УДК 538.975

ISSN 1729-4428

Є.С. Никонюк¹, П.М. Фочук², С.В. Солодін², М.О. Ковалець¹, З.І. Захарук², О.Е. Панчук²

Електрична нестабільність кристалів CdTe:Si

¹Національний університет водного господарства та природокористування, вул. Соборна, 11, м. Рівне, 33000, Україна

² Чернівецький національний університет ім. Юрія Федьковича, вул. Коцюбинського, 2, м. Чернівці, 58012, Україна, e-mail: <u>serhii.solodin@gmail.com</u>

У роботі наведені результати досліджень температурних залежностей електропровідності та постійної Холла у кристалах CdTe, легованих кремнієм (концентрація домішки у розплаві була 10^{18} - 10^{19} см⁻³). Проведена класифікація досліджуваних зразків і умов, при яких можуть реалізуватися конкретні домішкові стани. Знайдено відмінність між трьома групами кристалів CdTe:Si: (1) - низькоомні кристалу р-типу з мілкими акцепторами, у яких домішка Si локалізована головним чином у великих вкрапленнях; (2) - напівізолюючі кристали з глибокими акцепторами і преципітатами Si субмікронного розміру, які є джерелом міжвузлових мілких донорів Si_i; (3) - низькоомні кристали, у яких п-тип провідності забезпечується мілкими донорами Si_i (i/aбo) Si_{cd}. Таким чином, кремній відповідальний за п-тип провідності легованих кристалів, якщо він впроваджений як донор Si_i і забезпечує напівізолюючий стан шляхом формування глибоких акцепторних комплексів (Si_{Cd} V_{Cd}²⁻)⁻ з енергетичним рівнем (E_v + 0,65 eB). Субмікронні преципітати кремнію, що мають тенденцію до розчинення при відносно низьких температурах, можуть діяти як електрично активні центри.

Ключові слова: телурид кадмію, силіцій, легування, електричні властивості, домішка, преципітати

Стаття поступила до редакції 13.12.2016; прийнята до друку 05.03.2017.

Вступ

У кристалах CdTe, вирощених з розплаву у кварцових контейнерах, дуже ймовірне забруднення домішкою кремнію. Її вміст, інколи, досягає 10¹⁸-10¹⁹ ат/см³, який є достатньо високим у порівнянні з іншими неконтрольованими домішками [1-3]. Проте, однозначні висновки щодо електричної активності цієї домішки в CdTe відсутні. Зокрема, у [4] не спостерігалося суттєвих відмінностей у електричних властивостях кристалів CdTe:Si та кристалів нелегованого CdTe, вирощеного в подібних умовах. У той же час, слід звернути увагу на високий вихід матеріалу з п-типом провідності, який нехарактерний для нелегованих кристалів. Відмітимо, що спектри фотолюмінесценції [4] та катодолюмінісценції [5] для нелегованих і легованих кремнієм кристалів суттєво відрізнялися для зразків взятих з різних частин монокристалу. Деяка інформація про властивості кристалів CdTe:Si опублікована у [6-7], але результати не збігаються з даними попередніх робіт. Така розбіжність в результатах потребує подальших досліджень кристалів CdTe:Si.

I. Експериментальна частина

Кристали CdTe, леговані Si (концентрація домішки у розплаві $C_0 = 10^{18} \div 10^{19} \text{ см}^{-3}$), були вирощені у графітованих кварцових ампулах вертикальним методом Бріджмена.

Температурні залежності коефіцієнта Холла R_{H} , питомої електропровідності σ , концентрації $n = 1/eR_{H}$ та рухливості μ носіїв заряду досліджувалися у зразках, виготовлених з різних частин злитків CdTe:Si. Положення зразка в злитку визначалося величиною g = x/L, де x – аксіальна координата, L – довжина злитку) Низькотемпературні вимірювання (HTB) виконувалися при температурах $T = 77 \div 420$ K, а високотемпературні (BTB) – при $T = 520 \div 1250$ K в умовах насиченого тиску пари Cd у двозонній печі [8]. Фотозбудження зразків забезпечувалось монохроматором ИКС-12.

Дослідження вкраплень сторонньої фази проводили на мікроскопі Leitz, оснащеному ІЧ-камерою Pixelink PL-A741.

