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In this paper we introduce and study the notions of isotropic mapping and
essential kernel. In addition some theorems on the Borel graph and Baire mapping
for polynomial operators are proved. It is shown that a polynomial functional from
an infinite dimensional complex linear space into the field of complex numbers
vanishes on some infinite dimensional affine subspace. Q 1998 Academic Press

1. INTRODUCTION

Let X k [ X = ??? = X be the k th Cartesian product of a normed space
Ž . kX. Consider an operator B x , . . . , x from X into a normed space Y,k 1 k

linear on each of its arguments; we shall call this a k-linear operator.
Ž . Ž .Setting x s x g X j s 1, . . . , k , we obtain the operator P x 'j k

Ž .B x, . . . , x from X into Y; P is called a homogeneous polynomialk k
Ž .operator of degree k, provided that P x is not identically zero. Ak

Ž .constant operator will be denoted by P x . An operator P: X ª Y of the0
Ž . Ž . Ž . Ž .form P x s P x q P x q ??? qP x will be called a polynomial oper-0 1 m

ator of degree m, provided that P is not identically zero. If Y is the fieldm
of complex or real numbers then we call the polynomial operator P:
X ª Y a polynomial functional. The main results of the theory of polyno-
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w xmial operators are contained in the books 5, 10 . It is well known that a
Žlinear operator on a Banach space becomes automatically continuous or

.bounded, which is the same under some additional conditions. The Closed
Graph Theorem, the inverse mapping theorem, the theorem on the conti-

w x Ž w x.nuity of Baire operators 4 , and many others see, for instance, 27
belong to results of this kind. Less is known about automatic continuity of
polynomial operators. The polynomial analogs of the Banach]Steinhaus

w xtheorem and the uniform boundedness principle are proved in 16 , see
w xalso 1 . The Open Mapping Theorem for k-linear operators is not true

w x w x12 , even in the finite-dimensional case 11 . The Banach inverse mapping
w xtheorem is not true for polynomial operators 24, 21 . The Closed Graph

Ž .Theorem for polynomial functionals even for G-holomorphic functionals
w xis proved in 6 .

w xWe start our research with a problem of ‘‘The Scottish Book’’ 26 .
It is obvious that for each discontinuous linear operator T on the

Ž Ž ..normed space X unboundedness of a sequence T x implies that thei
Ž Ž .. Žsequence T x q x is unbounded for all x g X. A simple example seei

.below shows that this fact is not true for polynomial functionals of degree
2. It is possible that in connection with this fact there appears:

Ž .Problem 56 Mazur, Orlicz . Let f be a discontinuous polynomial
Žfunctional of degree n on a Banach space X. ‘‘Of degree n’’ here means

Ž .that for every x, y g X there exist numbers a , . . . , a such that f x q ty0 n
n .s a q a t q ??? qa t for all rational numbers t. Does there exist a0 1 n

Ž . < Žsequence x g X such that x ª 0 and f x q x ª ` or at least lim f xi i i i
. <q x s ` for all x g X ?i

We will consider for a while the same definition of polynomial func-
tional of degree n that is in Problem 56. But mainly we will investigate
usual polynomial operators and prove the following theorems.

THEOREM 1. Let P be a polynomial operator from a normed space X into
a normed space Y. If P is discontinuous then there exists a sequence z g X, zi i

5 Ž .5ª 0 as i ª ` such that sup P x q z s ` for each element x g X.i 0 i 0

THEOREM 2. On e¨ery normed space X, that has the linear dimension v ,1
there exists a discontinuous polynomial functional p of degree 2 for which

Ž .there is no sequence x ª 0 such that p x q x ª ` as i ª ` for eachi i
element x g X.

We shall introduce the following definition which is motivated by
Problem 56 and Theorem 1.

Ž .DEFINITION 1. Let X be a metric group not necessarily commutative
with group operation q and Y be a metric space. We call a mapping F:
X ª Y isotropic if either it is everywhere continuous or there exists a
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sequence x g X, x ª 0, such that for some number c ) 0i i

lim dist F x q x , F x G c 1Ž . Ž . Ž .Ž .i
i

for each x g X.
Ž .We call the maximal number c for which 1 is true the isotropy

constant; it can be equal to `.

We shall consider the isotropy constant of the everywhere continuous
mapping equal to zero. Conversely when we speak about isotropic map-
pings with zero constant we mean everywhere continuous mappings. A
linear operator on a Banach space is a typical example of an isotropic
mapping.

Ž .COROLLARY 1 of Theorem 1 . Each polynomial operator between normed
Ž .spaces is isotropic with isotropy constant equal to 0 or ` .

The main result of Section 2 is the proving of the Borel graph and Baire
mapping theorems for isotropic mappings.

w xIn Section 3 we will consider the two following questions from 26 .

Ž .Problem 75 Mazur . Let a polynomial functional p on a Banach space
X be bounded on an e-neighborhood of a set M ; X. Does there exist for
each number a a d-neighborhood of the set aM on which p will also be
bounded?

