## B-1228 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any integer $n \geq 0$, find the closed form expressions for the sums
(i) $S_{n}=\sum_{i=0}^{n} \sum_{j=0}^{n} L_{3^{i}} L_{3^{j}} L_{2\left(3^{i}-3^{j}\right)}$;
(ii) $T_{n}=\sum_{i=0}^{n} \sum_{j=0}^{n} F_{2 \cdot 5^{i}} F_{2 \cdot 5^{j}} L_{3\left(5^{i}-5^{j}\right)}$.

B-1229 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College, Bucharest, Romania, and Neculai Stanciu, George Emil Palade School, Bazău, Romania.

Let $m, p \geq 0$. Evaluate

$$
\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{((2 n+1)!!)^{m+1} F_{n+1}^{p(m+1)}}}{(n+1)^{m}}-\frac{\sqrt[n]{((2 n-1)!!)^{m+1} F_{n}^{p(m+1)}}}{n^{m}}\right)
$$

and

$$
\lim _{n \rightarrow \infty}\left(\frac{\sqrt[n+1]{((2 n+1)!!)^{m+1} L_{n+1}^{p(m+1)}}}{(n+1)^{m}}-\frac{\sqrt[n]{((2 n-1)!!)^{m+1} L_{n}^{p(m+1)}}}{n^{m}}\right)
$$

B-1230 Proposed by T. Goy, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

For all integers $n \geq 0$, prove that

$$
F_{2 n+1}=(-1)^{n} \sum_{\substack{t_{1}, t_{2}, \ldots, t_{n} \geq 0 \\ t_{1}+2 t_{2}+\cdots+n t_{n}=n}}(-1)^{t_{1}+t_{3}+\cdots+t_{n-\left[1+(-1)^{n}\right] / 2}} \frac{\left(t_{1}+t_{2}+\cdots+t_{n}\right)!}{t_{1}!t_{2}!\cdots t_{n}!} \cdot 2^{t_{1}} .
$$

## SOLUTIONS

## Two Doses of AM-GM Inequality

B-1206 Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain. (Vol. 55.2, May 2017)

Let $n \geq 2$ be an integer. Prove that

$$
1+\frac{1}{n^{2}} \sum_{1 \leq i<j \leq n} \frac{\left(\sqrt{F_{i} F_{j+1}}-\sqrt{F_{i+1} F_{j}}\right)^{2}}{F_{i} F_{j}} \leq \frac{1}{n} \sum_{k=1}^{n} \frac{F_{k+1}}{F_{k}},
$$

in which the subscripts are taken modulo $n$.
Solution by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.

To begin, we rewrite the given inequality in the form