Рис. 1. ІЧ-фотографія вкраплень сторонньої фази у кристалах CdTe:Si,

Рис. 2. Температурна залежність коефіцієнта Холла зразків CdTe:Si з різною концентрацією домішки Si в розплаві (C_o), виготовлених з різних частин злитку(g = x/L, де x – аксіальна координата, L – довжина злитку): 1 - C_o =10¹⁸ см⁻³; g=0,11; 1* - C_o =10¹⁸ см⁻³; g = 0,93; 2 - C_o = 2*10¹⁸ см⁻³; g = 0,13; 2* - C_o = 2*10¹⁸ см⁻³; g = 0,5; 3 - C_o = 3*10¹⁸ см⁻³; g = 0,2; 3* - C_o = 3*10¹⁸ см⁻³; g = 0,6; 3*_P- з власним фотозбудженням; 4 - C_o = 10¹⁹ сm⁻³; g = 0,3; 4_T – цей зразок після КТО. На вставці: спектральна залежність фотопровідності зразка 3* при 79 К. Поряд з номером зразків зазначений їх тип провідності.

II. Результати та обговорення

За результатами НТВ (рис. 2) всі досліджувані

зразки можна розділити на три групи:

1-низькоомні зразки р-типу провідності (криві 1*, 2, 2* на рис. 2), у яких провідність визначається акцепторами A1 (E_v + 0.05 eB) або A2 (E_v+ 0,12÷0,14 eB);

2 – високоомні зразки р- чи п-типу провідності (криві 1, 3*, 4), провідність яких визначається акцепторами A (E_V +0.65 eB) чи донорами D (E_C -0,6 ÷ 0,7 eB);

3 –низькоомні зразки п-типу провідності (криві 3, 4_r^*) з донорами D1 (E_c -0,01 eB).

Рухливість носіїв (рис. 3) у зразках першої і третьої груп контролюється традиційними механізмами розсіювання: на оптичних коливання гратки та на іонізованих домішках. У той же час у зразках групи 2 (криві 1, 3*, 4) залежність рухливості від температури має експоненційний характер, що характерно для кристалів з дрейфовими бар'єрами [9]:

$$\mu = \mu_{\rm o} \cdot \exp(-\varepsilon_{\rm b}/kT),$$

де ϵ_{b} - висота дрейфових бар'єрів, k – постійна Больцмана.

Нагрівання таких зразків в процесі вимірювань (при T > 373 K) супроводжується ізотермічним зростанням рухливості носіїв і пониженням висоти дрейфових бар'єрів. Крім того, короткочасна термічна обробка (КТО) при T = 1073 K тривалістю 1 хв і ВТВ супроводжуються настільки радикальними змінами домішково-дефектної системи (ДДС), що зразки переходять до групи 3 з концентрацією електронів n ~ $10^{15} \div 10^{16}$ см⁻³. При зберіганні таких зразків при кімнатній температурі

Рис. 3. Температурна залежність рухливості електронів і дірок у зразках CdTe:Si (нумерація кривих відповідає рис. 2). Стрілки на кривих 1 і 4 вказують на напрям зміни температури в процесі вимірювань.

спостерігається повільна релаксація концентрації носіїв заряду і рухливості до величин характерних для зразків групи 2.

При власному фотозбудженні (hv ~ E_g) при T < 300~K зразки групи 2 демонструють електронну фотопровідність з ділянкою температурного гасіння (крива 3*_p на рис. 2). У той же час, на спектральній залежності фотопровідності при T = 79~K (вставка в рис. 2) і hv < 1,2 eB електронна фотопровідність змінюється на діркову.

Відомо, що електричні параметри кристалів CdTe, вирощених методом Бріджмена і легованих домішками Ge, Sn, прогнозовані та відтворювані і зміна концентрації носіїв заряду в них може бути в межах 2-3 порядків [10]. При цьому, провідність контролюється глибокими центрами, рівні яких розміщені поблизу середини забороненої зони. У той же час кристали CdTe:Si, вирощені в аналогічних умовах демонструють широкий діапазон електрофізичних параметрів, як за типом провідності, величиною концентрації та рухливості носіїв заряду, так і за характером їх температурної залежності.

Причину таких відмінностей можна пояснити, якщо взяти до уваги різний характер впровадження Si та Ge i Sn в матрицю кристала CdTe. По-перше, коефіцієнти сегрегації Ge i Sn y CdTe суттєво менші одиниці. Тому ці домішки (при достатньому температурному градієнті на фронті кристалізації) відтісняються у верхню частину злитків, що призводить до виділення домішкової фази, оскільки розчинність цих домішок обмежена. У той же час, коефіцієнт сегрегації домішки Si y CdTe близький до одиниці (можливо, дещо більший одиниці). Це означає, що під час вирощування кристалів CdTe:Si, домішка повинна рівномірно розподілитися уздовж злитка або незначно зміститись до початку злитка.