Ž .Problem 55 Mazur . Let a polynomial functional p on a Banach space
X be bounded on an e-neighborhood of a certain set M ; X. Does there
exist a polynomial functional q and a linear operator T on the space X

Ž .such that p s qT and the set T M is bounded?

Ž .In Problem 55 it is not required formally that the polynomial func-
tional q be continuous. Problem 55 with the requirement of the continuity
of q will be called Problem 559.

The answer to Problem 75 for linear operators is affirmative, of course.
It is easy to see that the affirmative answer to Problem 75 is the result of
an affirmative answer to Problem 559. We will write this in the following

Ž w x.way: Pr.559 ª Pr.75. For as hinted at in 26 given X, p, and M the set
Ž . Ž Ž ..p aM s q aT M is bounded since T is linear and q is continuous

Ž . w xbounded . In 2 it is proved that the answer to Problem 559 and also to
Problem 75 is affirmative for finite-dimensional spaces. We will show that

Ž .the answer to Problem 75 also to Problem 559 is negative, that Pr.55 ¢
Pr.559 and Pr.75 ¢ Pr.559, i.e.,

ª¢
Pr.55 ¤ Pr.559 x Pr.75.
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Problem 75 has also recently been shown to have a solution in the negative
w xby Pestov in 18 . We do not know the answer to Problem 55. The following

question is a version of it.

QUESTION 1. Let p be a polynomial functional on a separable Banach
Ž .space X, which is bounded on a neighborhood of some unbounded set M.

Ž .Does there exist a generally speaking, discontinuous polynomial functional q
and a continuous operator T on the space X such that p s qT and the set
Ž .T M is bounded?

Ž .The simple example of the polynomial p x, y s xy, x, y g R shows that
� Ž . Ž .4the set x : p x s p 0 may not be a linear manifold and the polynomial

p will be unbounded on each e-neighborhood of this set. Problem 55 may
have been an attempt to give an analog to the null-space of linear
operators for polynomials. For this reason we shall introduce the notion of
essential kernel for the polynomial functionals. At the end of the article

Ž . Ž .we will show that any complex polynomial functional p x , p 0 s 0,
defined on an infinite-dimensional linear space, vanishes on an infinite-di-
mensional linear subspace.

2. AUTOMATIC CONTINUITY AND
ISOTROPIC MAPPINGS

First of all we will give the example of a polynomial functional p of
Ž Ž ..degree 2 for which unboundedness of sequence p x q x for an arbi-i

trary vector x g X does not follow from the unboundedness of sequence
Ž Ž .. Ž .p x this was mentioned in the Introduction .i

EXAMPLE 1. Let X be an infinite-dimensional normed space, f and g
be linear functionals on X. Let f / 0 and g is unbounded on the kernel of

Ž . Ž . Ž .the functional f : ' x ; ker f , x ª 0, g x ª ` as i ª `. Put p x si i i
Ž . Ž .f x y x g x for a fixed point x g ker g, x f ker f. Then0 0 0

p x s f x y f x g x s f x g x ª `Ž . Ž . Ž . Ž . Ž . Ž .Ž .i 0 i i 0 i

Ž . Ž . Ž .as i ª `. But p x q x s yf x g x s 0.i 0 i i

The proof of next lemma is not complicated.

Ž k .`LEMMA 1. Let a , k s 1, . . . , n be a collection of nonnegatï ei is1
scalars such that for some k, ak ª ` as i ª `. Then there exist a numberi
k , 1 F k F n and a subsequence i , s s 1, . . . , `, of positï e integers such0 0 s
that akrak 0 ª 0 as s ª ` for each k - k and sup akrak 0 - ` for k ) k .i i 0 s i i 0s s s s
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It is well known that the continuity of every term in decomposition
P s Ýn P follows from the continuity of the polynomial P. The next0 k
proposition makes this result more exact.

PROPOSITION 1. Let P be a polynomial operator from a normed space X
into a normed space Y. In addition, let there exist a sequence x ª 0 and ai

n 5 Ž .5term P in the decomposition P s Ý P such that P x ª ` as i ª `.k 0 k k i
5 Ž y1 .5Then sup P m x s ` for some positï e integer m.i i

Proof. It follows from Lemma 1 that it is possible to select a number k0
Ž . Žand a subsequence of x this subsequence we denote by the samei

.symbol such that

P xŽ .k i
for k - k ª 0 as i ª ` 2Ž .0 P xŽ .k i0

P xŽ .k i
for k ) k sup s c - `. 3Ž .0 P xŽ .i k i0

Ž .It follows from 2 that for k - k we have0

y1P m x P xŽ .Ž .k i k iyk k 0s m m ª 0y1 P xŽ .P m xŽ . k ik i 00

as i ª `. Consequently

1
y1 y1P m x y P m x ª ` 29Ž .Ž . Ž .k i k i0n

as i ª ` for k - k .0
Ž .According to 3 for k ) k we have0

y1P m x P xŽ .Ž .k i k iyk k yk k0 0s m m F cm m .y1 P xŽ .P m xŽ . k ik i 00

Consequently, if m is large enough, then for k ) k0

1
y1 y1P m x y P m x ª ` 39Ž .Ž . Ž .k i k i0n
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as i ª `. Then

y1 y1 y1P m x G P m x y P m xŽ . Ž . Ž .Ýi k i i0
k/k0

1
y1 y1s P m x y P m xŽ . Ž .Ý k i k i0ž /nk-k0

1
y1 y1q P m x y P m x ª `Ž . Ž .Ý k i k i0ž /nk)k0

Ž . Ž .as i ª `, because according to 29 , 39 each term of this sum tends to ` if
m is large enough. The proposition is proved.

