l with square summable
on the interval [a, b] entries; Aij(x) = B′

ij(x), Bij(x),

i = 1, n, j = 1,m, are square matrix functions of order
l whose entries have bounded variation on the interval
[a, b] and are right continuous on it, and y(x) is a column
vector. The prime stands for the generalized differentia-
tion, and therefore, the entries of the matrices Aij(x) are
measures [?]. The matrix functions Aij(x) and Bij(x)
are assumed to be complex-valued. We assume also,
that A00(x) such matrix for which the measurable and

limited matrix function A−1
00 (x) exists.

The quasiderivatives of y(x) corresponding to the
expression Lmn(y) are defined as the functions given by
the formulas
y[k] = y(k), k = 0, . . . , n− 1; y[n] =

n∑
i=0

Ai0y
(n−i);

y[n+k] = − (y[n+k−1])′ +
n∑
i=0

Aiky
(n−i), k = 1, . . . ,m.

We consider also corresponding to the quasidifferen-
tial expression Lmn(y) the equation

Lmn(y) = λy, (1)

where λ is a complex parameter, and the boundary con-
ditions

Uν(y) ≡
r−1∑
j=0

Γνjy
[j](a) +

r−1∑
j=0

∆νjy
[j](b) = 0, ν = 1, . . . , r, (2)

which are set with the help of r the linearly independent forms Uν(y), r = n+m.
Together with the boundary value problem (1), (2) for the vector quasidifferential equation we consider also the

associated to it boundary value problem for the matrix quasidifferential equation

Lmn(Y ) = λY, (3)

Uν(Y ) ≡
r−1∑
j=0

ΓνjY
[j](a) +

r−1∑
j=0

∆νjY
[j](b) = 0, (4)

where Y (x) is a square matrix of order l.

By using the rectangular matrix Y =
(
Y, Y [1], . . . , Y [r−1]

)T
(where T stands for transposition), one can reduce

the equation (3) to the system of first-order differential equations

Y ′ = B′(x)Y, (5)

where the matrix-measure

B′ (x) =



0 El · · · 0 0 0 · · · 0

· · · · · ·
. . . · · · · · · · · · · · · · · ·

0 0 · · · El 0 0 · · · 0

Ãn0 Ãn−1,0 · · · Ã10 A−1
00 0 · · · 0

Ãn1 Ãn−1,1 · · · Ã11 A01A
−1
00 −El · · · 0

· · · · · · · · · · · · · · · · · ·
. . . · · ·

Ãn,m−1 Ãn−1,m−1 · · · Ã1,m−1 A0,m−1A
−1
00 0 · · · −El

Ãnm − λEl Ãn−1,m · · · Ã1m A0mA
−1
00 0 · · · 0


,

Ãi0 = −A−1
00 Ai0, Ãij = Aij − A0jA

−1
00 Ai0, i = 1, . . . , n, j = 1, . . . ,m (here 0 is the zero matrix of order l, El is the

identity matrix of order l). Obviously, that the jump of the matrix B(x) looks like

∆B(x) = B(x)−B(x− 0) =


0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0

∆Bn1 · · · ∆B11 0 · · · 0
· · · · · · · · · · · · · · · · · ·

∆Bnm · · · ∆B1m 0 · · · 0

.
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Then, owing to the relation [∆B(x)]2 ≡ 0, the sys-
tem (5) is well posed [11].

The boundary conditions (4) also can be rewrited in
the matrix form

WaY (a) +WbY (b) = 0 (6)

with the block matrices Wa = (Γν,j−1)
r
ν,j=1, Wb =

(∆ν,j−1)
r
ν,j=1.

A solution of the matrix quasidifferential equation
is understood as the first block component Y (x) of the
rectangular matrix Y (x) of the system (5), which sat-
isfies it in the sense of distributions. It was proved
in [12, 13, p. 134]that there exists a unique solution
of the initial problem for the equation (3) in the class
of absolutely continuous matrix functions on [a, b], its
quasiderivatives of order less than (n − 1) are abso-
lutely continuous on [a, b], and all entries of the rest
quasiderivatives of order less than r − 1 inclusive have
bounded variation on the interval [a, b] and are right
continuous on it.