Зрозуміло, що при використанні значення $C_o \ge 10^{18}$ см⁻³ вся кількість домішки Si не може розчинитися у твердій фазі і тому на фронті кристалізації формуються домішкові вкраплення з широким інтервалом розмірів [9].

По-друге, вважається, що домішки Ge(Sn) впроваджуються у гратку, займаючи лише вузлові позиції, наприклад, Ge_{Te}. У той же час, з огляду на невеликі розміри атомів Si, для цієї домішки слід припустити, крім вузлових, (Si_{Cd} i Si_{Te}) також і міжвузлові позиції Si_i. Саме останній дефект забезпечує мобільність ДДС за рахунок швидкої міжвузлової чи диссоціативної дифузії.

Ми вважаємо, що у кристалах CdTe, легованих Si присутні, окрім неконтрольованих домішок, недосконалості типу Si_{Cd}, Si_i, вакансії кадмію V_{Cd}, асоціати (Si_{Cd}V_{Cd}), а також масивні мікроскопічні вкраплення домішки (друга фаза, преципітати). При цьому реакції взаємодії останніх з домішковими ізольованими атомами мають вигляд:

$$\operatorname{Si}^{i} + e^{-} \to \operatorname{Si}(\operatorname{\phiasa})$$
 (1)

Si (преципітати)
$$\leftrightarrow$$
 Si⁺_i + e⁻ (2)

тобто фази можуть розростатися за рахунок

міжвузлових атомів, а преципітати можуть як «розчинятися», так і «конденсуватися». Розміри преципітатів визначають температурний інтервал, де інтенсивно проходить реакція (2): чим менші преципітати, тим при більш нижчих температурах відбуваються процеси «розчинення» при нагріві кристала, або «конденсації» при його охолодженні.

Отже, у зразках групи 1 домішка Si практично не на електричні характеристики вплива€ 13-38 домішкових фаз. Такі зразки домінування демонструють температурні залежності електричних характеристик аналогічні для нелегованих кристалів, відбуваються яких зміни за рахунок в неконтрольованих домішок і власних дефектів.

Зрозуміло, що при температурах Т ~ 373 ÷ 423 К «випаровуються» чи «конденсуються» дрібні преципітати. Але в таких зразках присутні і великі преципітати (рис. 1), які розпадаються при КТО або ВТВ з генерацією термічних донорів Si_i. Поведінку цього донора (п-тип провідності) у зразках CdTe:Si можна побачити на рис. 4 у всьому інтервалі досліджуваних температур. Якщо припустити, що при ВТВ відбувається повний розпад преципітатів, тоді «фінішну» концентрацію електронів (рис. 5)

Рис. 4. Температурна залежність рухливості електронів у зразках з другої групи (високотемпературні вимірювання в атмосфері пари Cd).

Рис. 5. Температурна залежність концентрації електронів одного з зразків групи 2 (високотемпературні вимірювання в атмосфері пари Cd).

можна вважати як межу розчинності домішки Si при високих температурах і тому концентрація [Si] ~ 2×10¹⁶ см⁻³. При низьких температурах у зразках, які піддавались термообробці з розпадом преципітатів, відбуваються процеси повторного формування преципітатів, що супроводжуються зменшенням концентрації електронів і формуванням дрейфових бар'єрів.

Роль преципітатів вирішальна у третій групі зразків і, особливо, у другій. Зокрема, дрейфові бар'єри формуються на областях просторового заряду, які виникають завдяки збідненню електронами областей навколо преципітатів, коли реакція (2) проходить у зворотному напрямку. З іншого боку, перебіг цієї реакції у прямому напрямку забезпечує ослаблення або навіть зникнення бар'єрної структури.

Домішкові фази і преципітати розподіляються по кристалу нерівномірно. Тому, ні положення зразка у злитку (величина g), ні концентрація домішки у розплаві (C_0) не визначають приналежність зразка до тієї чи іншої групи. Зразки групи 2 демонструють електричні характеристики (енергія активації рівноважної провідності, власна електронна і дірково-домішкова фотопровідність, температурне гасіння фотопровідності) подібні до кристалів CdTe-Ge [11].

Отже, за певних умов, введення домішки Si у кристали CdTe забезпечує утворення глибоких акцепторів, ймовірно, асоціатів (Si_{Cd} V_{Cd}^2), які є центрами повільної рекомбінації. Однак, присутність у кристалах CdTe:Si міжвузлових донорів Si_i і, як наслідок, тенденції до преципітації призводять до нестабільності ДДС, на відміну від стабільних

кристалів CdTe-Ge.

