which gives

$$
\sum_{n=0}^{\infty}\left[P_{n}(x)-F_{n}(x)\right] t^{n}=x\left(\sum_{i=0}^{\infty} P_{i}(x) t^{i}\right)\left(\sum_{j=0}^{\infty} F_{j}(x) t^{j}\right)
$$

After comparing coefficients of t^{n}, we obtain

$$
P_{n}(x)=F_{n}(x)+x \sum_{s=0}^{n} P_{n-s}(x) F_{s}(x) .
$$

The second relation follows from

$$
\frac{2-x t}{1-2 x t-t^{2}}-\frac{2-x t}{1-x t-t^{2}}=x \cdot \frac{t}{1-2 x t-t^{2}} \cdot \frac{2-x t}{1-x t-t^{2}},
$$

which leads to

$$
2 P_{n+1}(x)-x P_{n}(x)=L_{n}(x)+x \sum_{s=0}^{n} P_{n-s}(x) L_{s}(x) .
$$

When $x=1$ these relations reduce to

$$
P_{n}=F_{n}+\sum_{s=0}^{n} P_{n-s} F_{s}, \quad \text { and } \quad 2 P_{n+1}-P_{n}=L_{n}+\sum_{s=0}^{n} P_{n-s} L_{s} .
$$

Solution 2 by T. Goy, Vasyl Stefanyk Precarpathian National University, IvanoFrankivsk, Ukraine.

Define $D_{0}=1$, and let

$$
D_{n}=\operatorname{perm}\left(\begin{array}{cccccc}
F_{1} & 1 & 0 & \cdots & 0 & 0 \\
F_{2} & F_{1} & 1 & \cdots & 0 & 0 \\
F_{3} & F_{2} & F_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
F_{n-1} & F_{n-2} & F_{n-3} & \cdots & F_{1} & 1 \\
F_{n} & F_{n-1} & F_{n-2} & \cdots & F_{2} & F_{1}
\end{array}\right) .
$$

It is easy to verify that $D_{1}=P_{1}$ and $D_{2}=P_{2}$, and $D_{n}=\sum_{i=1}^{n} F_{i} D_{n-i}$. It follows that

$$
\begin{aligned}
D_{n} & =F_{1} D_{n-1}+\sum_{i=2}^{n}\left(F_{i-1}+F_{i-2}\right) D_{n-i} \\
& =D_{n-1}+\sum_{i=1}^{n-1} F_{i} D_{n-1-i}+\sum_{i=0}^{n-2} F_{i} D_{n-2-i} \\
& =2 D_{n-1}+D_{n-2} .
\end{aligned}
$$

Since D_{n} satisfies the Pell recurrence relation with $D_{1}=P_{1}$ and $D_{2}=P_{2}$, we determine that $D_{n}=P_{n}$ for all integers $n \geq 1$. Since

$$
\operatorname{perm}\left(\begin{array}{ccccc}
a_{1} & a_{0} & \cdots & 0 & 0 \\
a_{2} & a_{1} & \ddots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-1} & a_{n-2} & \cdots & a_{1} & a_{0} \\
a_{n} & a_{n-1} & \cdots & a_{2} & a_{1}
\end{array}\right)=\sum_{\substack{t_{1}, t_{2}, \ldots, t_{n} \geq 0 \\
t_{1}+2 t_{2}+\cdots+n t_{n}=n}} a_{0}^{n-t_{1}-\cdots-t_{n}} \frac{\left(t_{1}+\cdots+t_{n}\right)!}{t_{1}!\cdots t_{n}!} a_{1}^{t_{1}} a_{2}^{t_{2}} \cdots a_{n}^{t_{n}},
$$

THE FIBONACCI QUARTERLY

we obtain

$$
P_{n}=\sum_{\substack{t_{1}, t_{2}, \ldots, t_{n} \geq 0 \\ t_{1}+2 t_{2}+\cdots+n t_{n}=n}} \frac{\left(t_{1}+\cdots+t_{n}\right)!}{t_{1}!\cdots t_{n}!} F_{1}^{t_{1}} F_{2}^{t_{2}} \cdots F_{n}^{t_{n}}
$$

Editor's Notes: Frontczak derived a similar result for the generalized Pell sequence with arbitrary initial values, thereby obtaining the same result in Solution 1. Using a different method, Edgar derived a formula in terms of compositions of n that can be expressed as

$$
P_{n}=\sum_{k=1}^{n} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{k} \geq 1 \\ i_{1}+i_{2}+\cdots+i_{k}=n}} F_{i_{1}} F_{i_{2}} \cdots F_{i_{k}},
$$

which is equivalent to Solution 2. Fedak and the proposer compared the Binet's formulas of P_{n} to those of F_{n} and L_{n}. Fedak found that

$$
P_{n}=\frac{\sqrt{5}\left(\gamma^{n}+\delta^{n}\right) F_{n}+\left(\gamma^{n}-\delta^{n}\right) L_{n}}{4 \sqrt{2}},
$$

where $\gamma=\frac{1+\sqrt{2}}{\alpha}$ and $\delta=\frac{1-\sqrt{2}}{\beta}$, and the proposer proved that $P_{n}=\operatorname{round}\left(\frac{r^{n}\left(L_{n}+F_{n} \sqrt{5}\right)}{4 \sqrt{2}}\right)$, where $r=\frac{2(1+\sqrt{2})}{1+\sqrt{5}}$.

Also solved by Tom Edgar, I. V. Fedak, Robert Frontczak, Raphael Schumacher, and the proposer.

A Not-So-Obvious Application of Cauchy-Schwarz Inequality

B-1241 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
(Vol. 57.1, February 2019)
For all positive integers n, prove that

$$
\frac{F_{n+2}}{L_{n+2}}+\frac{F_{n+1}}{L_{n+1}}+\frac{F_{n}}{L_{n+1}+F_{n+2}}>1 .
$$

Solution by Hideyuki Ohtsuka, Saitama, Japan.

By Cauchy-Schwarz inequality, for $a, b, c>0$, we have

$$
[a(a+2 b)+b(b+2 c)+c(c+2 a)]\left(\frac{a}{a+2 b}+\frac{b}{b+2 c}+\frac{c}{c+2 a}\right) \geq(a+b+c)^{2} .
$$

From the above inequality and the identity

$$
a(a+2 b)+b(b+2 c)+c(c+2 a)=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a=(a+b+c)^{2},
$$

we obtain

$$
\frac{a}{a+2 b}+\frac{b}{b+2 c}+\frac{c}{c+2 a} \geq 1
$$

where equality occurs if and only if $a=b=c$. Using the identity $L_{m}=F_{m+1}+F_{m-1}$, we find

$$
\begin{aligned}
& \frac{F_{n+2}}{L_{n+2}}+\frac{F_{n+1}}{L_{n+1}}+\frac{F_{n}}{L_{n+1}+F_{n+2}}=\frac{F_{n+2}}{F_{n+3}+F_{n+1}}+\frac{F_{n+1}}{F_{n+2}+F_{n}}+\frac{F_{n}}{F_{n}+2 F_{n+2}} \\
& \quad=\frac{F_{n+2}}{F_{n+2}+2 F_{n+1}}+\frac{F_{n+1}}{F_{n+1}+2 F_{n}}+\frac{F_{n}}{F_{n}+2 F_{n+2}}>1 .
\end{aligned}
$$