The system adjoint to the system (5) defines by the
matrix relation (see [12])

Z ′ = −(B∗(x))
′
Z, (7)

where Z =
(
Z{r−1}, . . . , Z{1}, Z

)T
, the asterisk stands

for Hermitian conjugation, and the curly braces are used
to denote quasiderivatives in the sense of the adjoint
equation. From the relation (7) one can notice [12, 13,
p. 135], that they are defined by the formulas

Z{k} = Z(k), k = 0, . . . ,m− 1;

Z{m} = −
m∑
j=0

A∗
0jZ

(m−j);

Z{m+k} = − (Z{m+k−1})′ −
m∑
j=0

A∗
kjZ

(m−j),

k = 1, . . . , n.

From (7) one can see ([12, 13, p. 135]), that the ad-
joint quasidifferential equation to the equation (3) has
the form

L∗
mn(Z) ≡

m∑
j=0

n∑
i=0

(−1)n−i(A∗
ij(x)Z

(m−j))(n−i) = λ̄Z,

(8)
where the bar stands above λ for complex conjugation.

II. Adjoint boundary conditions

We consider the expression Z∗Y and differentiate it with
the help of formulas (5), (7):

(Z∗Y )
′
= (Z∗)

′
Y + Z∗Y ′ = −

(
(B∗)

′
Z
)∗
Y + Z∗B′Y =

= −Z∗B′Y + Z∗B′Y = 0.

Such differentiation is possible, as products (Z∗)
′
Y

and Z∗Y ′ are correct on the basis of that fact, that Y ,
Y [1], . . . , Y [n−1], Z, Z{1}, . . . , Z{m−1} are matrices con-
sisting of absolutely continuous on [a, b] functions, and

Y [n], Y [n+1], . . . , Y [r−1], Z{m}, Z{m+1}, . . . , Z{r−1}

are the matrices whose entries have bounded variation
on the interval [a, b] (see [12, 13, p. 136]). Consequently,
Z∗Y is the constant and therefore

(Z∗Y )|ba = 0. (9)

By the last relation it is possible to determine the
adjoint boundary conditions. For this purpose we sup-
plement the linear forms U1(Y ), U2(Y ), . . . , Ur(Y ) by
forms Ur+1(Y ), Ur+2(Y ), . . . , U2r(Y ) to the linearly in-
dependent system of 2r linear forms. Then the system

Uν(Y ) =
r−1∑
j=0

ΓνjY
[j](a)+

r−1∑
j=0

∆νjY
[j](b), ν = 1, . . . , 2r,

can be solved uniquely relatively unknowns Y [q](a),
Y [q](b), which are possible to determine by U1(Y ), . . . ,
U2r(Y ). By substituting got Y [q](a), Y [q](b) (q =
0, . . . , r − 1) into the bilinear form in the left-hand side
of the relation (9), we obtain

(Z∗Y )|ba =

2r∑
ν=1

Aν(ξ)Bν(η),

where η =
(
Y [q](a), Y [q](b)

)
, ξ =

(
Z∗{q}(a), Z∗{q}(b)

)
,

q = 0, . . . , n − 1, and Bν(η) = Uν(Y ). We denote
A2r(ξ) = V1(Z), . . . , A1(ξ) = V2r(Z). Obviously, in
order that the equality (9) holds true, the relations

Vν(Z) = 0, ν = 1, . . . , r (10)

must be valid. We say that they are adjoint boundary
conditions to the conditions (4) (as the boundary condi-
tions equal zero it is possible to carry the complex con-
jugation from Z to the matrix of constant coefficients at
it). The adjoint boundary conditions can be represented
in the vector form Vν(z) = 0, ν = 1, . . . , r.

If |Wa| ̸= 0 and |Wb| ̸= 0 simultaneously in the
equation (6), then it is readily to make sure in that the
boundary conditions for the adjoint equation are in the
form Z∗(a)W−1

a + Z∗(b)W−1
b = 0.