Висновки

Твердження електричну неактивність про домішки Si в кристалах CdTe – помилкове. Ця домішка забезпечує n-тип провідності легованих кристалів, виступаючи як донор Si_i і напівізолюючий стан - шляхом утворення глибоких акцепторних $(Si_{Cd}V_{Cd}^{2})^{-}$. комплексів Преципітати кремнію субмікронного розміру, що мають тенденцію до «випаровування» при відносно низьких температурах можна розглядати як електрично активні центри. Отже, присутність домішки Si суттєво змінює властивості кристалів CdTe.

Никонюк Є.С. – кандидат фізико-математичних наук, доцент кафедри хімії та фізики;

Фочук П.М. – доктор хімічних наук, професор кафедри неорганічної хімії твердого тіла та нанодисперсних матеріалів, проректор з наукової роботи і міжнародних зв'язків;

Солодін С.В. - аспірант кафедри неорганічної хімії твердого тіла та нанодисперсних матеріалів;

Ковалець М.О. – кандидат фізико-математичних наук, доцент кафедри хімії та фізики;

Захарук 3.1. – старший науковий співробітник навчально-наукового центру «Технологія функціональних матеріалів»;

Панчук О.Е. - доктор хімічних наук, професор кафедри неорганічної хімії твердого тіла та нанодисперсних матеріалів.

- [1] L. Chibani, M. Hage-Ali, J. Stoguert et. al., Mater. Sci. Eng. B 16, 202 (1993).
- [2] A. Martinaitis, O. Panchuk, Sakalas A. et. al., Lithuanian Phys. Coll. (rus.) 2, 178 (1989).
- [3] F.A. Selim, V. Swaminathan, F.A. Kroger, Phys. Stat. Sol.(a). 29, 473 (1975).
- [4] O. Parfenyuk, M. Ilashchuk, K. Ulyanitsky et. al., Semiconductors 40(2), 143 (2006).
- [5] I.N. Odin, M.V. Chukichev, V.A. Ivanov, M.E. Rubina, Inorgan. Mater. 37, 445 (2001).
- [6] R. Jasinskaite, A. Martinaitis, A. Sakalas, O. Panchuk, Solid State Commun 58, 681 (1986).
- [7] R. Zelinska-Purgal, W. Nazarewicz, Phys. Stat. Sol. (b), 180, 297 (1993).
- [8] P. Fochuk, R. Grill, I. Nakonechnyi, O. Kopach, O. Panchuk, Ye. Verzhak, E. Belas, A.E. Bolotnikov, G. Yang and R. James, B.IEEE. Trans. Nucl. Sci. 58(5), 2346 (2011).
- [9] M. Sheinkman, A. Schick, Semiconductors 10(2), 209 (1976).
- [10] O. Panchuk, A. Savitskiy, P. Fochuk et. al., J. Cryst. Growth 197, 607 (1999).
- [11] Z. Zakharuk, S. Dremlyuzhenko, Kovalchuk M. et. al., Phys. Chem. Solid State 8(4), 703(2007).

Ye.S. Nykoniuk¹, P.M. Fochuk², S.V. Solodin², M.O. Kovalets¹, Z.I. Zakharuk², O.E. Panchuk²

Electrical Instability of CdTe:Si Crystals

¹National University of Water Management and Nature Resources Use, 11, Soborna Str., Rivne, 33000, Ukraine ²Yuriy Fedkovich' Chernivtsi National University, 2, Kotziubynskoho Str., Chernivtsi, 58012, Ukraine, e-mail: <u>serhii.solodin@gmail.com</u>

Results of Hall effect measurements of cadmium telluride crystals, doped by silicon (dopant concentration in the melt was $10^{18} - 10^{19}$ cm⁻³), allowed to classify the studied samples and the conditions under which probably the definite crystal and impurity states are realized. We have found the distinction between 3 type of CdTe:Si crystals: (1) low-resistance p-type crystals with shallow acceptors, in which Si impurity is localized mainly in the large inclusions; (2) semi-insulating crystal with deep acceptors and submicron size dopant precipitates that are source/drain for interstitials Si_i - shallow donors; and (3) low-resistance crystals in which the n-type conductivity is provided by shallow donors: Si_i (and/or Si_{Cd}). Therefore the silicon is responsible for n-type conductivity of doped samples, introducing as a donor Si_i and provides semi-insulating state by forming deep acceptor complexes (Si_{Cd} $^{2-}$)⁻ with (E_v+0.65 eV). Besides, the submicron silica precipitates, that have a tend to "dissolution" at relatively low temperatures, can act as electrically active centers.

Keywords: cadmium telluride, silicon, doping, electrical properties, impurity, precipitates.