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On new families of the Jacobsthal identities 

 

Abstract. Formulas relating determinants to Jacobsthal numbers have been an object of recent 

interest. In some cases, these sequences arise as the determinant for certain families of matrices 

having integer entries, while in other cases these sequences are the actual entries of the matrix 

whose determinant is being evaluated. In this paper, we study some families of Toeplitz-Hessenberg 

determinants the entries of which are Jacobsthal numbers. The determinant formulas we have 

obtained may be rewritten as combinatorial identities involving sum of products of Jacobsthal 

numbers and multinomial coefficients. 
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1. Introduction 

The Jacobsthal sequence  
0n n

J


 is defined by the recurrence [10] 

2 1 2n n nJ J J+ += + ,      0 0J = ,  1 1J = .                                               (1) 

The list of the first 15 terms of the sequence is given in Table 1. 
 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

nJ  0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461 

Table 1. Terms of nJ . 

The numbers nJ  appear as the integer sequence A001045 from The On-Line Encyclopedia of 

Integer Sequences [15]. The Jacobsthal number at a specific point in the sequence may be 

calculated directly using the closed-form equation 

2 ( 1)
, 0,

3

n n

nJ n
− −

=   
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and it also can be expressed in the floor function notation as follows  

1 ( 1) 2
, 0.

2 3

n n

nJ n
 − −

= +  
 

 

The Jacobsthal sequence is considered as one of the major sequences among the well-known 

integer sequences. The Jacobsthal numbers have many interesting properties and applications in 

many fields of mathematics, as geometry, number theory, combinatorics, and probability theory 

(see [1–6, 12, 14] and the bibliography giver therein). For instance, Akbulak and Öteleş [1] defined 

two n-square upper Hessenberg matrices one of which corresponds to the adjacency matrix a 

directed pseudo graph and investigated relations between determinants and permanents of these 

Hessenberg matrices and sum formulas of the Jacobsthal sequences. Köken and Bozkurt [12] 

defined the n-square Jacobsthal matrix and using this matrix derived some properties of Jacobsthal 

numbers. In [14], Öteleş et al. investigated the relationships between the Hessenberg matrices and 

the Jacobsthal numbers. Cɪlasun [5] introduced recurrence relation for multiple-counting Jacobsthal 

sequences and showed their application with Fermat’s little theorem.  In [6], Daşdemir extended the 

Jacobsthal numbers to the terms with negative subscripts and presented many identities for new 

forms of these numbers. Čerin [4] considered sums of squares of odd and even terms of the 

Jacobsthal sequence and sums of their products; these sums are related to products of appropriate 

Jacobsthal numbers and several integer sequences. In [3], Catarino et al. presented new families of 

sequences that generalize the Jacobsthal numbers and established some identities. The main 

properties of the Jacobsthal numbers are summarized in [11].  

The purpose of the present paper is to study the Jacobsthal numbers. We investigate some 

families of Toeplitz-Hessenberg determinants the entries of which are Jacobsthal numbers with 

successive, odd and even subscripts. As a consequence, we obtain for these numbers new 

combinatorial identities involving multinomial coefficients. 

 

2. Toeplitz-Hessenberg determinants and related formulas 

A Toeplitz-Hessenberg determinant takes the form 

1 0

2 1 0

3 2 1

0 1

1 2 3 1 0

1 2 2 1

0 0 0

0 0

0 0
( , , ); ,n n

n n n

n n n

a a

a a a

a a a
T a a a

a a a a a

a a a a a

− − −

− −

 =  

where 0 0a   and 0ka   for at least one 0k  . 

The sequence 0{ }n nT   satisfies the following recurrence: for 1,n    
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1

0

1

( ) ,
n

k

n k n k

k

T a a T−

−

=

= −                                                          (2) 

where, by definition, 
0 1T = . 

The following result is known as Trudi’s formula [12] 

1 2 1 2

1 2

( )

0 1 2

2

( ) ( )n n

n

n t t t tt t

n n n

t t nt n

T a p t a a a
− + + +

+ + + =

= −  

or 

1 2 1

1 2

1 2

1 2
0

2 0 0 0

( ) ( 1) ( ) ,n

n

t t t

t t tn n
n n

t t nt n

a a a
T a p t

a a a

+ + +

+ + + =

     
= −  −      

     
                         (3) 

where the summation is over all nonnegative integers satisfying 
1 22 nt t nt n+ + + = , and   

1 2

1 2

( ... )!
( )

! !... !

n
n

n

t t t
p t

t t t

+ + +
=  

denotes the multinomial coefficient. 

Note that 
1 22 nn t t nt= + ++  is partitions of the positive integer n, where each positive 

integer i appears 
it  times. Many combinatorial identities involving sums over integer partitions can 

be generated in this way. Some of these identities presented in [8, 9] and in the next section of this 

paper. 

 

3. Jacobsthal determinant formulas 

In this section, we find relations involving the Jacobsthal sequence, which arise as certain 

families of Toeplitz-Hessenberg determinants.  

We investigate a particular case of Toeplitz-Hessenberg determinants, in which all subdia-

gonal elements are 2 or –2. Note that similar results for Toeplitz-Hessenberg determinants with 

Jacobsthal numbers and polynomials entries and with 
0 1a =   we obtained in [7, 8]. 