III. Green function of the boundary
value problem

Now consider the nonhomogeneous vector quasidifferen-
tial equation

Lmn(y) = λy + f ′, (11)

where f is a column vector, whose all entries have
bounded variation on [a, b]. Also consider the corre-
sponding matrix equation

Lmn(Y ) = λY + F ′, (12)

where a matrix F (x) consists of l columns f(x). By
using the rectangular matrix Y (see item 1), one can re-
duce the nonhomogeneous equation (12) to the system
of first-order differential equations

Y ′ = B′Y + F ′, (13)

72 Ìàòåìàòèêà

Lviv Polytechnic National University Institutional Repository http://ena.lp.edu.ua



Green Function of a Boundary Value Problem for a Vector Singular Quasidifferential Equation

where F (x) = (0, . . . , 0, −F (x))T . This system is well

posed by virtue of the conditions [∆B(x)]
2 ≡ 0 and

∆B(x)∆F (x) ≡ 0 are valid (see [?]).
Cauchy matrix function of the equation (3) is un-

derstood as the l × l matrix function K(x, t, λ), which
satisfies the equation (3) with respect to the first vari-
able, and, besides, K [i](t, t, λ) = 0, i = 0, . . . , r − 2,
K [r−1](t, t, λ) = E.

We construct the Green matrix function of the
boundary value problem (11), (2). Let K(x, t, λ) be
the Cauchy matrix function of the homogeneous equa-
tion (3). It is known [12, 13, p. 146], that K(x, a, λ),
K∗{1}∗(x, a, λ), . . . , K∗{r−1}∗(x, a, λ) form the funda-
mental solution system and the solution of the equation
(12) can be represented in the form

Y (x, λ) =
r∑

k=1

K∗{k−1}∗(x, a, λ)Ck +

x∫
a

K(x, t, λ)dF (t).

(14)
As, in according to [?, ?, p. 156],

Y [j](x, λ) =
r∑

k=1

K∗{k−1}∗[j](x, a, λ)Ck +

+

x∫
a

K [j](x, t, λ)dF (t), j = 1, . . . , r,

the substitution of the formula (14) to the boundary
conditions (4) gives the relations

Uν(Y ) =
r∑

k=1

Uν

(
K∗{k−1}∗(x, a, λ)

)
Ck +

+
r−1∑
j=0

∆νj

b∫
a

K [j](b, t, λ)dF (t), ν = 1, . . . , r. (15)

This can be represented in the form WC̃+B̃ = 0, where
C̃ = (C1, . . . , Cr)

T
, B̃ is a rl × l rectangular matrix,

W =
(
Uν(K

∗{k−1}∗(x, a, λ))
)r
ν,k=1

. In assumption that

λ is not an eigenvalue of the boundary value problem
(3), (4), the determinant of the system (15) is nonzero
∆(λ) ≡ detW ̸= 0. Then the constant matrices Ck can
be obtain from the system (15) uniquely. By substitut-
ing this values Ck into the formula (14), we obtain

Y (x, λ) = −
r∑

ν=1

r∑
k=1

r−1∑
j=0

b∫
a

K∗{k−1}∗(x, a, λ)×

× Wνk∆νj

∆(λ)
K [j](b, t, λ)dF (t) +

x∫
a

K(x, t, λ)dF (t),

where Wνk (ν, k = 1, . . . , r) is the matrix of order l,
which is transposed to the matrix consisting of the cofac-
tors of the entries of the matrix Uν

(
K∗{k−1}∗(x, a, λ)

)
in the determinant ∆(λ).

The matrix expression

G(x, t, λ) = −
r∑

ν=1

r∑
k=1

r−1∑
j=0

K∗{k−1}∗(x, a, λ)×

× Wνk

∆(λ)
∆νjK

[j](b, t, λ) + P (x, t, λ), (16)

where

P (x, t, λ) =

{
K(x, t, λ) for x > t
0 for x < t,

is termed the Green function of the boundary value
problem (11), (2).

