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In [5, 6], Horadam defined generalized Fibonacci numbers {𝑤𝑛(𝑎, 𝑏; 𝑝, 𝑞)}, or briefly {𝑤𝑛},
which satisfy the second-order homogeneous linear recurrence relation

𝑤𝑛 = 𝑝𝑤𝑛−1 − 𝑞𝑤𝑛−2, 𝑛 ≥ 2, (1)
where 𝑤0 = 𝑎, 𝑤1 = 𝑏 and 𝑎, 𝑏, 𝑝, 𝑞 are integers.

This sequence generalizes many number sequences, such as Fibonacci, Lucas, Pell, Jacobsthal
sequences, among others.

We study some families of Toeplitz-Hessenberg determinants the entries of which are Horadam
numbers. These determinant formulas may also be rewritten as identities involving sums of
products of the Horadam numbers and multinomial coefficients.

Let 𝜀 = 𝑎2𝑞−𝑎𝑏𝑝+𝑏2, |𝑠| = 𝑠1+𝑠2+ · · ·+𝑠𝑛, 𝜎𝑛 = 𝑠1+2𝑠2+ · · ·+𝑛𝑠𝑛, and 𝑝𝑛(𝑠) = (𝑠1+···+𝑠𝑛)!
𝑠1!···𝑠𝑛!

denotes the multinomial coefficient.

Theorem 1. For all 𝑛 ≥ 2, the following formulas fold∑︁
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where the summation is over integers 𝑠𝑖 ≥ 0 satisfying 𝑠1 + 2𝑠2 + · · ·+ 𝑛𝑠𝑛 = 𝑛.

These identities generalize some identities which we have obtained in [1–4].
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On 𝜎-nilpotency of finite groups

Viktoria A. Gritskova (Kovaleva)

All considered groups are finite and 𝐺 always denotes a finite group. The symbol 𝜋(𝐺)
denotes the set of all primes dividing the order of 𝐺. Two groups 𝐴 and 𝐵 are called isoordic if
|𝐴| = |𝐵|.

Let 𝜎 be some partition of the set of all primes P, that is, 𝜎 = {𝜎𝑖|𝑖 ∈ 𝐼}, where P =
⋃︀

𝑖∈𝐼 𝜎𝑖
and 𝜎𝑖 ∩ 𝜎𝑗 = ∅ for all 𝑖 ̸= 𝑗, and we put, following [5], 𝜎(𝐺) = {𝜎𝑖|𝜎𝑖 ∩ 𝜋(𝐺) ̸= ∅}. 𝐺 is said to
be: 𝜎-primary [5] if 𝐺 is a 𝜎𝑖-group for some 𝑖; 𝜎-decomposable (Shemetkov [4]) or 𝜎-nilpotent
(Guo and Skiba [1]) if 𝐺 = 𝐺1 × · · · ×𝐺𝑛 for some 𝜎-primary groups 𝐺1, . . . , 𝐺𝑛.

A subgroup 𝐴 of 𝐺 is called 𝜎-subnormal in 𝐺 [5] if it is N𝜎-subnormal in 𝐺 in the sense of
Kegel [2], that is, there is a subgroup chain

𝐴 = 𝐴0 ≤ 𝐴1 ≤ · · · ≤ 𝐴𝑛 = 𝐺

such that either 𝐴𝑖−1 E 𝐴𝑖 or 𝐴𝑖/(𝐴𝑖−1)𝐴𝑖
is 𝜎-primary for all 𝑖 = 1, . . . , 𝑛. We use 𝑖𝜎(𝐺) to

denote the number of classes of isoordic non-𝜎-subnormal subgroups of 𝐺.
We study the structure of 𝐺 depending on the invariant 𝑖𝜎(𝐺). In particular, we obtained the

conditions of 𝜎-nilpotency of 𝐺 with restrictions on 𝑖𝜎(𝐺). For example, the following theorem
was proved.

Theorem. [3, Theorem 1.7] If 𝑖𝜎(𝐺) ≤ |𝜎(𝐺)| − 2, then 𝐺 is 𝜎-nilpotent.

Note that Theorem is a corollary of the more general result [3, Theorem 1.2].
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