triangular numbers. However, no other balancing-like sequence enjoys this property. Furthermore, the $N$-th triangular-like number of the sequence $B L(A,-1)$ is equal to the sum of first $n$ terms of the sequence $B L\left(A^{2}-2,-1\right)$.

## NEW FORMULAS FOR VIETA-JACOBSTHAL AND VIETA-JACOBSTHAL-LUCAS POLYNOMIALS

Taras Goy (Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine)

In [3], authors defined Vieta-Jacobsthal and Vieta-JacobsthalLucas polynomials by the recurrences $G_{n}(x)=G_{n-1}(x)-2 x G_{n-2}(x)$ and $g_{n}(x)=g_{n-1}(x)-2 x g_{n-2}(x)$, respectively, where $G_{0}(x)=0$, $G_{1}(x)=1, g_{0}(x)=2, g_{1}(x)=1$. Note that $G_{n}\left(-\frac{1}{2}\right)=F_{n}$ and $g_{n}\left(-\frac{1}{2}\right)=L_{n}$, where $F_{n}$ and $L_{n}$ are the $n$th Fibonacci and Lucas number.

We obtained some identities involving polynomials $G_{n}(x)$ and $g_{n}(x)$ and multinomial coefficients. Our approach is similar in spirit to $[1,2]$.

Let $|t|=t_{1}+\cdots+t_{n}, \tau_{n}=t_{1}+2 t_{2}+\cdots+n t_{n}$, and $p_{n}(t)=\frac{(-1)^{|t|}|t|!}{t_{1}!\cdots t_{n}!}$.
Theorem. Let $n \geq 2$, except then noted otherwise. Then

$$
\begin{aligned}
& \sum_{\tau_{n}=n} p_{n}(t) G_{2}^{t_{1}}(x) G_{3}^{t_{2}}(x) \cdots G_{n+1}^{t_{n}}(x)=0, \quad n \geq 3 \\
& \sum_{\tau_{n}=n} p_{n}(t) G_{3}^{t_{1}}(x) G_{4}^{t_{2}}(x) \cdots G_{n+2}^{t_{n}}(x)=(2 x)^{n} \\
& \sum_{\tau_{n}=n} p_{n}(t) G_{3}^{t_{1}}(x) G_{5}^{t_{2}}(x) \cdots G_{2 n+1}^{t_{n}}(x)=(-2 x)^{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\tau_{n}=n} p_{n}(t) g_{2}^{t_{1}}(x) g_{3}^{t_{2}}(x) \cdots g_{n+1}^{t_{n}}(x)=2^{2 n-3}(8 x+1) x^{n-1} \\
& \sum_{\tau_{n}=n} p_{n}(t) g_{3}^{t_{1}}(x) g_{4}^{t_{2}}(x) \cdots g_{n+2}^{t_{n}}(x)=2(2 x)^{n-1}\left(\left(2^{n+1}-1\right) x+2^{n-2}\right) \\
& \sum_{\tau_{n}=n} p_{n}(t) g_{3}^{t_{1}}(x) g_{5}^{t_{2}}(x) \cdots g_{2 n+1}^{t_{n}}(x)=(8 x+1)(2 x)^{n-1}
\end{aligned}
$$

where the summation is over integers $t_{i} \geq 0$ satisfying $\tau_{n}=n$.

## References

[1] T. Goy "On determinants and permanents of some Toeplitz-Hessenberg matrices whose entries are Jacobsthal numbers", Eurasian Mathematical Journal, 9:4 (2018), 61-67.
[2] T. Goy "On new identities for Mersenne numbers", Applied Mathematics E-Notes, 18 (2018), 100-105.
[3] N. F. Yalçin, D. Taşci, E. Erkuş-Duman "Generalized VietaJacobsthal and Vieta-Jacobsthal-Lucas polynomials", Mathematical Communications, 20 (2015), 241-251.

## POSITIVITY OF CHARACTER SUM

Alexander B. Kalmynin (Pacific National University, Khabarovsk, Russia)

Let $\alpha$ be a positive real number. For any prime $p$ let $L(\alpha, p)$ be the sum of first $\alpha * p$ Legendre symbols modulo $p$. It turns out that this quantity is in some sense positively biased. We will discuss several results concerning positivity of $L(\alpha, p)$ and connections between $L(\alpha, p)$ and random multiplicative functions.

This research is supported by the Russian Science Foundation (project 18-41-05001).