Proof of Theorem 1. Certainly we can suppose that in the decomposi-
tion P s Ýn P of the operator P into homogeneous polynomials the term0 k
with the biggest degree is discontinuous, that is, there exists a sequence

Ž .x ª 0 such that P x ª `. Fixing a vector x g X we decompose thei n i 0
Ž . Ž .operator P x [ P x q x into homogeneous polynomials,x 00

n

P x [ B x , x ,Ž . Ž .Ýx k 00
ks0

Ž .where B x , x is a homogeneous polynomial of degree k of the argu-k 0
Ž . Ž .ment x for fixed x and B x , x s P x . As we are supposing that P is0 n 0 n n

Ž .discontinuous, more exactly, that P x ª ` as i ª `, then it followsn i
Ž .from Proposition 1 that there exists a number m depending on x such0

5 Ž y1 .5 y1 Ž .that sup P x q m x s `. Let y s m x . Let f m, i : N = N ªi 0 i m , i i
Ž .N be a one-to-one mapping such that y ª 0 as f m, i ª `, N is them , i

set of positive integers. Put z s y and Theorem 1 is proved.fŽm , i. m , i

Proof of Theorem 2. Let e , 1 F a - v , be a normalized Hamel basisa 1
Ž . Ž .for X. Put f e s n if n - v and f a s 0 if a G v and extend f ton 0 0

the whole space X as a linear functional.
Ž .Now we will construct a symmetric bilinear functional B x, y in the

Ž .following way. We index all linear independent sequences x ª 0: x ,n n b

Ž .1 F b - v , and put in correspondence to each sequence x an ele-1 n b

ment e , so that:ab

Ž .1 a ) v ,b 0

Ž .2 a ) a if b ) b ,b b 1 21 2

Ž . Ž Ž . Ž ..3 a ) min a : x g lin e : g - a .b n b g

Ž .Put X s lin e : a - a , 1 F b - v ; obviously D X s X. Putb a b 1 b b

Ž . Ž .B x, y s 0 if x, y g X . If B x, y is defined on X for all g - b and b1 g

Ž .is a limit ordinal then B x, y is defined also on X s D X .b g - b g
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Ž .Now let B x, y be defined on X . We shall define it on X . For thisb bq1
Ž .purpose we define in X a complement to lin x }the subspacebq1 n b

Ž . Ž .Y > e : a F g - a , and put B x, e s 0 if x g Y , a F g - a .b g b bq1 g b b bq1
Put

y 1r2 f x q B x , x if g s aŽ . Ž . Ž .Ž .n n n b
B x , e sŽ .n g ½ 0 if a - g - ab bq1

Ž .for x g x . Finally we extend B to the whole of X as a symmetricn n b bq1
Ž . Ž .bilinear functional. Therefore, the polynomial functional p x s f x q

Ž . Ž .B x, x is unbounded because B e , e s 0 if a - v .a a 1
Ž .Suppose a linearly independent sequence x converges to zero. Thenn a

Ž .for the corresponding e we haveab

p x q e s f x q f e q B x , x q 2 B x , e q B e , eŽ . Ž .Ž . Ž . Ž . Ž .n a n a n n n a a ab b b b b

s f e q B e , e .Ž . Ž .a a ab b b

Ž .So for x s e we have that p x q x does not converge to infinity.0 a 0 nb

Ž .Now let x be an arbitrary sequence in X which converges to zero. Ifn
Ž . Ž .x does not contain a linearly independent subsequence then lin x is an i
finite-dimensional subspace. But arbitrary polynomial functionals on a

Ž . Ž .finite-dimensional space are continuous so lim p x q x s p x - `.nª` n
Ž . Ž .If x contains a linearly independent subsequence x then from then ni

Ž . Ž .condition lim p x q x s ` ; x g X it follows that lim p x q xnª` n iª` ni

s ` ; x g X, but we showed that for some point x this is not true.0
Theorem 2 is proved.

Remark 1. If we suppose the continuum hypothesis and consider the
field of real numbers as a normed space over the field of rational numbers
then the construction of Theorem 2 will be an example of a polynomial
functional of degree 2, in the sense of Problem 56, which gives the
negative answer to the first part of this problem.

The following proposition shows that the result similar to Theorem 1 is
true for symmetric n-linear operators.

