B-1208 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

For every positive integer n, find all real solutions of the following linear system of equations:

$$
\begin{aligned}
& F_{1} x_{1}+x_{2}=F_{3}, \\
& F_{2} x_{1}+F_{1} x_{2}+x_{3}=F_{4}, \\
& F_{3} x_{1}+F_{2} x_{2}+F_{1} x_{3}+\cdots \quad=F_{5}, \\
& F_{n-1} x_{1}+F_{n-2} x_{2}+F_{n-3} x_{3}+\cdots+x_{n}=F_{n+1} \text {, } \\
& F_{n} x_{1}+F_{n-1} x_{2}+F_{n-2} x_{3}+\cdots+F_{1} x_{n}+x_{n+1}=F_{n+2}, \\
& F_{n+1} x_{1}+F_{n} x_{2}+F_{n-1} x_{3}+\cdots+F_{2} x_{n}+F_{1} x_{n+1}=F_{n+3}-1 .
\end{aligned}
$$

B-1209 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

The Tribonacci numbers T_{n} satisfy $T_{0}=0, T_{1}=T_{2}=1$, and

$$
T_{n}=T_{n-1}+T_{n-2}+T_{n-3}, \quad \text { for } n \geq 3 .
$$

Prove that

$$
\sum_{k=1}^{n} T_{2 k} T_{2 k-1}=\left(\sum_{k=1}^{n} T_{2 k-1}\right)^{2}
$$

for any integer $n \geq 1$.
B-1210 Proposed by Taras Goy, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

Prove that

$$
\sum_{t_{1}+2 t_{2}+\cdots+n t_{n}=n}(-1)^{n-s} \frac{s!}{t_{1}!t_{2}!\cdots t_{n}!} F_{1}^{t_{1}} F_{2}^{t_{2}} \cdots F_{n}^{t_{n}}=\frac{1-(-1)^{n}}{2}
$$

where $s=t_{1}+t_{2}+\cdots+t_{n}$.

SOLUTIONS

A Telescoping Lucas Sum

B-1186 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 54.2, May 2016)
Prove that

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} L_{2^{n}}}{L_{2^{n+1}}+1}=0
$$

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Since $L_{2 k}+2(-1)^{k}=L_{k}^{2}$, for any even number m, we have $L_{2 m}=L_{m}^{2}-2$. This applies to every denominator in the given expression for $n>0$, and hence,

$$
\frac{(-1)^{n} L_{2^{n}}}{L_{2^{n+1}}+1}=\frac{(-1)^{n} L_{2^{n}}}{L_{2^{n}}^{2}-1}=\frac{(-1)^{n}\left(L_{2^{n}}-1+1\right)}{\left(L_{2^{n}}-1\right)\left(L_{2^{n}}+1\right)}=\frac{(-1)^{n}}{L_{2^{n}}+1}+\frac{(-1)^{n}}{L_{2^{n+1}}+1} .
$$