It follows from the uniqueness of the choice of the
constants the uniqueness of the Green function. One
can see from the next theorem that this Green matrix
function, which is constructed only with the help of the
Cauchy matrix function and its mixed quasiderivatives,
is the analogue of the Green function in the classical
interpretation (see, for example, [1], pp. 115-116).

Theorem 1. In assumption that λ is not eigen-
value of the problem (11), (2), the solution of this prob-
lem can be given in the form

y(x) =

b∫
a

G(x, t, λ)df(t), (17)

where the Green matrix function G(x, t, λ) is represented
by the formula (16) and it possesses the next properties:

1) the quasiderivatives with respect to the first variable
G[k](x, t, λ) (k = 0, . . . , n−1) are the continuous matrix
functions of two variables x, t and they are the abso-
lutely continuous matrix functions with respect to the
each variable under the second one is fixed;

2) the quasiderivatives G[k](x, t, λ) (k = n, . . . , r − 1)
have bounded variation on [a, b] with respect to the first
variable and they are absolutely continuous with respect
to t;

3) G(x, t, λ) satisfies the equation (3) with respect to x
on the each of intervals [a, t), (t, b];

4) G(x, t, λ) satisfies the boundary conditions (4) with
respect to x;

5) under x = t the matrix function G(x, t, λ) satisfies
the conditions of a jump

G[k](t+ 0, t, λ)−G[k](t− 0, t, λ) = 0, k = 0, n− 1;
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G[n+s](t+ 0, t, λ)−G[n+s](t− 0, t, λ) =

= −
r∑

ν=1

r∑
k=1

r−1∑
j=0

n−1∑
i=0

∆Bn−i,s+1(t)K
(i)∗{k−1}∗(t, a, λ)

Wνk

∆(λ)
∆νjK

[j](b, t, λ), s = 0, . . . ,m− 2;

G[r−1](t+ 0, t, λ)−G[r−1](t− 0, t, λ) = E −
r∑

ν=1

r∑
k=1

r−1∑
j=0

n−1∑
i=0

∆Bn−i,m(t)K(i)∗{k−1}∗(t, a, λ)
Wνk

∆(λ)
∆νjK

[j](b, t, λ).

� Proof. The formula (17) is proved above. By
using the above-mentioned properties of the solutions
of the equation (3) and the adjoint one to it, it is easy
to prove the properties 1) – 4). For the proof of the
property 5) the relations

K∗{k−1}∗(x, t, λ) =

r∑
j=1

Yj(x, λ)Cjk(t, λ), k = 1, . . . , r,

(18)
are used. They follow from the fact that all
K∗{k−1}∗(x, t, λ) are the solutions of the equation (3);

Yj(x), j = 1, . . . , r, are a fundamental solution system
of the equation (3). Then, in consequence of the relation
from [12, 13, p. 134],

∆Y [n+s](x) =
n−1∑
i=0

∆Bn−i,s+1(x)Y
[i](x),

s = 0, . . . ,m− 1,

by expanding (18), one can obtain the property 5),
which completes the proof. �

Remark 1. Note that in the case of ∆Bij(x) = 0, i = 1, . . . , n, j = 1, . . . ,m, the property 5) takes the
“classical” form

G[k](t+ 0, t, λ)−G[k](t− 0, t, λ) = 0, k = 0, . . . , r − 2; G[r−1](t+ 0, t, λ)−G[r−1](t− 0, t, λ) = E.

Remark 2. The matrix function G(x, t, λ) can be also represented in the form

G(x, t, λ) = (−1)rl
1

∆(λ)

 Q11 · · · Q1l

· · · · · · · · ·
Ql1 · · · Qll

, (19)

where

Qij(x, t, λ) =

∣∣∣∣∣∣∣∣∣
Ki1(x, a, λ) · · · K

∗{r−1}∗
il (x, a, λ) Pij(x, t, λ)

U1(K11(x, a, λ)) · · · U1(K
∗{r−1}∗
1l (x, a, λ)) U1(P1j(x, t, λ))

· · · · · · · · · · · ·
Ur(Kl1(x, a, λ)) · · · Ur(K

∗{r−1}∗
ll (x, a, λ)) Ur(Plj(x, t, λ))

∣∣∣∣∣∣∣∣∣ . (20)

Indeed, by expanding (20) by the entries of the last
column and the first row it is not difficult to go from
(19) to the relation (16).