THEOREM 3. Let X, Y be linear normed spaces and B : X n ª Y be an
symmetric n-linear operator. If this operator is discontinuous then there exists

1 n nŽ . 5 Ža sequence z s z , . . . , z g X , z ª 0 as i ª ` such that sup B xi i i i i n 0
1 n n.5 Ž .q z s ` for each x s x , . . . , x g X .i 0 0 0

Proof. If the mapping B is discontinuous then it follows from then
w x Ž .polarization formula 5, p. 4 that the homogeneous polynomial P x sn
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Ž .B x, . . . , x is discontinuous. So there exists a sequence x g X, x ª `n i i
n5 Ž .5such that P x ª ` as i ª `. If we fix an element x g X thenn i 0

Ž Ž ..B x q x, . . . , x will be a polynomial of degree n in the variable x g X,n 0

B x q x , . . . , x s P x q P x q ??? qP x q P xŽ . Ž . Ž . Ž . Ž .Ž .n 0 0 1 ny1 n

Ž . Ž . Ž . Ž . Ž .moreover P x s B x and P x s B x, . . . , x . Since P x ª ` as0 n 0 n n n i
Ži ª `, according to Proposition 1 there exists a number m dependent on

y1. 5 Ž Ž .5 Ž .x such that sup B x q m x , . . . , x s `. Now define z as in the0 i n 0 i i i
proof of Theorem 1.

COROLLARY 2. E¨ery n-linear symmetric mapping between normed spaces
Ž .is isotropic with the isotropy constant equal to 0 or ` .

We will give some properties of isotropic mappings.

PROPOSITION 2. Let F , n s 1, . . . , `, be a sequence of isotropic map-n
pings from a metric group X into a metric space Y which con¨erges uniformly
on each bounded set to a mapping F: X ª Y. Assume its isotropy constants
c satisfy inf c \ c ) 0. Then the mapping F is isotropic and its isotropyn n n
constant is not smaller than c.

Proof. For each n there exists a sequence x n ª 0 as i ª ` such thati
nŽ Ž . Ž ..lim dist F x q x , F x G c G c for any element x g X. Of course, wen i n ni

Ž n .can assume that sup dist x , 0 ª 0 as n ª `. Let us index the elementsi i
Ž n.ns1, ` Ž .` Ž n.ns1, `of sequence x with one index j: z s x , so thati is1, ` j js1 i is1, `

Ž .z ª 0 as j ª `. Since F converges to F uniformly on each bounded setj n
Ž Ž . Ž ..then lim dist F x q z , F x G c for every element x g X.ii

COROLLARY 3. The limit in the topology of uniform con¨ergence on
bounded sets of Banach space polynomial mappings is an isotropic mapping
with the isotropy constant equal to zero or infinity.

The following proposition enables us to construct other examples of
isotropic mappings.

PROPOSITION 3. Let X, Y, Z be Banach spaces, F: X ª Y be an isotropic
mapping with the isotropy constant c ) 0, and G: Y ª Z be a continuous

5 Ž .5 5 5mapping for which there exists a constant a ) 0 such that G y ) a y for
each y g Y. Then the composition G( F is an isotropic mapping with the
isotropy constant not smaller than ac.

The proof is clear.
We will now give an example of an isotropic mapping with isotropy

constant not equal to 0 or `. Let T be a linear unbounded operator on a
Ž 5 5. Ž .Banach space X, . We introduce on X the new metric r x, y s
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Ž5 5 . Ž .min x y y , c where c ) 0. Then X, r is a metric group, moreover r
5 5generates the same topology as generated by norm . If x ª 0 andi

5 Ž .5 Ž Ž . Ž ..T x ª `, then r T x q x , T x s c for sufficiently large i, i.e., thei i
Ž .isotropy constant of mapping T on X, r is equal to c exactly.

Let us recall some definitions from the theory of metric spaces. A subset
M of a metric space X is called residual if its complement, X _ M, is of
the first category, i.e., a countable union of nowhere dense sets. A set
M ; X is called perfect if it is closed and does not contain isolated points.
A mapping F from a metric space X into a metric space Y satisfies the
condition of Baire if in each nonempty perfect set M ; X there exists a

<residual in M subset N ; M such that the restriction F is continuous.N
ŽFinally, the mapping F: X ª Y is called a Baire mapping measurable in

w x.the terminology of 4 , if it belongs to the smallest class of mappings,
which includes continuous mappings and is closed under pointwise limits.

PROPOSITION 4. Let F be an isotropic mapping from a complete metric
group X into a complete metric space Y. If F is discontinuous at zero then it is
discontinuous on each residual set M ; X.

Ž .Proof. Let x be the sequence from Definition 1 and M ; X bei
a residual set in X. Then the set M y x is residual for each i so N si

Ž Ž ..F M l M y x is also residual and N ; M.i i
Let x g N; then x q x g M. If we suppose that the mapping F is0 0 i

Ž . Ž .continuous on M then F x q x ª F x as i ª `. But this contradicts0 i 0
Definition 1.

COROLLARY 4. Let an isotropic mapping F from a complete metric group
ŽX into a metric space Y satisfy the condition of Baire or at least be continuous

.on a residual set . Then F is continuous.

