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Gibonacci numbers {G,,},>o are defined by the recurrence relation G,, = G,_1 + G2, where Gy
and G are arbitrary integers, and n > 2 (see, for example, [4] and the bibliography given there). When
Gy =0 and G; =1, G, = F,, the nth Fibonacci number; and when Go = 2 and G; =1, G,, = L,,, the
nth Lucas number.

The nth Pell number P, is defined by the recurrence P, = 2P, _1 + P,,_5, where Py =0, P, =1, and
n > 2. The nth Jacobsthal number J, is defined by J,, = J,,—1 +2J,,_2, where J, =0, J; =1, and n > 2.

There are large number of sequences indexed in OEIS [7], being in this case

{F.}ns0 = {0,1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377, 610, 987, 1597, .. .} : A000045
{Ln}ns0 = {2,1,3,4,7,11,18,29,47, 76,123,199, 322, 521, 843, 1364, 2207, .. .} : A000032
{Po}nso = {0,1,2,5,12,29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, .. .} : A000129
{Jn}nso ={0,1,1,3,5,11,21,43,85,171, 341, 683, 1365, 2731, 5461, 10923, .. .} : A001045

A Toeplitz-Hessenberg matriz is an n x n matrix of the form

aq ap 0 L 0 0
ag a1 an e 0 0
M, (ag;a1,...,an) = ,
p—-1 QAp—2 Ap-3 **° ai Qg
[£2% p—-1 Ap-2 - A2 41

where ag # 0 and ay # 0 for at least one k > 0.

The purpose of this paper is to study Fibonacci and Lucas numbers. We investigate some families
of Toeplitz-Hessenberg matrices the entries of which are Fibonacci and Lucas numbers with successive,
odd or even subscripts. These permanent formulas may also be rewritten as identities involving sums
of products of Fibonacci and Lucas numbers and multinomial coefficients. Similar results we obtained
in [1-3].

Recall that permanent of a square matrix is defined in a similar manner to the determinant but all
the sign used in the Laplace expansion of minors are positive. Given a n x n matrix A = (m;;), the
permanent of A, denoted Per(A), is defined by

Per(A) = Z H Mir(1)M2r(2) " " Mnx(n),

TESy j=1

where S, is the set of all permutations of {1,2,...,n} [5].
For simplicity of notation, we will write Per(a1,as, ..., a,) instead of Per(Mn(l; a1, a9, ..., an)).

Lemma 1. (Trudi’s formula, [6]) Let n be a positive integer. Then

a t1 a to a tn
1 2
Per(ay,asa,...,an) = ag - E Pn(2) (> () <n> ) (1)
()] ap ap
t1+2ta+-Ant,=n

where the summation is over nonnegative integers satisfying equation t, + 2ts + --- + nt, = n, and

pn(t) = W is the multinomial coefficients.
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Next theorem gives connection between Fibonacci numbers and Pell, Jacobsthal numbers via the
Toeplitz-Hessenberg permanents.

Theorem 2. For alln > 1,

3

)

Per(Fl,Fg,...,Fn) P,
PGI‘(I?O,P&7 PN 7Fn—1) =J,

3

The following theorem gives the value of Per(ay,as, ..., a,) for several Fibonacci entries a;.

Theorem 3. Let n > 1, except when noted otherwise. Then

Per(Fy, Fy, ..., Fon_ o) = 3" 2% n>o
Per(Fy, Fs,..., Fap_1) = (2+V2)" Z (2 - \/§)n7
143+ — (1= /3!
Per(Fy, Fs, ..., Fpy1) = ( ) 4\/3( ) |
Per(Fy, Fy, ..., Fo,) = (2+ \/3)”2\—/3(2 — \/3)"7
Per(Fa, Fo-.,Faga) = = +1i\/ﬁ <3 +2ﬁ>n_1 + = _ém (3 _2m>n_1,

n—1 n—1
17+ 4V17 [ 5+ V17 17 —4v17 (5 — /17
Per(F37F5a"'7F2’rL+1): 17 < 2 ) + 17 2 )

Per(Fy, Fy, ..., Fonyo) = 8;3?(3 + V)"~ 8;\%@3 — V7L

Next we investigate the Lucas counterparts of some of the results from Theorem 3.

Theorem 4. Let n > 1, except when noted otherwise. Then

Per(Lo,L1,...,L,_1) =5-3""2, n>2,
5.4~ 41
Per(Lo, Lo ..., Lop_2) = %
5_3n—1 —1)"
Per(Ly, Lo, ..., Ly) = $,
Per(Ly,Ls,..., Loy 1) =5-4""2% n>2.

Now from Theorems 2-4, using Trudi’s formula (1), we obtain new Fibonacci and Lucas identities
with multinomial coefficients.

Theorem 5. Let n > 1, except when noted otherwise. The following formulas hold:

Z Pa(O)FG F{2 - By =y,
t1+2to+-Fntp=n

Z p”(t)FglFSQ"'F§;—2 :3n727 n =2,
t1+2t2+-+nt,=n
S WP FE e Fr =P,

t1+2tg+-+nt,=n

S nOFNFEFlp = 2+ V2)" + (2 — V2)"

4 )
t1+2ta+--+nt,=n
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gt g LV - (- VB
pn(t) 2 3 "1 — 4\/§ )
t142te+---+nt,=n

2+ V3"~ (2 VB)"

S noRE ey ,
t142te+--4+nt,=n 2\/§
n—1 n—1
17+ 417 (3 17 17— 417 (3= V17
S pEeEp . p, = TEVIT(BHVIT) 17 VT |
17 2 17 2
t14+2ta+---+nt,=n
n—1 n—1
174+ 4V17 {5+ 17 17— 417 [ 5= /17
> pn(t)Fg Fy? - Fyn ) = + ;
17 2 17 2
t1+2t2+--+nt,=n
8 + 37 8 — 37
S R i, = g - Sy
t1+2t2+--+nt,=n 2v7

_ (tittatotta)!
where py(t) = ( ST

numbers, respectively.

is the multinomial coefficient, P, and J, are the nth Pell and Jacobsthal

The next theorem gives analogous results for the Lucas family.

Theorem 6. The following formulas hold:

pu(t) LG L Ll | =5.3"72 n>2
t1+2t2+--+nt,=n

5.4n—1 11
S pOLGLE Ll =2 T n>1,

3
t1+2ta+Fnt,=n
5-3" 14 (—1)"

> mILy Ly = nzl,
ti+2ta+-Antn=n
N paOLYLE L =547 a2

t1+2ta+--+nt,=n
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