IV. Resolving kernel of the problem
(13), (6)

If λ is not an eigenvalue, the solution of the problem
(13), (6) can be represented in the form of the integral
of the resolving kernel (the Green matrix function of the
problem (13), (6)) and the vector F . This result is nec-
essary for further investigations of the properties of the
Green function of the problem (11), (2).

For the problem (13), (6) the formula (see [12])

Y (x) = Φ(x, a)Y (a) +

x∫
a

Φ(x, t)dF (t) (21)

holds true. Here Φ(x, t) = Φ(x, t, λ) is the fundamental
matrix of the system (5); it is represented in the form
Φ(x, t, λ) = R(x, λ)R−1(t, λ), where R(x, λ) is the in-
tegral matrix of the system (5). We can represent the
relation (21) as follows:

Y (x) = R(x, λ)C +

x∫
a

Φ(x, t, λ)dF (t), (22)

where C = R−1(a, λ)Y (a) is the rectangular matrix.
By substituting (22) in the conditions (6), owing to
|WaR(a, λ) +WbR(b, λ)| ̸= 0 (because λ is not an eigen-
value of the boundary problem), it is possible to obtain
the expression for the matrix C

C = −{WaR (a, λ) +WbR (b, λ)}−1

b∫
a

WbΦ(b, t, λ) dF (t).
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Therefore the formula (22) becomes

Y (x) =

b∫
a

M(x, t, λ)dF (t), (23)

where the resolving kernel

M(x, t, λ) =

{
Φ(x, t, λ)−R(x, λ){WaR(a, λ) +WbR(b, λ)}−1

WbΦ(b, t, λ) for x ≥ t

−R(x, λ){WaR(a, λ) +WbR(b, λ)}−1
WbΦ(b, t, λ) for x < t.

V. Relationship between the Green
functions of the adjoint boundary
value problems

Let H(x, t, λ) be the Green matrix function of the ad-
joint boundary value problem (8), (10). It is constructed
with the aid of the Cauchy matrix function R(x, t, λ) of
the homogeneous equation L∗

mn(Z) = λZ and its mixed
quasiderivatives in the sense of the initial quasidifferen-
tial equation and the adjoint one. It is not difficult to
satisfy oneself that the formulas, which are analogous to
(17) and (23), hold true also for the function H(x, t, λ).
Besides, it has the properties, which are similar to the
presented in the theorem 1. In particular, H(x, t, λ) and
its quasiderivatives H{k}(x, t, λ) (k = 1, . . . ,m−1) with
respect to the first variable are the absolutely continu-
ous with respect to the each of x, t under the second one
is fixed and they are the continuous with respect to the
totality of the variables x and t, but the rest quasideriva-
tives to order r− 1 have the bounded variation with re-
spect to x and they are the absolutely continuous with
respect to t. The next theorem holds true.

Theorem 1. Under x ̸= t, if λ is not an eigen-
value of the boundary value problem (11), (2), the Green
functions of the adjoint boundary value problem are re-
lated through the relationship

G(x, t, λ) = H∗(t, x, λ).

� Proof. We assume lossless the generality that
G(x, t, λ) and H(x, t, λ) are the Green functions of the
adjoint boundary value problems

Lmn(Y )− λY = −F1(x), (24)

Uν (Y ) =

r−1∑
j=0

ΓνjY
[j](a) +

r−1∑
j=0

∆νjY
[j](b) = 0,

ν = 1, . . . , r, (25)

L∗
mn(Z)− λ̄Z = F2(x), (26)

Vν (Z) =
r−1∑
j=0

Γ̃νjZ
{j}(a) +

r−1∑
j=0

∆̃νjZ
{j}(b) = 0,

ν = 1, . . . , r, (27)

correspondingly, where F1(x), F2(x) are the continuous
matrices on [a, b] and they consist of l identical columns

of the form f1(x) and f2(x). Owing to introduction the

rectangular matrices Y =
(
Y, Y [1], . . . , Y [r−1]