Theorem 1. For all 1n  , the following formulas hold: 

( )1 1

0 1 1

7
7

7
(2; , ,..., ) ( 1 ) ( 1 7) ,n n

n nT J J J − −

− = − − − − +  

( )1 1

0 1 1

11
( 2; , ,..., ) ( 11

11
1 ) (1 11) ,n n

n nT J J J − −

−− = + − −  

1 2

3 33 33

3

3 1 1
(2

3
; , ,..., ) ,

2 2

n n

n nT J J J
    − + − −
 = −           

 

1 2

41 41

41

41 3 3
( 2; , ,..., ) ,

2 2

n n

n nT J J J
    + −
 − = −           

                               (4) 
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1 1

2 3 1

17 17

1

17 1 1
(2; , ,..., ) ,

2 27

n n

n nT J J J

+ +

+

    − − − +
 = −           

 

( )1 1

0 2 2 2

7
7

7
(2; , ,..., ) ( 5 ) ( 5 7) ,n n

n nT J J J − −

− = − − − − +  

2 4 2

1 17 17

1

7 9 9
(2; , ,

7
..., ) ,

2 2

n n

n nT J J J
    − + − −
 = −           

 

4 6 2 2

77 5 5
(2; , ,..., ) ,

2 2

7

7

n n

n n

i i i
T J J J +

    − + − −
 = −           

 

where 1.i = −  

Proof. We will prove formula (4) by induction; the other proofs, which we omit, are similar. 

To make the notation simpler, we will write 
nT  instead of 1 2( 2; , , , ).n nT J J J−   When 1n =  and 

2n =  the formula is seen to hold. Suppose it is true for all 1,k n −  2n  . Using the recurrence 

(2), we have 

1

1

( 2)
n

i

n i n i

i

T J T−

−

=

= −  

( )1

1 1 1 2

2

( 2) 2
n

i

n i i n i

i

J T J J T−

− − − −

=

= + − +  

1 1

1 1 2

2 2

( 2) 2 ( 2)
n n

i i

n i n i i n i

i i

T J T J T− −

− − − − −

= =

= + − + −   

1 2
1

1 1 2

1 0

( 2) 2 ( 2)
n n

i i

n i n i i n i

i i

T J T J T
− −

+

− − − − −

= =

= + − + −   

1 2
1 1

02

1 1

21 1( 2) 2 4 ( 2)2 2
n n

i i

n i n i i n i

i i

nT J T JJ T T
− −

− −

− − − − −

= =

−

 
= − + − 


−


−   

1 1 2 1 28 82 .n n n n nT T T TT− − − − −+−= + =−  

Now, using the induction hypothesis and the Jacobsthal recurrence relation (1), we obtain 

1 1 2 2

41 41 441 3 3 8 41 3 31 41

41 412 2 2 2

n n n n

nT

− − − −          + − + −
   = − + −                          

−


 

2 2

41 3 3 3 3
8 1

2 2 2 2

41 41 41 41
8 1

41

n n− −    + + − −
 = −  +    

   
 − +      

  
      

 

2 2

41 41
( 41) ( 41)

41

41 3 3
11 4 11 4

2 2

n n− −    + −
 = + − +          

+

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41 3 3
.

41 41

41 2 2

n n    + −
 =            

+  

Consequently, the formula (4) is true in the case n. Therefore, by induction, the formula holds 

for all positive integers n. The proof is complete. 

 

4. Multinomial extension of Toeplitz-Hessenberg determinants 

In this section, we focus on multinomial extensions of Theorem 1. All formulas from 

Theorem 1 may be rewritten in terms of Trudi’s formula. As a result, we obtained new 

combinatorial identities involving products of powers of Jacobsthal numbers and multinomial 

coefficients. 

Theorem 2. For all 1,n  the following formulas hold:  

1 2

1 2

1 2

1 1

0 1 1

2

7 1 1
( 1) ( ) ,

2 2 2 2 2

7 7

14

n

n

n

n nt t t

t t t n
n

t t nt n

J J J
p t

− −

+ + + −

+ + + =

    − +       − = −                       

  

1 2

1 2

1 1

0 1 1

2

1111 1 1
( ) ,

2

11

222 2 2 2

n

n

n nt t t

n
n

t t nt n

J J J
p t

− −

−

+ + + =

    + −       = −                       

  

1 2

1 2

1 2

1 2

2

33 1 1
( 1) ( ) ,

2 2 2 4

33 33

3 43

n

n

n

n nt t t

t t t n
n

t t nt n

J J J
p t

+ + +

+ + + =

    − +       − = −                       

  

1 2

1 2

1 2

2

41 3 3
( ) ,

2 2

41 41

2 4 441

n

n

n nt t t

n
n

t t nt n

J J J
p t

+ + + =

    + −       = −                       

  

1 2

1 2

1 2

1 1

2 3 1

2

172 17 1 17
( 1)

1

1
( ) ,

2 2 2 4 47

n

n

n

n nt t t

t t t n
n

t t nt n

J J J
p t

+ +

+ + + +

+ + + =

    − +       = −                     

−
 

  

1 2

1 2

1 2

1 1 1

0 2 2 2

2

7 5 5
( ) ,

2 2 2 2

7 7
( 1)

14 2

n

n

n

n n nt t t

t t t n
n

t t nt n

J J J
p t

− − −

+ + + −

+ + + =

    − +       = −                       

−  

1 2

1 2

1 2

2 4 2

2

17 9 9
( )

17 17
,

2 2 2
1

7 4 4
( )

1

n

n

n

n nt t t

t t t n
n

t t nt n

J J J
p t

+ + +

+ + + =

    − +       = −                      

−



  

1 2

1 2

1 2

4 6 2 2

2

7 7 7
( 1)

7

5 5
( ) ,

2 2 2 4 4

n

n

n

n nt t t

t t t n
n

t t nt n

J J J i i i
p t

+ + + +

+ + + =

    − +       = −                      

−



  

where the summation is over integers 0it  satisfying 
1 22 nt t nt n+ + + = .  
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