Since a Baire mapping satisfies the condition of Baire we have:

Ž w xCOROLLARY 5 Generalization of Theorem 4 4, Chap. 1, Sect. 3 . A
Baire isotropic mapping from a complete metric group X into a metric space Y
is continuous.

Ž w x.COROLLARY 6 a similar result is in 9 . A polynomial operator from a
ŽBanach space X to Banach space Y, which satisfies the condition of Baire or

.at least is continuous on a residual set is continuous.

COROLLARY 7. Let F be a continuous bijectï e mapping from a Polish
Ž .space i.e., separable complete metric space X onto a complete metric group

Y such that Fy1 is isotropic. Then Fy1 is continuous.

Since, Fy1 is a Baire mapping under the conditions of this corollary
Ž w x.this follows from 14, Chap. 3, Sect. 39.4, and Chap. 2, Sect. 31.9 it
remains to use Corollary 5.
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THEOREM 4. An isotropic mapping F from an arbitrary complete metric
group X into a Polish group Y which has Borel graph is continuous.

Proof. First we suppose that the group X is separable. Let G s
�Ž Ž .. 4 Ž . Ž Ž ..x, F x : x g X be the graph of F. We let F# x [ x, F x g G,
x g X. It is clear that F# is a bijective mapping from X onto G and F#y1 is

w xcontinuous. As F# is a Borel mapping 14, Chap. 3, Sect. 39.5 it is a Baire
w xmapping 14, Chap. 2, Sect. 31.9 . If F is discontinuous then according to

Definition 1 there exists a sequence x ª 0 as i ª 0 such that for eachi
x g X

lim dist F x q x , F x G c ) 0.Ž . Ž .Ž .i
i

ŽŽ Ž .. Ž Ž ...So lim dist x q x , F x q x , x, F x G c. Therefore F# is isotropic.i ii
But according to Corollary 4 this mapping is necessarily continuous. So the
mapping F is continuous too.

Now let X be an arbitrary complete metric group. If F is discontinuous
then it is discontinuous on a separable closed subgroup X ; X. The graph0
of the mapping F: X ª Y is the intersection of the Borel set G and the0
closed subset X = Y ; X = Y. So from the first part of this proof it0
follows that F: X ª Y is a continuous mapping. This contradiction0
proves the theorem.

COROLLARY 8. A polynomial operator from a Banach space X into a
separable Banach space Y which has Borel graph is continuous.

w xRemark 2. It is shown in 22 that the Borel graph theorem is not true
for linear operators if it is not supposed that Y is separable. We do not
know if the Closed Graph Theorem is true for polynomial operators on
arbitrary Banach spaces. The next proposition shows that it is true for
n-linear operators.

Ž w x. nPROPOSITION 5 a similar result is in 8 . Let B: X ª Y be an n-linear
operator, where X, Y are Banach spaces and the graph of B is closed. Then B
is continuous.

Proof. If the graph of B is closed then the graph of linear operator

B x [ B x , . . . , x , x , x , . . . , xŽ . Ž .x ? ? ? x x ? ? ? x 1 ky1 kq1 n1 ky1 kq1 n

is closed for every fixed x , . . . , x , x , . . . , x g X. According to clas-1 ky1 kq1 n
sical Closed Graph Theorem for linear operators the mapping
B is continuous. But it follows from the separate continuityx ? ? ? x x ? ? ? x1 ky1 kq1 n

of an n-linear operator that this operator is continuous on Banach space
w x16 .
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w xWe want to point out one more question from 26 .

Ž .Problem 45 Banach . Let G be a complete and non-Abelian metric
Ž . Ž . Ž .group, F x , F x , . . . , F x be multiplicative mappings from G to G.1 2 n

Ž . Ž . Ž . Ž .Prove that if the mapping F x s F x F x ??? F x satisfies the condi-1 2 n
tion of Baire then it must be continuous.

We do not know the answer to this question. In connection with
Problem 45 we raise the following:

QUESTION 2. Is the mapping F in Problem 45 isotropic?

3. BOUNDEDNESS OF POLYNOMIAL FUNCTIONALS ON
UNBOUNDED SETS

Let us recall that a sequence of elements in a normed space is called
minimal if each term does not belong to the closed linear span of the other
terms of the sequence. With the help of a standard biorthogonalization
procedure we can construct a minimal sequence in arbitrary normed space.

w xThe following proposition gives the negative answer to Problem 75 of 26 .

