ON PELL-PADOVAN SEQUENCE

Goy T. P.

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine; tarasgoy@yahoo.com

The Pell-Padovan sequence $\left\{P_{n}\right\}_{n \geq 0}$ is the sequence of integers defined by a thirdorder recurrence equation

$$
P_{n}=2 P_{n-2}+P_{n-3},
$$

for $n \geq 3$, where $P_{0}=P_{1}=P_{2}=1$. The first few values of Pell-Padovan numbers are $1,1,1,3,3,7,9,17,25,43,67,111,177,289, \ldots$ (see, for example, [1]).

We investigate some families of Toeplitz-Hessenberg determinants the entries of which are Pell-Padovan numbers. As a result, we obtain new identities involving sums of products of these numbers and multinomial coefficients. In particular we obtain some connection formulas between Pell-Padovan and Fibonacci numbers.

Our approach is similar in spirit to $[2-4]$.
Recall that the Fibonacci sequence $\left\{F_{n}\right\}_{n \geq 0}$ is defined by the initial values $F_{0}=0$, $F_{1}=1$ and the recurrence relation

$$
F_{n}=F_{n-1}+F_{n-2}, \quad n \geq 2 .
$$

Theorem. Let $n \geq 2$, except when noted otherwise. Then

$$
\begin{aligned}
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{1}^{s_{1}} P_{2}^{s_{2}} \cdots P_{n}^{s_{n}}=2(-1)^{n} F_{n-2}, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{2}^{s_{1}} P_{3}^{s_{2}} \cdots P_{n+1}^{s_{n}}=(-1)^{\left\lfloor\frac{4 n+1}{3}\right\rfloor}+(-1)^{\left\lfloor\frac{4 n+2}{3}\right\rfloor}, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{3}^{s_{1}} P_{4}^{s_{2}} \cdots P_{n+2}^{s_{n}}=2(-1)^{n} F_{2 n}, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{3}^{s_{1}} P_{5}^{s_{2}} \cdots P_{2 n+1}^{s_{n}}=-2 F_{n-4}, \quad n \geq 4, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{0}^{s_{1}} P_{2}^{s_{2}} \cdots P_{2 n-2}^{s_{n}}=2 F_{n-1}-2^{n-1}, \quad n \geq 1, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{2}^{s_{1}} P_{4}^{s_{2}} \cdots P_{2 n}^{s_{n}}=2 \sum_{j=0}^{\lfloor(n-1) / 3\rfloor}(-1)^{j+1}\binom{n-1}{3 j+1}, \\
& \sum_{\sigma_{n}=n}(-1)^{|s|} m_{n}(s) P_{4}^{s_{1}} P_{6}^{s_{2}} \cdots P_{2 n+2}^{s_{n}}=(-1)^{\left\lfloor\frac{5 n-2}{3}\right\rfloor}+(-1)^{\left\lfloor\frac{5 n-1}{3}\right\rfloor},
\end{aligned}
$$

where $\lfloor\cdot\rfloor$ is the floor function, $\sigma_{n}=s_{1}+2 s_{2}+\cdots+n s_{n},|s|=s_{1}+s_{2}+\cdots+s_{n}$, $m_{n}(s)=\frac{\left(s_{1}+\cdots+s_{n}\right)!}{s_{1}!\cdots s_{n}!}$ is the multinomial coefficient, and the summation is over integers $s_{i} \geq 0$ satisfying $s_{1}+2 s_{2}+\cdots+n s_{n}=n$.

REFERENCES

1. Atanassov K., Dimitrov D., Shannon A., "A remark on ψ-function and Pell-Padovan's sequence," Notes Number Theory Discrete Math., 15, No. 2, 1-44 (2009).
2. Goy T., "On identities with multinomial coefficients for Fibonacci-Narayana sequence," Ann. Math. Inform., 49, 75-84 (2018).
3. Goy T., "Some families of identities for Padovan numbers," Proc. Jangjeon Math. Soc., 21, No. 3, 413-419 (2018).
4. Goy T. P., "On some fibinomial identities" (Russian), Chebyshevskii sbornik, 19, No. 2, 56-66 (2009).