)T
and

Z =
(
Z{r−1}, . . . , Z{1}, Z

)T
, this problems reduce to

the problems{
Y ′ = B′Y + F1,
WaY (a) +WbY (b) = 0,

{
Z ′ = − (B∗)

′
Z + F2,

W̃aZ(a) + W̃bZ(b) = 0

correspondingly, where F1(x) = (0, . . . , 0, F1(x))
T
,

F2(x) = (F2(x), 0, . . . , 0)
T
, and Wa, Wb, W̃a, W̃b are

rl × rl numerical matrices.
Since the products (Z∗)

′
Y and Z∗Y ′ are well posed,

(Z∗Y )
′
= (Z∗)

′
Y + Z∗Y ′ =

= −Z∗B′Y + F ∗
2 Y + Z∗B′Y + Z∗F1 = Z∗F1 + F ∗

2 Y.

On the other hand, by taking into account the
method of the constructing the boundary conditions of
the adjoint boundary value problem (10), one can satisfy
oneself in validity of the relation (9) for the nonhomoge-
neous adjoint boundary value problem (24)–(27). Then

b∫
a

(Z∗(x)F1(x) + F ∗
2 (x)Y (x)) dx = 0.

According to the formula (23)

Y (x) =

b∫
a

M(x, t, λ)F1(t)dt,

Z(t) =

b∫
a

N(t, x, λ)F2(x)dx,

by taking into consideration (17), it is possible to con-
clude that the last entry of the first row of block ma-
trix M(x, t, λ) equals −G(x, t, λ), and the first entry of
the last row of the block matrix N(t, x, λ) coincide with
H(t, x, λ). Moreover,

b∫
a

 b∫
a

N(t, x, λ)F2(x)dx

∗

F1(t)dt+

+

b∫
a

F ∗
2 (x)

b∫
a

M(x, t, λ)F1(t)dtdx =

=

b∫
a

b∫
a

F ∗
2 (x) {N∗(t, x, λ) +M(x, t, λ)}F1(t)dxdt = 0,
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that is
b∫
a

b∫
a

f∗2 (x) {H∗(t, x, λ)−G(x, t, λ)} f1(t)dxdt = 0.

(28)

Let G(x, t, λ) = (gij(x, t, λ))
l
i,j=1, H(x, t, λ) =

(hij(x, t, λ))
l
i,j=1, f1(x) = (f11, . . . , f1l)

T
, f2(x) =

(f21, . . . , f2l)
T
, let (x0, t0) be any point of the domain

a ≤ x, t ≤ b, x ̸= t. We choose arbitrarily the small
rectangular∆s, surrounding it, with the sides t = t0±∆t
and x = x0 ± ∆x and such vector functions f1(t) and
f2(x), so as to f1j(t) ≡ 0 under j ̸= j0, f1,j0(t) ̸= 0
in ∆s, f1,j0(t) ≡ 0 out of ∆s, f2i(t) ≡ 0 under i ̸= i0,
f2,i0(t) ̸= 0 in∆s, f2,i0(t) ≡ 0 out of∆s. For this selecti-
on the equation (28) is equivalent to

t0+∆t∫
t0−∆t

x0+∆x∫
x0−∆x

f2,i0(x)
[
hj0,i0(t, x, λ)− gi0,j0(x, t, λ)

]
×

× f1,j0(t)dxdt = 0.

Since f2,i0(x)f1,j0(t) ̸= 0 in ∆s, obviously, the expressi-
on in the square brackets turns into zero somewhere in
this domain. Let ∆x and ∆t tend to zero. Then in the li-
mit we obtain hj0,i0(t0, x0, λ) = gi0,j0(x0, t0, λ) and as a
result of randomness of the selection of the vectors f1(t),
f2(x) and points x0, t0 (x0 ̸= t0) we obtain statement of
the theorem. �

Conclusions

The obtained results allow to investigate other
problems, including the problems of the eigenfunction
expansions. The analogous results can be also obtained
in the case of the boundary value problem for the vector
singular di�erential equation.
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