Ž .PROPOSITION 6. Let x be a minimal sequence in a normed space X.m
Then there exist numbers a ) 0 and a continuous polynomial functional ofm
degree two which is bounded on the neighborhood of radius 1 of the set

� 4 2M s a x but which is unbounded on the set aM if a / a .m m

Proof. Take numbers b ) 0 and linear continuous functionals f onm n
Ž . ŽX such that for y s b x we have f y s d d is the Kroneckerm m m n m nm nm

. 5 5 Ž . ` y2 Ž . Ž . ` y5w Ž .x2symbol and f s 1. Put p x s Ý n f x , p x s Ý n f x ,n 1 1 n 2 1 n
3 5 5p s p y p , and a s m b . Let x - 1. Then we have for each m,1 2 m m

3p x q m yŽ .m

3s p y p x q m yŽ . Ž .1 2 m

`
2y5 3s p x q m y n f x q m yŽ . Ž .Ý1 n m

ns1

`
22y2 y5 y5 3s n f x q m y n f x y m f x q mŽ . Ž . Ž .Ý Ýn n m

n/m1

`
y2 y5 y5 y2F n q n q m q 2m - c,Ý Ý

n/m1
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where the number c is independent on m. But

p am3 y s p y p am3 y s a y a2 m ª ` if a / a2 .Ž . Ž .Ž . Ž .m 1 2 m

The proposition is proved.

The following example shows that Pr.55 ¢ Pr.559.

EXAMPLE 2. Let X be a separable infinite-dimensional Banach space
Ž .and x a bounded Markushevich basis, i.e., a minimal sequence suchm

w x`that the closed linear span x is equal to X and for biorthogonalm 1
Ž . 5 5 5 5 � 4functionals f , sup x f - ` and for each x g X _ 0 there existsm m m m

Ž .a number m such that f x / 0. It is well known that a boundedm
w xMarkushevich basis exists in arbitrary separable Banach space 15, p. 44 .

Let p and M be as in Proposition 6. Since Pr.559 ª Pr.75 we must only
Ž .prove the existence of a linear and bounded operator T on X and a

Ž . Ž .unbounded polynomial functional q such that p s qT and the set T M
is bounded.

We define the linear bounded injective operator T : X ª X by formula
` y4 Ž . Ž .Tx s Ý m f x x . It is clear that the set T M is bounded. We define1 m m

Ž . y1Ž .the polynomial q on image TX by the formula q y s pT y . Let Z be
an algebraic complement to the subspace TX in X. We extend q to the

Ž . Ž .whole space X by the formula q y q z s q y , y g TX, z g Z. It is clear
that q is a polynomial and p s qT.

The next example shows that Pr.75 ¢ Pr.559.

EXAMPLE 3. Let X s c be the space of all null sequences with the0
maximum norm. There exists a homogeneous polynomial functional p on
X of degree 2 and a set M ; X such that p is bounded on a neighborhood
of radius 1 of the set aM for arbitrary number a but there does not exist a
linear operator T in X and a continuous polynomial functional q such

Ž .that p s qT and the set T M is bounded.
Ž . ` y2 2 Ž . � 4̀Put p x s Ý n a for x s a , a , . . . g c and M s me where1 n 1 2 0 m 1

Ž .e is the standard basis for c . Then for arbitrary a ) 0 and x sm 0
Ž . 5 5a , a , . . . , x - 1 we have1 2

p x q ameŽ .m

2y2 2 y2s n a q m a q amŽ .Ý n m
n/m

F 2 q my2 a2 q my2 2 a am q a2 F 3 q 2 a q a2 .m m

So p is bounded on the neighborhood of radius 1 of the set aM for
arbitrary a. Now we will show that there does not exist a linear operator on
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Ž .c and a continuous polynomial q such that p s qT and the set T M is0
Ž .bounded. Since the sequence y s T me is bounded and c does notm m 0

wcontain any subspaces isomorphic to l by the Rosenthal alternative 15, p.1
x Ž . Ž .99 we can choose a weak Cauchy subsequence y from y . Thenm nk

Ž .`y y y converges weakly to zero and we can choose from it am m ks12 kq1 2 k
Ž .` Ž . Ž .subsequence y y y where f l s m and f9 l s m ,f9Ž l . f Ž l . ls1 2 k 2 k q1l l

Ž .which either converges to zero or is equivalent to the standard basis e ofn
w xc 15, p. 5 .0

Ž Ž . Ž . . Ž Ž .In the first case we have T f9 l e y f l e ª 0 but p f9 l ef9Ž l . f Ž l . f 9Ž l .
Ž . .y f l e s 2, therefore q must be unbounded. In the second case thefŽ l .

Ž n Ž Ž . Ž . ..sequence T Ý f9 l e y f l e , n s 1, . . . , `, must be boundedls1 f 9Ž l . f Ž l .
Ž n Ž Ž . Ž . ..but p Ý f9 l e y f l e s 2n ª `, therefore p is unbounded.ls1 f 9Ž l . f Ž l .

We do not know how the set M must look in order that p be bounded
on an e-neighborhood of M. The consideration of this question leads to
the notion of ‘‘the essential kernel.’’ We shall begin with a lemma which is
a simple statement about polynomials of two scalar variables.

LEMMA 2. Let p be a polynomial functional on a normed space X and
Ž . Ž .x, y g X. If the scalar polynomial p b [ p x q by is bounded on ax y

unbounded set B then for each pair of numbers a and b we ha¨e

p ax q by s p ax , 4Ž . Ž . Ž .

in particular for each number b

p by s p 0 . 5Ž . Ž . Ž .

Proof. It is obvious that

n
kp ax q by s p ax , y b , 6Ž . Ž . Ž .Ý k

0

Ž .where p ax, y for fixed x, y, is a scalar homogeneous polynomial of somek
Ždegree in the variable a i.e., usual scalar homogeneous polynomial; see,

w x. Ž . Žfor example, 5, pp. 8]9 . The boundedness of p ax q by as a polyno-
. Ž .mial in b for a s 0 on the unbounded set B means that p x, y s 0 fork

Ž . Ž . Ž . Ž . Ž .k ) 0. So in 6 actually p ax q by s p ax, y s p ax . The equalities 40
Ž .and hence 5 are proved.

COROLLARY 9. If the polynomial functional p is bounded by a number c
on an e-neighborhood on an unbounded subset of some line L ; X, then it is
bounded on e¨ery neighborhood of the whole line L. Moreo¨er, p is bounded
on an e-neighborhood of the whole line L by the same number c.
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COROLLARY 10. If the polynomial functional p is bounded on an e-
neighborhood of a linear subspace Y ; X then for e¨ery x g X and y g Y we
ha¨e

p x q y s p x , 7Ž . Ž . Ž .

Ž . Ž .so p y s p 0 for each y g Y.
In particular, p is bounded on arbitrary d-neighborhood of Y and the

supremum of its ¨alues on this d-neighborhood is independent of the sub-
space Y.

COROLLARY 11. Let Y and Z be linear subspaces of a normed space X. If
the polynomial functional p is bounded on e-neighborhoods of Y and Z by the
number c then it is bounded by the same number c on the e-neighborhood of
their sum X q Y.

Ž . Ž . ŽProof. Let u s y q z, y g Y, z g Z. By 7 we have p x q u s p x q
. Ž . Ž .y q z s p x q y s p x for arbitrary element x. This implies the corol-

lary

PROPOSITION 7. Let p be a continuous polynomial functional on a
Banach space X. Then there exists a ‘‘maximal’’ subspace X ; X such that p0

Ž .is bounded on some and so on arbitrary e-neighborhood of X . The0
‘‘maximal’’ subspace means here that p is unbounded on an arbitrary e-
neighborhood of an arbitrary subspace X , X ; X ; X, X / X . Moreo¨er1 0 1 1 0
p is unbounded on an arbitrary e-neighborhood of an arbitrary line which
intersects X only at the zero. This subspace is closed and unique. In addition,0

Ž . Ž .for each x g X and y g X we ha¨e p x q y s p x so for each y g0
Ž . Ž .X , p y s p 0 .0

The proof of Proposition 7 is easily derived from Corollary 11.
From now on, we will call X the ‘‘essential kernel’’ of the polyno-0

mial p.
The next statement is certainly well known.

LEMMA 3. Let X and Y be separable infinite-dimensional Banach spaces
and X ; X be a closed subspace. Then there exists a linear bounded operator0
T : X ª Y such that ker T s X .0

Ž w x.Proof. It is well known see, for example, 20, p. 190 that for two
Ž .separable Banach spaces Z and Y dim Y s ` there exists a bounded

linear operator S: Z ª Y with the trivial kernel. In particular, it exists for
Z s XrX and Y. It is enough to put T s Sf where f : X ª XrX is the0 0
quotient mapping.
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COROLLARY 12. Let X be the essential kernel of a continuous polyno-0
mial functional p on a separable Banach space X. Then there exists a linear

Žcontinuous operator T : X ª X and a polynomial functional q not necessarily
. Žcontinuous such that p s qT and X s ker T i.e., the answer to Problem0

.55 is affirmatï e for M s X .0

Proof. Let T : X ª X be the operator from Lemma 3 and Z be an
algebraic complement to X and U be an algebraic complement to TX.0

y1 Ž . y1Ž .Let T be the inverse to T : Z ª TX. Put q y q u s pT y , y g
Ž y1 .TX, u g U. Then qTx s p T Tx . Let x s x q z, x g X , z g Z. We0 0 0

have Ty1Tx s Ty1Tz s z, hence Ty1Tx y x g X . As X is the essential0 0
Ž y1 . Ž . Ž Ž ..kernel of p, it follows that p T Tx s p x see 7 . As q is the

composition of a polynomial functional and two linear operators, it is a
polynomial functional.

Remark 3. If the essential kernel X from Corollary 12 is a closed0
complemented subspace of X then the polynomial q can be chosen to be
continuous, i.e., the answer to Problem 559 is affirmative in this case. It is
not necessary to assume the separability of X.

Clearly then it is possible to define the projection of X onto Z as the
operator T.

Remark 4. For a nonseparable Banach space X and its closed subspace
X the existence of a bounded linear operator T : X ª X with ker T s X0 0
is not guaranteed, even when there is a square functional p on X with
X s ker p. As an example we will consider the space l of bounded0 `

Ž . 5 5 < < w xsequences x s x , . . . , x , . . . with norm x s sup x . By 25 , l con-1 i i i `

tains a closed subspace X such that l rX is isomorphic to a nonsepara-0 ` 0
ble Hilbert space. We show that a linear bounded operator T : l ª l with` `

ker T s X does not exist. Let us suppose that such an operator exists.0
˜Then it induces the linear continuous injective operator T : l rX ª l .` 0 `

Since a denumerable total set of continuous linear functionals exists on l`
the same set exists on l rX . But there is no such set on a nonseparable` 0
Hilbert space.

As l rX is isomorphic to a Hilbert space, on it there exists an inner` 0
Ž . 5 5 Ž .1r2product x, y , which generates the norm x s x, x equivalent to˜ ˜ ˜ ˜ ˜0

Ž . Ž .the norm of the space l rX . Now put p x s x, x , where x g x. It is˜ ˜ ˜` 0
obvious that ker p s X .0

Now we will show that contrary to the real case the kernel of a complex
polynomial functional contains infinite-dimensional subspaces.

THEOREM 5. Let X be an infinite-dimensional complex linear space and p:
X ª C be a homogeneous polynomial of degree n ) 0. Then there exists an
infinite-dimensional subspace X ; ker p.0
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LEMMA 4. Let Theorem 5 be pro¨ed for e¨ery homogeneous polynomial
functional of degree F n. Then for arbitrary homogeneous polynomial func-
tionals p , . . . , p of degree F n there exists a subspace X ; ker p l ??? l1 m 0 1
ker p , dim X s `.m 0

Proof. Let X ; ker p , dim X s `. Then there exists a subspace X1 1 1 2
; X l ker p , dim X s `. Continue this process to get the subspace1 2 2
X s X ; X ; ??? ; X , X ; ker p l ??? l ker p , dim X s `.0 m my1 1 0 1 m 0

Proof of Theorem 5. We will construct X using the method of mathe-0
matical induction. The theorem is, of course, true for linear functionals.
Suppose that it is true for homogeneous polynomials of degree - n.

Ž . ŽLet x g X, p x / 0 if such an x does not exist then the proposition1 1 1
.is true automatically . By the induction hypothesis and by Lemma 4 there

exists a subspace X ; X, dim X s `, on which all of the homogeneous1 1
polynomials

p x [ p x , x , . . . , x ,Ž . Ž .x 11

p x [ p x , x , x , . . . , x , . . . , p x ??? x x [ p x , . . . , x , xŽ . Ž . Ž . Ž .x x 1 1 1 1 1 11 1 ^ ` _
n y 1

vanish, where p is the symmetric n-linear functional corresponding to the
homogeneous polynomial p.

Ž . ŽWe choose an element x g X such that p x / 0 if x does not2 1 2 2
.exist then X ; ker p and the theorem is proved at once . By the induc-1

tion hypothesis and by Lemma 4 there exists a subspace X ; X , dim X2 1 2
s ` on which all homogeneous polynomials

p x ??? x x ??? x x [ p x , . . . , x , x , . . . , x , x , . . . , x ,Ž . ž /1 1 2 2 1 1 2 2^ ` _̂ ` _ ^ ` _^ ` _
k l k l 0 - k q l - n.

vanish.
Ž . ŽWe choose an element x g X such that p x / 0 if x does not3 2 3 3
.exist then X ; ker p and the theorem is proved . As before there exists a2

subspace X ; X , dim X s ` on which all polynomials3 2 3

p x , . . . , x , x , . . . , x , x , . . . , x , x , . . . , x , 0 - k q l q m - nž /1 1 2 2 3 3^ ` _^ ` _^ ` _
k l m

vanish.
We continue this process in the way written above. If it finishes on the

Ž Ž . .ith step i.e., P X ' 0 , then the theorem is proved. Conversely, if it doesi
Ž .not finish then we will get an infinite sequence x consisting of linearlyi
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Ž .independent terms, p x / 0 for every i, such thati

p x , . . . , x , x , . . . , x , . . . , x , . . . , x s 0ž /1 1 2 2 i i^ ` _^ ` _ ^ ` _
k k k1 2 i

if at least one 0 - k - n.i
Ž .Hence it follows that for any finite set of scalars a ,i

p a x s anp x .Ž .Ž .Ý Ýi i i i

Ž .Put y s x rp x , for all i. Then p vanishes on the linear span ofi i i
elements

n n n' ' 'y q y1 y , y q y1 y , y q y1 y , . . . .1 2 3 4 5 6

COROLLARY 13. If p is a polynomial functional on a complex infinite-
Ž .dimensional linear space and p 0 s 0 then there exists an infinite dimen-

sional linear subspace X ; ker p.0

The corollary is proved in the same way as Lemma 4.

COROLLARY 14. If p is a polynomial functional on a complex infinite-
Ž .dimensional linear space and p x s 0, then there exists an infinite-0

dimensional affine subspace X ; ker p with x g X .0 0 0

Ž .Clearly, it is enough to apply Corollary 13 to the polynomial p x sx 0
Ž .p x q x .0
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